
RESEARCH Open Access

Light-RCV: a lightweight read coverage viewer for
next generation sequencing data
Che-Wei Chang1, Wen-Bin Lee2, An Chen-Deng2, Tsunglin Liu2, Joseph T Tseng2, Darby Tien-Hao Chang1*

From Joint 26th Genome Informatics Workshop and Asia Pacific Bioinformatics Network (APBioNet) 14th
International Conference on Bioinformatics (GIW/InCoB2015)
Tokyo, Japan. 9-11 September 2015

Abstract

Background: Next-generation sequencing (NGS) technologies has brought an unprecedented amount of genomic
data for analysis. Unlike array-based profiling technologies, NGS can reveal the expression profile across a transcript
at the base level. Such a base-level read coverage provides further insights for alternative mRNA splicing, single-
nucleotide polymorphism (SNP), novel transcript discovery, etc. However, to our best knowledge, none of existing
NGS viewers can timely visualize genome-wide base-level read coverages in an interactive environment.

Results: This study proposes an efficient visualization pipeline and implements a lightweight read coverage viewer,
Light-RCV, with the proposed pipeline. Light-RCV consists of four featured designs on the path from raw NGS data
to the final visualized read coverage: i) read coverage construction algorithm, ii) multi-resolution profiles, iii) two-
stage architecture and iv) storage format. With these designs, Light-RCV achieves a < 0.5s response time on any
scale of genomic ranges, including whole chromosomes. Finally, a case study was performed to demonstrate the
importance of visualizing base-level read coverage and the value of Light-RCV.

Conclusions: Compared with multi-functional genome viewers such as Artemis, Savant, Tablet and Integrative
Genomics Viewer (IGV), Light-RCV is designed only for visualization. Therefore, it does not provide advanced
analyses. However, its backend technology provides an efficient kernel of base-level visualization that can be easily
embedded to other viewers. This viewer is the first to provide timely visualization of genome-wide read coverage
at the base level in an interactive environment. The software is available for free at http://lightrcv.ee.ncku.edu.tw.

Background
Current next-generation sequencing (NGS) technologies
have provided biologists with an unprecedented scale of
genomic data that require analysis [1,2]. Instead of
reporting a single expression value for each transcript in
array-based profiling technologies, NGS technologies
can reveal the read count variation within a transcript at
the base level. Such a base-level read coverage provides
further insights for analyzing alternative mRNA splicing,
single-nucleotide polymorphism (SNP), novel transcript
discovery, etc [3,4].

Constructing a base-level read coverage requires align-
ment of numerous reads on the reference genome. Read
alignments are difficult to interpret by human. Many
NGS viewers, such as Artemis [5], Savant [6], Tablet [7]
and Integrative Genomics Viewer (IGV) [8], have been
developed to visualize read alignments into friendly gra-
phic profiles. Some of these NGS viewers can depict a
base-level read coverage but only in a small scale; while
some of them provide a genome-wide read coverage but
not at the base level. To our best knowledge, none of
existing NGS viewers can timely visualize a genome-wide
base-level read coverage in an interactive environment.
The considerable data scale and computational complex-
ity pose a challenge to develop such tools.
To address this challenge, this study proposes an effi-

cient visualization pipeline for NGS data and implements

* Correspondence: darby@mail.ncku.edu.tw
1Department of Electrical Engineering, National Cheng Kung University,
Tainan 70101, Taiwan
Full list of author information is available at the end of the article

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

© 2015 Chang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://lightrcv.ee.ncku.edu.tw
mailto:darby@mail.ncku.edu.tw
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


a lightweight read coverage viewer, Light-RCV, with the
proposed pipeline. The pipeline consists of four featured
designs on the path from read alignments to the final
visualized read coverage. The four designs are critical to
immediate visualization (i.e. the response time is shorter
than 0.5 second) of a base-level read coverage. Light-
RCV was implemented as an offline program with web
technology. Most researchers prefer not to upload their
NGS data to a remote server. An offline program fulfills
this requirement. On the other hand, web technology
was chosen because it is suitable for embedding in other
web-based NGS tools and is familiar to most biologists.
Other offline NGS tools also can embed Light-RCV on
top of a native browser component, which is supported
by major programming languages such as the WebBrow-
ser class in C#, C++, F# and VB, the WebView class in
Java (for Android devices), the WebView class (for OSX
devices) and the UIWebView class (for iOS devices) in
Objective-C.

