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Abstract

Background: Complex diseases are characterized as being polygenic and multifactorial, so this poses a challenge
regarding the search for genes related to them. With the advent of high-throughput technologies for genome
sequencing, gene expression measurements (transcriptome), and protein-protein interactions, complex diseases
have been sistematically investigated. Particularly, Protein-Protein Interaction (PPI) networks have been used to
prioritize genes related to complex diseases according to its topological features. However, PPI networks are
affected by ascertainment bias, in which more studied proteins tend to have more connections, degrading the
results quality. Additionally, methods using only PPI networks can provide only static and non-specific results, since
the topologies of these networks are not specific of a given disease.

Results: The goal of this work is to develop a methodology that integrates PPI networks with disease specific data
sources, such as GWAS and gene expression, to find genes more specific of a given complex disease. After the
integration of PPI networks and gene expression data, the resulting network is used to connect genes related to
the disease through the shortest paths that have the greatest concordance between their gene expressions. Both
case and control expression data are used separately and, at the end, the most altered genes between the two
conditions are selected. To evaluate the method, schizophrenia was adopted as case study.

Conclusion: Results show that the proposed method successfully retrieves differentially coexpressed genes in two
conditions, while avoiding the bias from literature. Moreover we were able to achieve a greater concordance in the
selection of important genes from different microarray studies of the same disease and to produce a more specific
gene set related to the studied disease.

Prioritization of relevant genes associated with complex
diseases is a significant challenge, because such diseases
are polygenic and multifactorial. In addition, patients
with the same complex disease can present different
genetic perturbations [1]. With the advent of high-
throughput technologies for genome sequencing, gene
expression measurements (transcriptome), and protein-
protein interactions mapping, complex diseases have
been sistematically investigated. Genomewide association

studies (GWAS) is an approach that has improved our
comprehension of the genetic basis of many complex
traits [2]. However, it fails in revealing the relatively small
effect sizes found in most genetic variants [3,4]. Other
studies suggest that combining GWAS approach with
transcriptome analyses, such as eQTL mapping, reduces
the number of false positives and helps the discovery of
new functional loci [5,6].
Protein-protein interaction (PPI) networks have also

become an important tool to study the complex molecular
relationships in a living organism. Barabási et al [7] sum-
marized a series of hypotheses and principles (Network
Medicine Hypotheses) which link topological properties of
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PPI networks to biological functionalities. Some of these
hypotheses are often used to prioritize candidate genes
related to a given disease. We highlight three hypotheses:
• disease module hypothesis: genes products associated

to the same disease phenotype tend to form a cluster in
the PPI network;
• network parsimony: shortest paths between known

disease genes often coincide with disease pathways;
• local hypothesis: gene products associated with simi-

lar diseases are likely to strongly interact with each
other.
In fact, many recent works have analyzed topological

properties of PPI networks to comprehend genetic dis-
eases assuming the Network Medicine hypotheses
[7-10]. Such methods take as input a PPI network, a set
of seeds (usually originated from GWAS) and candidate
genes and output a set of candidates ranked by a score.
They can be categorized in two main approaches: (i)
local (e.g. direct neighbors and shortest paths - [11])
and (ii) global (e.g random walk with restart [8,9,12] and
network propagation [10]). Kohler et al [8] proposed to
use random walks with restart (RWR) method to priori-
tize candidate disease genes. Vanunu et al [10] proposed
to use network propagation method, a slight variation of
RWR.
Nevertheless, PPI networks data are noisy and incom-

plete [13,14], which impact the accuracy of the candidate
gene prioritization methods. Besides, largely studied pro-
teins tend to be highly connected, which are favored by
methods relying on topological properties assessment.
Thus, due to this issue - usually called “ascertainment
bias” - genes that are not well studied, hardly appear
among the top ranked ones [15]. Erten et al [15] pro-
posed statistical adjustments to the RWR method in
order to address the ‘ascertainment bias’, in which well
studied genes tend to be favored by methods based on
PPI just because of their high connectivity degree. This
method intends to detect both high and low degree
related genes instead of only the higher degree genes in
the seeds neighborhood. However, like other aforemen-
tioned methods, it is based solely on the static PPI net-
work and seed proteins information.
To properly understand the mechanisms underlying