Results and discussion
This section introduces the interface of Light-RCV and
reports the results of a performance evaluation. Finally,
the results of a case study are presented.

User interface
Figure 1 shows the appearance of Light-RCV. The main
interface provides only a few controls for specifying a
genomic range, which are the most frequently used
operations. In internal usability tests, almost every first-
time user could use Light-RCV to visualize NGS data
without any instructions. The controls for the compila-
tion stage, which is hidden in the main interface by
default, are described in the end of this subsection.
To see the read coverage of a specific genomic range,

the first step is to choose a compiled NGS data with the
Sample control (Figure 1(a)). The package of Light-RCV
attaches a compiled sample, demo-yeast, for users who
have no NGS data at hand to experience Light-RCV. The
second step is to specify a genomic range either by a
coordinate range (the Coordinate control, Figure 1(c) or
by a gene name (the Gene control, Figure 1(d)). This
alternative is decided by the Range by control (Figure 1
(b)). In practice, users need not to actually change the
Range by control, which changes accordingly whenever
users change the Coordinate or Gene control. Light-RCV
provides many facilities to make controls behave natu-
rally. For example, the coordinate start and end are auto-
matically switched when the start is larger than the end.
Genes can be specified by a gene symbol, name and alias.
While typing, users can see the full gene names that fit
the current input and select the desired one, namely
“auto completion.” After the genomic range is selected,
clicking the View button (Figure 1(e)) brings the read

coverage (Figure 1(i)) in that range. This can also be
done by pressing the Enter key in keyboard. Clicking the
Export button (Figure 1(f)) saves the current view to an
image file.
Light-RCV shows three read coverages: Total for reads

aligned to both positive and negative strands in each
position; Positive Strand for reads aligned to the positive
strand; Negative Strand for reads aligned to the negative
strand. Below the three read coverages is a bar chart for
the mismatch rate (%mis) of each position (Figure 1(l)),
which is useful for detecting SNPs. The four tracks of
information (Total, Positive Strand, Negative Strand and
%mis) can be shown/hidden by the legends (Figure 1(j)).
Below the four tracks is an annotation track (Figure 1
(k)). When mouse hovers over a position, more detailed
information are shown (Figure 1(h)). Note that the com-
position information is shown when the viewing range
is smaller than about 500 bps (depending on the win-
dow size). Zooming in can be done by simply dragging
in the chart or by the navigation bar (Figure 1(m)). The
latter provides intuitive navigational operations (zoom-
ing in/out, scrolling, etc).
Finally, users can click the Settings button (Figure 1

(g)) to show the controls for the compilation stage
(Figure 1(n)). To compile an NGS experiment, one has
to specify four data: i) Sample ID for identification,
which would be shown in the Sample control (Figure 1
(a)); ii) SAM File, which contains the alignments of NGS
reads on a reference genome; iii) Reference File, which is
a FASTA file containing the sequence of the reference
genome; iv) GTF File, which contains gene coordinates
and annotations. The GTF File is optional but is
required for many controls such as Figure 1(d) and (k).
In Light-RCV, specifying a GTF file is recommended.
After specifying the data, clicking the Compile button
starts the compilation stage. The status is shown in the
Status control and the sample ID is shown in the Sam-
ple control after the compilation succeeds.