complex diseases, techniques involving integrative analy-
sis of data originated from many sources have been
developed. There is a lot of genomic, transcriptomic and
proteomic data available from different complex diseases
in public databases. To improve the identification and
prioritization of genes associated with complex diseases,
some works began to integrate PPI networks with infor-
mation derived from other omics data, which have con-
tributed to a better understanding of gene functions,
interactions, and pathways [16,17]. The integration of
PPI networks and gene expression data has improved

disease classification and identification of disease specific
deregulated pathways [9,16-20]. The reader is referred to
[21] for a survey of these integrative approaches. How-
ever, the resulting gene lists from different studies
almost does not present overlap.
In this paper, we proposed a methodology that inte-

grates data from association studies (GWAS), gene
expression profiles and PPI datasets. Then, by assuming
the Network Medicine hypotheses, given a set of seed
genes (obtained by GWAS) the method analyzes its
neighborhood by retrieving all shortest paths between
them and their direct neighbors. Next, the method selects
those shortest paths that present the largest gene expres-
sion concordance among the genes in the paths. This is
performed separately in two conditions (case and con-
trol) generating two networks, in which each gene (and
interaction) is scored taking into account its (a) distance
from seeds; (b) the gene expression concordance (of the
genes in the paths to which it belongs); and (c) its fre-
quency across the paths. Finally the method analyzes the
differences between the networks under two conditions
to select the most altered genes (and interactions)
according to the score aforementioned.
There is an increasing usage of systems biology

approaches in psychiatric diseases as they are considered
complex diseases. In the psychiatric field there are data-
bases of autism [22,23], schizophrenia [24] and Alzhei-
mer’s disease [25] trying to integrate information from
different sources of studies: GWAS, transcriptome and
Interactome, etc. To validate our method we adopted
schizophrenia data as case study. Schizophrenia is a
major psychiatric disease affecting ~1% of the world
population. It is commonly considered a complex dis-
ease with multiple genetic and environmental factors
involved. However, genetic factors impact substantially
on the risk of developing the disease, with an estimated
heritability of ~80% [26]. Jia et al [27] used data from
different schizophrenia studies: Association, Linkage,
Expression, Literature search, Gene Ontology and Gene
Network. For most data categories, gene score was cal-
culated based on P-values, while for literature search
they assigned score for a gene based on the number of
keywords being hit in the search. Similarly, a score was
assigned to a gene based on the number of neuro-
related GO terms annotated to the gene. Then the
genes were ranked based on the weighted average of
such scores. They verified that several previous works
found genes related to schizophrenia, but the overlap
among those sets of genes is very small. The overlap of
genes coming from transcriptome analysis compared to
genes coming from genome-wide association studies
(GWAS) are almost null. Therefore, integration of dif-
ferent datasources is still an open problem in the psy-
chobiology of schizophrenia. By applying our method to
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3 different gene expression schizophrenia studies, it suc-
cessfully retrieved differentially coexpressed genes in
two conditions, while avoiding the ascertainment bias.
Additionally, the proposed method could obtain a
greater replicability in the selection of important genes
from different microarray studies of the same disease
and to produce a more specific gene set related to the
studied disease.

Materials and methods
Materials
The PPI network was integrated as described in the sec-
tion Data integration. We used 3 different PPI datasets:
(i) HPRD (Human Protein Reference Database) [28];
(ii) IntAct (IntAct Molecular Interaction Database) [29];
(iii) MINT (Molecular Interaction database) [30]. The
gene expression datasets were obtained from SNCID
(Stanley Neuropathology Consortium Integrative Data-
base) [24]. In SNCID there exist several neuropathologi-
cal datasets, from which three schizophrenia gene
expression database were selected for the experiments:
KATO (35 control and 34 disease samples), ALTARC
(33 control and 34 disease samples) and BAHN (29 con-
trol and 21 disease samples). The normalization of these
datasets was performed by Affymetrix package using
RMA [31,32] in R language.
We adopted as seeds (disease-related genes) a set of

38 genes (called ‘core genes’) obtained from the SZGR
database [27], since such genes presented significant
meta-analyses results from disease association studies.
Among these ‘core genes’, 30 were present in the main
connected component of the composed PPI network.

Data integration
Since there are several human PPI network datasets
available, some of these network datasets are combined
to obtain a unique PPI network. Then, proteins and
transcripts are mapped to their corresponding coding
genes (gene symbols). Since more than one transcript
can be mapped to the same gene, the gene expression
profile is represented by the median of its transcripts
expression. In this way, we compose the PPI network by
integrating it with the gene expression data - keeping
only genes that belong to both. From now on, in the
context of PPI networks, we will use the term ‘gene’
referring to their respective proteins.