Performance evaluation
This subsection compares the response time of Light-RCV
and three popular offline NGS viewers. Table 1 shows the
results, where values in parentheses indicate that the cor-
responding NGS viewer did not display a base-level read
coverage. Savant and IGV do not display read coverages
for genomic regions larger than 20 kilo base pairs (kb) and
70 kb, respectively. Tablet shows only summarized read
coverages in which the read counts of 500 genomic posi-
tions are averaged to a value. These settings/limitations
were designed for short response time and good user
experience (UX). Light-RCV, on the other hand, aimed to
achieve a shorter response time without these limitations.
The first two sections in Table 1 (“Per NGS experi-

ment” and “Per loading an NGS experiment”) stand for

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 2 of 8



Figure 1 Appearance of Light-RCV. The user interface of Light-RCV: (a) Sample: switching among different compiled NGS data / (b) Range by: an option
for specify a genomic range by coordinate range or by a gene name / (c) Coordinate: chromosome number/name, start position and end position /
(d) Gene: a search box for gene name / (e) View: button to show the read coverage in the specified range / (f) Export: saving the current view to an image
file / (g) Setting: used to show/hide the compilation panel / (h) Detailed information of the point hovered by the mouse / (i) Main plot of the read coverages
/ (j) Legend of the plot for showing/hiding the tracks / (k) Annotation track, would show if gtf file is provided at the compilation stage / (l) Bar chart for the
mismatch rate / (m) Navigator bar for zooming and scrolling the viewing range / (n) Compilation panel for compiling NGS data.

Table 1. Time comparison of NGS viewers

Frequency Savant Tablet IGV Light-RCV

Per NGS experiment1

Saccharomyces cerevisiae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 56.12 ± 1.07

Per loading an NGS experiment2

Saccharomyces cerevisiae 3.71 ± 0.22 11.79 ± 0.48 9.94 ± 0.55 0.00 ± 0.00

Per visualization of a genomic region3

1 kb genomic region 0.44 ± 0.10 (1.08 ± 0.12) 1.37 ± 0.28 0.33 ± 0.02

2 kb genomic region 0.39 ± 0.09 (1.08 ± 0.16) 1.17 ± 0.13 0.33 ± 0.03

5 kb genomic region 0.53 ± 0.09 (1.01 ± 0.17) 1.10 ± 0.12 0.37 ± 0.01

10 kb genomic region 0.77 ± 0.08 (1.07 ± 0.13) 1.16 ± 0.11 0.38 ± 0.04

20 kb genomic region 0.90 ± 0.08 (1.03 ± 0.12) 1.14 ± 0.14 0.43 ± 0.03

50 kb genomic region * (1.02 ± 0.15) 1.63 ± 0.16 0.76 ± 0.03

.1 Mb genomic region * (0.84 ± 0.10) * 1.34 ± 0.06

.2 Mb genomic region * (0.96 ± 0.12) * 2.47 ± 0.12

.5 Mb genomic region * (0.92 ± 0.12) * 12.37 ± 0.23

Amortized processing time

20 kb genomic region 0.91 ± 0.08 (0.92 ± 0.12) 1.16 ± 0.14 0.53 ± 0.03
1Time required by the compilation stage of Light-RCV. Other NGS viewers did not have this stage. 2Time required when the user chooses an NGS data in viewers.
3Time required when the user specifies a genomic region, which is critical to user experience. *The viewer does not show read coverage at these region.

Time is measured in seconds. Values in parentheses indicate that the corresponding NGS viewer did not display a base-level read coverage. Tablet shows a
summarized read coverage in which the read counts of 500 genomic positions are averaged to a value.