Feature extraction
By assuming local, disease module and parsimony prin-
ciple hipotheses, this step extracts features of the genes
in the neighborhood of the seeds aiming to discover
genes potentially related to the disease in study. Follow-
ing the local hypothesis, the set of seeds S is grown to
include their neighbors N (direct interactions), obtaining

a new set S ∪ N. Then, by following the network parsi-
mony principle, the two sets S and S ∪ N are connected
by shortest paths, leading to a subnetwork representing
the neighborhood of the seed genes. All genes in this
neighborhood are considered candidates to be related to
the disease.
Shortest paths selection
According to the disease module hypothesis, genes
related to the same disease tend to compose modules in
regions of PPI network. Several works use the shortest
path algorithm to infer biological pathways and/or sub-
networks with groups of genes related to the disease,
showing that many intermediate genes are also related
to the disease [33-38].
Between a pair of genes in the human PPI network

there may be several possible shortest paths, and some
of these paths can be much more valuable than others
from the biological perspective. Assuming that genes
more correlated with the seed genes tend to be asso-
ciated with the disease [39], a criterion that evaluates a
given shortest path based on the coexpression of its
genes among them and the seeds is desirable. In this
way, we adopted a modified version of Kendall’s Con-
cordance Coefficient (Wmax) to measure the overall
expression concordance among the genes of a given
path [40,41] (see Kendall’s Concordance Coefficient
next).
When selecting the best shortest path for a given pair

of genes, the problem of ties arise, where multiple short-
est paths might have the same (or almost the same)
Wmax value. Thus, to avoid losing important information
about biologically relevant shortest paths, a factor ε is
defined to include all paths Pi which present concor-
dance value Wmax(Pi) ≥ Wmax(P*)(1 - ε), where P* is the
path with the best concordance value for a given pair of
genes. For instance, suppose that Wmax(P*) = 0, 6 and
ε = 0, 05 for a given gene pair. Then all shortest paths
presenting Wmax ≥ 0.6 × (1 - 0.05) = 0.57 are considered
tied with the best one and thus included as the best
shortest paths for the considered gene pair.
Kendall’s Concordance Coefficient
To compute the Kendall’s Concordance Coefficient W
value independently of genes being up or down-regu-
lated, we did an adaptation on the computation of this
coefficient, in which all possible ranking inversions are
considered. The ranking inversion which maximizes the
concordance W among the genes is chosen, resulting in
the modified value Wmax for a given path - this is the
criterion adopted to evaluate the coexpression of a path.
This criterion is taken into account to select the best
shortest paths for a given gene pair as aforementioned.
Genes scoring in a given condition
Inspired by several works presenting different ways to
prioritize genes in a PPI network [11,27,42], we derived
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a score to assess the relative importance of a given gene
considering topological and transcriptional aspects in a
given condition (disease or control subnetworks) for
genes belonging to the shortest paths selected in the
previous step. Regarding the topological aspects, we use
concepts similar to closeness and betweenness. Con-
cerning the transcriptional aspects, we use Wmax value
to measure how genes from a given path are coex-
pressed. Considering all these aspects, we proposed the
formula given by Equation 1 to score the relative impor-
tance of a gene related to the seeds and related to a
given condition:

σ (g) =
∑

s∈S
t∈S∪N
Pst∈P∗

st

λ−dsg × Wmax(Pst) × 1g∈Pst
(1)

where dsg is the distance between nodes s and g in the
PPI, P∗

st is the set of selected shortest paths from s to t,

and 1g∈Pst is the indicator func-
tion which returns 1 if g belongs to Pst and 0 otherwise.
The first term (λ−ds g) , similar to closeness, seeks to

penalize the distance between a given gene g and a seed
s. The greater the distance to s the lower the importance
of the gene g. The second term (Wmax) seeks to measure
the concordance of gene expression profiles of the
selected shortest paths containing gene g. Thus, this
term seeks to benefit genes belonging to highly corre-
lated shortest paths in terms of gene expression. The
last term ( 1g∈Pst ) just means
that the score of a gene g will be increased according to
the multiplication of the first two terms if g belongs to
Pst. This equation assumes additivity of seeds contribu-
tion to the score of a given gene. It is applied to control
and disease sub-networks to compare the scores of a
given gene in two conditions (resulting in two gene
score values sC (g) and sD (g), for control and disease
conditions respectively).