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 3 of 8



the time required to prepare an NGS data. The prepara-
tion time of Light-RCV was longer than those of other
NGS viewers, which is reasonable because Light-RCV
moves as many computations as possible to this stage.
Notably, the preparation of Light-RCV is conducted
only once for an NGS experiment, while other NGS
viewers have a startup delay of three to ten seconds
whenever users load an NGS experiment. In addition to
the startup time, the UX of an NGS viewer relies more
on the response time of each genomic range change,
which corresponds to “Per visualization of a genomic
region” in Table 1. The response time of Light-RCV was
less than half second [9] regardless of the genomic
range. Strictly speaking, the read coverage in a large
genomic range was not at the base level because of the
limitation of screen resolution. Light-RCV smartly
detected the screen width and returned only necessary
data points. In this regard, screen width is a factor of the
response time of Light-RCV. The numbers in Table 1
were measured in a 1920x1080 screen, which is a rather
big screen in contemporary personal computers. The UX
studies have shown that the response is considered
immediate when the delay is shorter than half second.
Namely, users feel immediate response after specifying a
genomic region in Light-RCV. This immediate response
time is shorter than those of IGV and Tablet in a geno-
mic region smaller than a kilo base pairs (kb) and that of
Savant on a genomic region smaller than 5 kb.
The efficiency of the entire process of converting the

raw data to the final visualized read coverage can be
estimated by amortizing the preparation time to each
genomic position (the “Amortized processing time” in
Table 1). The amortized time of a 20 kb region in
Light-RCV was 0.53s (56.12s÷12.1 Mb×20 kb+0.43s),
which is faster than the compared NGS viewers. This
explains that the long preparation time of Light-RCV
was due to computation arrangement but not perfor-
mance deficiency. Table 2 shows that Light-RCV con-
sumed the same scale of memory of other NGS viewers,
which reveals that the speed of Light-RCV did not
require the cost of a large cache. The efficient read cov-
erage construction algorithm is the key to the amortized
time. Furthermore, the two-stage architecture and the
design of the internal format (which moved most com-
putations to the first stage) enabled an immediate
response time.
Table 3 shows the distinctive features of Light-RCV in

comparison with other NGS viewers. This table, which
focuses on Light-RCV’s features, demonstrates the
uniqueness of Light-RCV but does not prove that Light-
RCV is superior over other NGS viewers. Light-RCV
lacks some features, such as array data support (expres-
sion, copy number, etc.), of other NGS viewers. Table 3
highlights that the largest contribution of Light-RCV is

in processing read coverage. Another distinctive feature
of Light-RCV is embeddable, which is a benefit of using
web technology. To sum up, Light-RCV is light and fast.
It focuses on the most important duty of a viewer:
visualization. However, this does not indicate that Light-
RCV is better or faster than other multi-functional NGS
viewers, which may spend time for more analyses than
visualization. Light-RCV should be considered a tool
that complements other NGS viewers. Researchers can
use other NGS viewers to analyze and use Light-RCV to
see the data as shown in the following subsection.

Case study
This subsection demonstrates a practical usage flow to
show the importance of visualizing read coverage. This
case was provided by our collaborative research group,
which has used Light-RCV for several months to analyze
NGS data.
The operator began the workflow from a read cover-

age at the whole chromosome level (Figure 2a, mouse

Table 2. Memory comparison of NGS viewers

Size1 Savant Tablet IGV Light-RCV

1 kb 309.6 (305.7) 44.6

2 kb 301.8 (310.5) 62.3

5 kb 294.9 (310.5) 67.8

10 kb 288.1 (312.5) 71.6

20 kb 282.2 (311.5) 70.0 80.8

50 kb * (312.5) 150.0 118.5

.1 Mb * (317.4) * 193.9

.2 Mb * (317.4) * 266.6

.5 Mb * (320.3) * 389.6

The memory unit is megabyte (MB). 1Size of the genomic region to be
visualized. Values in parentheses indicate that the corresponding NGS viewer
did not display a base-level read coverage, where Tablet shows summarized
profiles in which the read counts of 500 genomic positions are averaged to a
value. *The viewer does not show read coverage at these regions.

Table 3. Feature comparison of NGS viewers

Savant Tablet IGV Light-RCV

Read coverage

Base level1 Yes No Yes Yes

Whole chromosome2 Partial Yes Partial Yes

Multi-resolution model3 Yes No Yes Yes

Embeddable in other program4 No No No Yes
1One point of Tablet read coverage curve represents 500 bps. 2Savant and
IGV do not show read coverage when the viewing range is greater than 20 kb
and 70 kb, respectively. 3Savant and IGV claimed to have multi-resolution
model for all data types according to their documents. However, they did not
clearly indicated that read coverage is included. Multi-resolution model is not
visible to users. Instead, this technique is used to expedite visualization at all
scales of viewing ranges. The time comparison under different viewing ranges
in Table 1 provides a performance evaluation of the multi-resolution model.
This model is a key to achieve both base-level read and whole chromosome
read coverage in Light-RCV. However, the reasons why Savant and IGV limited
the viewing range of read coverage are unknown. 4Embeddable is also not
visible to regular users but is useful for developers.

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 4 of 8



chrI, about 197M). At this level, one might be attracted
by the most sharp peaks (the red circles in Figure 2a).
However, these peaks are easily identifiable by almost all
analysis tools. In practical analyses, on the other hand,

the operator was interested in less obvious peaks (green
circles in Figure 2a) and analyzed them individually. In
this case study, the area of the solid green circle was
chosen.

Figure 2 Case study. (a) to (e) show the zooming process discussed in the case study section.

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 5 of 8



After zooming into the ~2M area (Figure 2b), the opera-
tor identified a peak with a read count higher than
100 (the green circle in Figure 2b). The operator further
zoomed into the peak. In this ~47k area (Figure 2c), the
transcript annotations were shown. The operator got three
clear read coverage peaks (the red circles in Figure 2c) and
had some transcript candidates (Nop58, Snord70,
RF00575.2,...) according to the annotation track below the
read coverage. Cuffdiff (a program in the Cufflinks pack-
age)[10], one of the most widely used software for calcu-
lating gene expression from NGS data, incorrectly
assigned these reads to gene Nop58 since the read cover-
age peaks were consistent with some exons (the thick
lines) of Nop58. With the aid of the visualized read cover-
age, the operator quickly determined that the read count
of Nop58 was a false positive. Many NGS viewers provide
automatic analysis. However, for cases that need visualized
read coverage, short response time is more important than
comprehensive analyses.
The operator then zoomed into the right two peaks

(the green circle in Figure 2c) and obtained a ~1k area,
Figure 2d. At this level, the operator can see the shape
of the read coverage. The irregular shape of the right
transcript (the green circle in Figure 2d) attracted the
operator.
Finally, the journey ended at a 101 bps area (Figure 2e),

which reveals two facts. First, the boundaries of the read
coverage peak were several bases smaller than those of
the transcript RF01182.1. This reveals that the quality of
the read alignments (performed by TopHat [11] in this
case study) was relatively low at the ends of the tran-
scripts. Second, there is a shorter transcript, Snord11,
that overlaps with RF01182.1. The read coverage curve in
Figure 2e has a clear decrease near the green circle,
which is perfectly matched with the boundary of
Snord11. This reveals the difficulty of automatically
assigning read counts in areas with overlapped transcript
annotations. Manual determination with the aid of a
visualized read coverage, is a compromise solution for
this problem at present.
In this case study, transcript RF01182.1 and Snord11

are basically the same transcript after the operator quer-
ied other databases such as Ensembl [12]. Therefore,
this can be easily solved by the operator or, in another
words, these is no need to solve. However, if the over-
lapped transcripts are different, the operator must con-
duct further analyses. The further analyses are various
(case-by-case) and beyond the scope of this study.
In summary, Light-RCV provides a convenient tool for

warning operators about these issues. The above work-
flow heavily relies on manual efforts. Most members of
our collaborative research group agreed that the immedi-
ate response time of Light-RCV was critical for everyday
analyses.