Gene selection
The problem of classifying genes as differentially altered
resembles to identification of differentially expressed
genes in microarray experiments. Among the methods
proposed in literature for this purpose, we highlight the
parametric method MAID [43]. Based on this method,
we propose some alterations which use scores sC and
sD to obtain the most altered genes in two conditions.
For this, our proposed method performs two similar
transformations to those applied by MA-plot method
[44] - one regarding the intensity A and another regard-
ing the alterations M. The intensity value (x-axis) of a
given gene g is determined by Equation 2:

X(g) = σC(g) + σD(g) (2)

Besides, the alteration score value (y-axis) to compare
of a given gene g is defined by Equation 3:

�(g) =
σD(g) − σC(g)
σC(g) + σD(g)

=
σD(g) − σC(g)

X(g)
(3)

The alteration score Δ seeks to measure the relative
difference of the scores sC(g) and sD(g) between two
conditions (control and disease). It varies from -1 to +1,
where the negative values mean the control score is lar-
ger than disease score and the positive means the oppo-
site. Values close to zero mean almost null difference
between sC(g) and sD(g). When assessing relatives dif-
ferences, in principle genes with larger absolute Δ(g)
values would be more altered, but large values in
denominator (X(g) = sC(g) + sD(g)) present smaller var-
iations in the Δ(g) score - which is a similar problem
found in classifying differentially expressed genes by
using MA-plot (where large values of A present smaller
variations in M). Indeed, genes with high (X(g) = sC(g)
+ sD(g)) values tend to present smaller Δ(g) scores.
Hence, the idea is to differentially select genes according
to their X values.
To select the most altered genes, we adapt the para-

metric method MAID (MA-plot-based signal intensity-
dependent fold-change criterion) [43], but instead of
applying exponential approximation (f (x) = ae-bx) to fit
the points in the interquartile range, we use the power-
law approximation (f (x) = ax-k) - since it decays
smoother. The curve fits the third quartile of Δ values
in each interval considered in the domain X (such inter-
vals are defined by a sliding window of a given length
Wlen and step size Wstep). Hence, to consider the X(g)
effect, the idea is to normalize the alteration score Δ(g)
by its respective X(g) value according to Equation 4.

�′(g) = �(g)
f (X(g))

=
σD(g) − σC(g)
X(g)f (X(g))

(4)

In this way, small values of X (which tend to present
larger variations of alterations) are divided by a larger
denominator, and as X increases (and tend to present
smaller alteration values), such denominator decreases
to compensates the effect of smaller alterations pre-
sented by larger X. The Δ’(g) signal indicates in which
condition a given gene g has a larger score. For ranking
purposes, the larger the abolute value |Δ’(g)|, the better
the gene g.

Results and discussion
In our approach (see Figure 1) we use as input: PPI net-
work data, gene expression data and a set of seed genes
related to our case study (schizophrenia). The gene
expression profiles were obtained from two conditions:
control and disease, and were assigned to the network
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nodes (genes) according to the adopted database
(KATO, ALTARC and BAHN studies).
After the integration of PPI and gene expression data-

sets, the resulting network contained 9,554 nodes and
61,998 interactions.

Parameters setup
From the differential analysis of the PPI network, some
parameters need to be defined. Table 1 presents the list
of parameters and its respective values adopted in the
experiments.

Methods comparison (DADA vs RWR vs X vs Δ’)
This section presents a comparative analysis involving
DADA and RWR methods. Our proposed method out-
puts the scores X and Δ’, which are both involved in
this analysis. To facilitate the explanation, from now on

we call X and Δ’ as “methods”, even though they are
only resulting values of the same method.
Given lists containing the top N genes ranked by each

method, we analyze how many genes are in the intersec-
tion between such rankings and how much similar are
the ranking orders of the genes in common. We also
compare the top N rankings of the four methods with
the ranking obtained by gene/protein degree in decreas-
ing order (the degree of a given protein is its number of
interactions in the PPI network). We use expression
data from KATO study in these analyses, since similar
results were obtained by using expression data from
ALTARC and BAHN studies (results not shown).
Figure 2 illustrates the top 5% genes selected by Δ’

(red and green dots, indicating genes more coexpressed
in disease and control, respectively). Gray dots represent
genes which are not altered between the two conditions,

Figure 1 Overview of the proposed method.

Table 1 Parameter values adopted in the experiments.