Conclusions
This study proposed four designs on visualizing read
counts of each genomic position. This efficient visualiza-
tion pipeline was implemented as a lightweight read
coverage viewer, Light-RCV, which aims at timely visua-
lizing genome-wide base-level read coverages in an
interactive environment. It achieved immediate response
time and outstanding amortized time.

Methods
The methods section is organized as follows. First, the
web technologies used in Light-RCV are described. The
second to fifth subsections describe Light-RCV’s four
distinctive designs in comparison with existing offline
NGS viewers.

Web technology
The web technologies used in Light-RCV can be divided
as backend and frontend. The backend technologies
handle data access/storage, which was developed with
PHP and run on an Apache web server. The frontend
technologies handle data visualization and user input,
which was developed with HTML5, CSS3 and JavaScript
and running on browsers. Because of the value of NGS
data to individual researchers, Light-RCV was developed
as an offline tool that can be run locally on a personal
computer without network connection. Light-RCV is
compatible with any portable web servers such as USB-
WebServer (http://www.usbwebserver.net/en/) and
XAMPP (https://www.apachefriends.org/index.html).
Users are given guidelines for quickly setting up a local
web environment and do not have to upload their NGS
data to a remote server.

Read coverage construction algorithm
The input of NGS viewers is a huge set of read align-
ments, which are usually stored in SAM or BAM files.
Such files are not optimized for NGS viewers. The NGS
viewers must convert the raw format into an internal
format before read coverage visualization. Light-RCV
has four featured designs on the path from read align-
ments to the visualized read coverage. The first one is
the read coverage construction algorithm. The first step
of converting read alignments (i.e., the start and end
positions of reads on the genome) to the read counts of
each position is to allocate a big array of the genome
size. To process a read at position i of length l, a for-
loop is then used to increase the elements i, i+1 ... i+l-1
of the big array by one. Light-RCV expedited the time
complexity of processing a read alignment from O(l) to
O(1) (Figure 3). In Light-RCV, only element i increases
by one and element i+l-1 decreases by one when pro-
cessing a read at position i of length l. Namely, the big
array of the proposed read coverage construction

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 6 of 8

http://www.usbwebserver.net/en/
https://www.apachefriends.org/index.html


algorithm stores the changes of the base-level read cov-
erage before line 6 of Figure 3a. Lines 6 and 7 accumu-
late the changes in the base-level read coverage. For
processing r reads on a genome with g base pairs, the
time complexities of original for-loop and Light-RCV’s
method are O(r×l) and O(r+g), respectively. The addi-
tional O(g) of Light-RCV comes from the accumulation
step. Generally, r×l is much larger than g to increase
coverage. Therefore, Light-RCV is generally much faster
than the for-loop approach.
During the read coverage construction, the mismatch

information is also extracted. Such information in SAM
file looks like “59A15”, which means that on the read of
75 bp long, the 60th position is a mismatch. The “A”
shows the nucleotide type at the position on the refer-
ence genome. Figure 1(l) indicates a mismatch.

Multi-resolution profiles
Since the chromosome size can be up to 100 million base
pairs, visualizing a whole chromosome is slow and may
crash NGS viewers if the memory arrangement is not
carefully designed. To solve this problem, Light-RCV
generates multiple profiles (i.e. read coverage curves)
with different scales for each chromosome. The first pro-
file is at the base level, in which a data point represents a
bp in the genome. This profile is used when the user
selects a viewing range smaller than 20000 bps. The size
of the second profile is 1/20 that of the first one. A data
point of the second profile represents 20 bps in the gen-
ome, the values (such as read count of the positive
strand) are the maximum value of the corresponding
20 bps. This tract is used when the user selects a viewing

range of 20001~400000 bps. The third profile is 1/20 of
the second one, so on and so forth. As a result, the num-
ber of total profiles is dynamically determined by the
chromosome size. This design ensures that Light-RCV
shows at least 20000 data points at a time, which is feasi-
ble for most screens, while minimizing the required
resource and the processing time. Moreover, the storage
requirement does not greatly increase. The requirement
is only approximately 1.05 (= 1 + 1/20 + 1/400 + ...)
times of the original required storage.