Parameter Value Description

Wlen 2 Sliding window length. Such window defines the intervals in which the points will be considered to calculate the interquartile
range values (IQR).

Wstep 1 Sliding window step size.

Xini 5 Threshold for which only genes with X = (sC + sD) larger than this value are considered in the analysis.

ε 0.05 Factor used to deal with ties.
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while blue dots represent genes obtained by DADA
(considering the same number of genes).
There exist some important differences between

DADA and Δ’ methods. In one hand, DADA aims to
alleviate the ascertainment bias, but it does not worry
about the differential alteration between two conditions.
That is the reason by which it retrieves some genes that
are not differentially altered (represented by gray dots in
Figure 2). On the other hand, the score Δ’ successfully
retrieves differentially coexpressed genes and, at the
same time, alleviates the ascertainment bias, since sev-
eral genes with large X were not selected. In this way,
by integrating different sources of biological data, our
method can provide more specific results according to
the differential coexpression of the genes (under two
conditions).
Intersections and correlations of the rankings obtained by
DADA, RWR, X and Δ’

To compare the intersections and corrrelations of the
rankings obtained by DADA, RWR, X and Δ’, first we
select the list of top N genes from each method. Then,
we extract the genes belonging to the intersection of the
lists and evaluate the Spearman rank correlation of the
intersection. Finally, this process is repeated for several
values of N, resulting in curves of intersection and cor-
relation along the N domain. Figure 3 presents the com-
parison of the intersection of the top N genes lists
obtained by each pair of methods, varying N from 20 to
1000. In the top, curves of intersection (in proportion)

between the top N genes obtained by each pair of meth-
ods are presented, while in the bottom, curves of Spear-
man correlation between the top N genes obtained by
each pair of methods are presented.
We observe that, for a small number of top genes

considered (N ≤ 100), the intersection between DADA
and RWR lists is remarkedly high (about 0.8), while the
intersections between the remaining pairs of methods
start relatively small and gradually increases with N. For
the same considered domain (N ≤ 100), intense fluctua-
tions in correlations of genes belonging to the intersec-
tions between the pairs of methods can be observed.
This is expected, since for N ≤ 50, most of the intersec-
tions (except for DADA vs RWR) are very low, contain-
ing at most 3 genes, for which the correlations are not
meaningful. Thus, small lists are prone to large correla-
tion fluctuations. These fluctuations decrease as the
intersection lists increase. For N ≥ 100, all curves for
both intersection and correlation tend to stabilize.
Although the intersection between DADA and RWR is
overcome by the intersection between X and RWR for X
≥ 360, we notice that the correlation between DADA
and RWR remains the largest (about 0.84). This is
expected since DADA performs a statistical adjustment
aiming to insert some genes with relatively small degree
to the resulting list from RWR. In this way, the intersec-
tion between DADA and RWR is high in the beginning
and tends to decrease as N increases. In its turn, the
correlation between DADA and RWR is high in the

Figure 2 Selection of top 5% genes by Δ’ and DADA. The Δ’ score selects genes with largest alterations between sC and sD, after applying
parametric interpolation by power-law. Red and green dots indicate genes with larger coexpression in disease and control, respectively. Gray
dots represent genes which are not differentially altered between the two conditions. Blue dots indicate genes obtained by DADA. Genes with
large X values participate in many selected shortest paths, which means that they have great importance with regard to the seeds, considering
both topological centrality and expression concordance.
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beginning (N ≥ 30), followed by a decrease (N ∈ [31,38])
due to the insertion of genes resulting from DADA
adjustment. After that, the correlation tends to increase
until converging to approximately 0.84.
Additionally, the smallest intersections and correlations

involved Δ’, which is expected since Δ’ was idealized to
capture alterations between control and disease. The lar-
gest intersection involving Δ’ was with X (about 0.53)
and the least one was with DADA (about 0.38). From N
= 400 on, correlation between Δ’ and all methods were
small: about 0.1 with DADA, about 0.2 with RWR, and
about 0.35 with X. This suggests that Δ’ tends to capture
novel genes (differentially co-expressed in both condi-
tions) that are not obtained by other methods. Regarding
X, even though it considers coexpression and location
with regard to the seeds as the main factors, these are
not considered in a differential way, resulting in moder-
ated correlations with DADA and RWR.
Intersections and correlations of Degree with (DADA, RWR,
X, Δ’)
As discussed before, genes/proteins widely studied in
the literature generally tend to have more interactions
with its neighbors, thus presenting large degree. Recal-
ling that this distortion observed in the degree distribu-
tion of PPI networks is known as ascertainment bias.

Due to this fact, it is possible that genes associated with
a given disease which were not well studied might be
neglected by existing methods for gene priorization.
Thus, in this part we analyze the intersections and cor-
relations between the ranking ordered by Degree with
regard to the rankings obtained by the four methods
considered (DADA, RWR, X, Δ’). Figure 4 presents a
comparison of the Degree ranking with the rankings
obtained by DADA, RWR, X and Δ’, varying the number
(N ) of top genes considered.
We observe that, for a small number of top genes

considered (N ≤ 100), the intersection between Degree
and X is the largest (varying between 0.21 and 0.46),
while the intersections between Degree and other meth-
ods begin close to zero and gradually increase with N
until reach the values 0.28, 0.21 and 0.19, respectively
for RWR, Δ’ and DADA. In the same interval, great
fluctuations in the correlations of the Degree ranking
with method rankings, due to the fact most of intersec-
tions are relatively small. For N ≥ 200, the correlation
curves begin to stabilize presenting less fluctuations. It
is also possible to notice that the intersection between
Degree and X is overcome by intersection between
degree and RWR from N = 450, which shows that RWR
tends to incorporate into its list a larger proportion of

Figure 3 Comparison of the methods DADA, RWR, X and Δ’, varying the number of top genes considered by each method. Top:
intersections (in proportion) between list pairs of top N genes obtained by each pair of methods. Bottom: Spearman correlations between list
pairs of top N genes obtained by each pair of methods.
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genes with large degree as N increases. The rankings
achieved by Δ’ and DADA present relatively small values
of intersection and correlation with Degree along the
whole domain. For N ≥ 200, although the intersection
between Δ’ and Degree is slightly larger than the inter-
section between DADA and Degree, the correlation
between Δ’ and Degree present values slightly less or
equal to the correlation between DADA and Degree.
At this point, we recall that the score X aims to find

genes coexpressed in the neighborhood of the seeds in
one or both conditions (control and disease). In the pro-
posed method, even though the selection the shortest
paths depends in great part on coexpression of the
genes with the seed, genes with high degree and highly
coexpressed tend to be prioritized by X, since such
genes usually participate in many shortest paths between
the seeds. Thus, X tends to achieve highly coexpressed
and connected genes in the neighborhood of the seeds,
which suggests that X is appropriate to find PARTY
HUBS (proteins highly co-expressed with their partners,
acting as local coordinators) [45]. For example, by fixing
N = 100 and comparing genes belonging to the intersec-
tions (Degree ∩ X) and (Degree ∩ RWR), we observe that
27 out of 28 genes belonging to (Degree ∩ RWR) also

belong to (Degree ∩ X), but (Degree ∩ X) possesses 43
genes from which 16 genes do not belong to (Degree ∩
RWR). However, we found that most of these 16 genes
(NR3C1, GABARAPL1, UBC, TRAF6, APP, YWHAQ,
EPB41, CTNNB1, MAPK1, IKBKG, PIK3R1, IKBKE,
HSP90AA1, MDM2, RELA and ATF2.) are strongly
related to schizophrenia [46-50]. This indicates that X
captures more high degree genes related to the disease
than RWR does. Another aspect to highlight regarding
such intersections is that from N = 480 on, the intersec-
tion between x and Degree stabilizes, while RWR con-
tinues to present increasing intersection with Degree.
This indicates that RWR is more prone to ascertainment
bias.
Regarding the intersections of Δ’ and DADA with

Degree, they were smaller, which suggests that these
scores are less prone to the ascertainment bias. Besides,
it is important to highlight that the ranking achieved by
DADA is strongly based on RWR ranking, except by the
fact that the first tries to prioritize small degree genes in
certain conditions. Recalling that Δ’ seeks to prioritize
the coexpression differences (with the seeds) of the
genes in the selected shortest paths under two condi-
tions (control and disease). Therefore, Δ’ is more

Figure 4 Comparison of the genes ranking obtained by Degree regarding to the rankings obtained by DADA, RWR, X and Δ’. The
number of top genes considered were varied from 20 to 1000. Top: intersections (in proportion) between the lists of the top genes obtained
by degree with regard to DADA, RWR, X and Δ’. Bottom: correlations between the lists of the top genes obtained by degree with regard to
other methods.
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adequate to discover novel genes associated with a given
disease.
Replication of KATO, ALTARC and BAHN studies
We performed an analysis of replication (overlap) of the
top genes ranked by both scores Δ’ and X for KATO,
ALTARC and BAHN studies. Figure 5 presents the
intersections of the three lists with top 10% of the genes
ranked by Δ’, one list per study. The number of genes
obtained for KATO, ALTARC and BAHN studies were
265, 285 and 276, respectively.
Note that the intersection among the three lists con-

tains 129 genes, which represents approximately 46.9%
of the average number of genes per list. This number is
remarkable, since the number of genes expected if the
lists were obtained at random would be about 3, which
correponds to about 0.1% (10% × 10% × 10%) of the
average number of genes per study, since the three lists
have approximately the same size. It is important to
highlight that the genes belonging to this intersection
are those which present desirable topological and coex-
pression characteristics (including differential co-expres-
sion between control and disease cases), not only for
one, but for all three studies. A biological analysis of
this list of 129 genes is presented in the next section.
Regarding the replication obtained by score X, Figure 6

presents the intersections of the three lists with top 10%
of the genes, one list per study (KATO, ALTARC and
BAHN). The intersection among the three lists resulted

in 195 genes, which represents approximately 70.9% of
the average number of genes per study. Thus, the rank-
ings obtained by X presented even larger intersection
than the obtained by Δ’ rankings. This is expected, since
genes highly coexpressed with the seed and, at the same
time, highly central with regard to the seeds in both con-
trol and disease conditions tend to be prioritized by X.
This is an evidence that X tends to recover genes widely
studied in the literature and, at the same time, highly
important with regard to the seeds considering both
topological and coexpression aspects. Besides, many
genes belonging to this intersection have potential to be
PARTY HUBS. Biological analyses showed results similar
to the analyses performed by rankings obtained by Δ’
(biological analyses for Δ’ are presented in the next
section).

Biological analyses
For the biological analyses, we submitted the considered
gene lists to GO and KEGG analyses available in Web-
Gestalt (WEB-based GEne SeT AnaLysis Toolkit -
http://bioinfo.vanderbilt.edu/webgestalt/). In this way,
we performed functional, hyper-represented pathways,
and disease association analyses of the obtained genes.
List of top 10% genes ranked by Δ’ for the KATO study
First, we analyzed the top 10% (265) genes ranked by Δ’
for the KATO study. By performing GO analysis over
this list of genes, searching the top 10 over represented

Figure 5 Intersection of the genes ranked by Δ’. The top 10% of
the genes ranked by Δ’ were selected for each study: KATO, ALTARC
and BAHN, resulting in an overlap of 129 genes (~46.9%).

Figure 6 Intersection of the genes ranked by X. The top 10% of
the genes ranked by X were selected for each study: KATO, ALTARC
and BAHN, resulting in an overlap of 195 genes (~70.9%).
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biological functions with more than 10 genes per func-
tion and adjP < 0.05 (adjP: p-value adjusted by the mul-
tiple test adjustment). We observed the following
functions as over represented: regulation of signal trans-
duction (adjP = 1.95e-24); nerve growth factor receptor
signaling pathway (adjP = 3.77e-24); intracellular protein
kinase cascade (adjP = 2.07e-25); protein phosphorila-
tion (adjP = 3.77e-24).
Using the same parameters described above on the

KEGG analysis the important over represented pathways
were: neurotrophin signaling pathways (adjP = 1.85e-
33); pathways in cancer (adjP = 2.55e-32); MAPK signal-
ing pathway (adjP = 2.7e-31); focal adhesion (adjP =
3.60e-28) and ErbB signaling pathway (adjP = 8.66e-25)
- (see supplementary Table S1). We also performed an
over represented analysis of diseases. It is noteworthy
that cancer, stress, skin disorders and different

psychiatry disorders were over represented (see supple-
mentary Table S2). The aforementioned analyses were
also performed using the top 10% genes ranked by score
X, and the results were similar, regarding aspects of bio-
logical pathways (results not shown).
Intersection among 3 studies - ranked by Δ’

Here we analyze the genes present in the intersection
among the Δ’ top 10% rankings obtained from KATO,
ALTARC and BAHN studies. The Δ’ intersection list
presents 129 genes, and the distribution of these genes
on their respective biological processes categories is pre-
sented in Figure 7. Among the biological processes
related to schizophrenia [38,51,52], we highlight: biologi-
cal regulation (112 genes), stimuli response (100 genes),
cell communication (93 genes), developmental process
(85 genes), apoptosis (54 genes) and cell proliferation
(45 genes). This preliminary analysis indicates that these

Figure 7 Biological Process categories. Distribution of the genes present in the intersection list obtained by Δ’ top 10% rankings for KATO,
ALTARC and BAHN studies. Some processes are associated to schizophrenia: cell communication, cell death (apoptosis), biological regulation,
stimuli response and cell proliferation (neurogenesis ability).
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genes actually participate in biological processess related
to schizophrenia, indicating that the intersection of the
top genes ranked by Δ’ - for the three considered stu-
dies - presents genes relevant to the disease in question.
In addition, we performed in these 129 genes an

enrichment analysis representing the most important

genes related to schizophrenia. As expected, the biologi-
cal process and KEGG enrichment analysis (with more
than 10 genes in each category and an adjusted P-value
< 0.05) were similar to our previous analysis, since all
129 genes in this list are contained in the list of 265
genes obtained from KATO study. However, it is

Figure 8 PPI human module. Module 26 with 14 genes (green nodes) belonging to the 129 overlapped genes from 3 studies. This module is
related to glutamate receptor signaling pathway, a very important pathway related to schizophrenia.
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noteworthy that, in the first analysis, nothing specific
related to neurons appear with such stringent criteria,
but using the 129 genes (from intersection of 3 studies)
in the cellular component enrichment analysis, neuron
projections (adjP = 8.3e-19) were over represented.
Another important point is that the disease enrichment
analysis from the 129 genes also presented cancer,
stress, neurodegenerative disorders and other psychiatric
disorders.
Although other psychiatric disorders such as depres-

sion, and Alzheimer also appeared over represented
besides schizophrenia, another interesting point is that,
considering the same criteria in both analysis, the
majority of psychiatric disorders that appear over repre-
sented in the KATO analysis (such as Asperger, panic
disorder and eating disorder) didn’t appear with the 129
genes from intersection list (see supplementary Table
S3). We searched for PPI human modules over repre-
sented in the 129 genes and we found 5 PPI Modules
(see supplementary Figure S4). The most interesting
module was Module 26 (adjp = 0.0021) with 14 genes
represented in our list and just found in the 129 gene
set. This module is related to glutamate receptor signal-
ing pathway, a very important pathway related to schizo-
phrenia. Figure 8 represents the PPI Module 26 from
Human Interactome (WebGestalt tools). Green nodes
represent genes from our 129 gene set.
We conclude with our biological analysis that our

method is able to select genes already related to schizo-
phrenia, as well as point new genes and pathways that
can provide good candidates. Also we observe that our
method achieves a great overlap (46,9%) among different
studies that, by using only conventional methods which
perform differential expression analyses, achieved almost
null intersection among the resulting lists. In addition to
achieve a concordance among studies, the method was
also able to select a more restricted set of genes related
to a specific disorder.

Conclusion
In this work, we presented an integrative approach com-
bining data from gene expression, PPI network and
GWAS to prioritize genes potentially related to complex
diseases. By assuming some network medicine hypoth-
esis, the method explores the neighborhood of a gene set
by locating paths possessing more coexpressed genes
with seeds - this is independently performed for two con-
ditions (control and disease). Our method outputs two
scores X and Δ’. The first one (X) prioritizes genes with
party hub features, possessing high topological centrality
and, at the same time, high coexpression relative to the
seed genes. The second one (Δ’) prioritizes the most
altered genes between two conditions. We performed a
comparative analysis involving our method and two

state-of-art methods (RWR and DADA) by using schizo-
phrenia as case study. Results showed that our method
(both scores X and Δ’) complements RWR and DADA by
obtaining genes which present a good balance between
topological centrality and differential gene coexpression.
Additionally, similarly to DADA, the score Δ’ does not
present the ascertainment bias problem. However, our
method does not require parameters adjustment and, at
the same time, achieves a great replicability in the selec-
tion of important genes from different microarray studies
of the same disease, producing a more specific gene set
related to the studied disorder. Besides, the score Δ’
prioritized genes belonging to biological pathways highly
related to schizophrenia, indicating that this score could
be used for gene discovering. On the other hand, the
score X prioritized genes related to schizophrenia that
are highly referred by literature. Therefore, by integrating
gene coexpression with PPI network, our method
achieves more specific and restrictive results which can
allow gene discovering. Besides, both methods presented
high replicability results among three different microar-
ray studies
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