Two-stage architecture
In Light-RCV, most computations in the flow of read
alignments to a read coverage are moved to a separate
stage that is relatively less critical to UX. Namely, the pro-
cess is split into two stages (Figure 4). Existing NGS view-
ers do not explicitly separate the two stages, where the
entire two stages are conducted after users specify a geno-
mic range. This leads to a considerable waste because read
coverage construction is required only once for an NGS
experiment but users usually specify a genomic range
many times. The first stage, which is denoted the “compi-
lation stage” in Light-RCV, prepares the base-level read

Figure 3 Construction of base-level read coverage. The algorithm for calculating base-level read coverages, demonstrated in (a) Pseudo code
and (b) schematic plot. Notice that the for-loop of line 6 of (a) skips the first position.

Figure 4 Two-stage architecture of Light-RCV. Two-stage design
of Light-RCV for NGS data processing, composed of read coverage
construction stage and read coverage visualization stage.

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 7 of 8



coverage of the entire genome to an internal format. The
second stage, which is denoted the “visualization stage” in
Light-RCV, retrieves and visualizes the desired part when
users specify a genomic region. In Light-RCV, the internal
format is stored in files with an efficient format described
in the next subsection. All following visualization opera-
tions start from the internal files, even after the computer
reboots. The two stages in Figure 4 do not correspond to
the backend and frontend described above. Both stages
depend on the backend to access the data (mainly writing
in the compilation stage and reading in the visualization
stage) and on the frontend to interact with users.

Storage format
To optimize the response time, most computations
should be moved to the compilation stage. This compu-
tation arrangement is determined by the design of the
internal format in Figure 4. The internal file of Light-
RCV was designed as the exact format of the base-level
read coverage in memory, which is the so-called “mem-
ory dump.” This design has two important features.
First, the data can be retrieved from a specific genomic
position without sequentially loading the data before
that position. Second, a continuous range of data can be
retrieved in one operation without depending on the
range size.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TL and DTHC conceived the research topic, developed the algorithm and
wrote the manuscript. JT provided essential guidance. CWC and WBL
implemented the program. ACD helped to test the program. All authors
read and approved the final manuscript.

Acknowledgements
This work was supported by Ministry of Science and Technology, Taiwan
(NSC 102-2221-E-006-085-MY2).

Declaration
Publication charges for this article were funded by Ministry of Science and
Technology, Taiwan (NSC 102-2221-E-006-085-MY2).
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 18, 2015: Joint 26th Genome Informatics Workshop and 14th
International Conference on Bioinformatics: Bioinformatics. The full contents
of the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/16/S18.

Authors’ details
1Department of Electrical Engineering, National Cheng Kung University,
Tainan 70101, Taiwan. 2Institute of Bioinformatics and Biosignal Transduction,
National Cheng Kung University, Tainan 70101, Taiwan.

Published: 9 December 2015

References
1. Stein LD: The case for cloud computing in genome informatics. Genome

Biol 2010, 11(5):207.
2. Shih AC-C, Liu T Jr: Predicting MicroRNAs. Systems Biology: Applications in

Cancer-related Research. 2012, 189.

3. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M: The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing
data. Genome research 2010, 20(9):1297-1303.

4. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L:
Differential analysis of gene regulation at transcript resolution with RNA-
seq. Nature biotechnology 2012, 31(1):46-53.

5. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA: Artemis: an
integrated platform for visualization and analysis of high-throughput
sequence-based experimental data. Bioinformatics 2012, 28(4):464-469.

6. Fiume M, Williams V, Brook A, Brudno M: Savant: genome browser for
high-throughput sequencing data. Bioinformatics 2010, 26(16):1938-1944.

7. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD,
Marshall D: Using Tablet for visual exploration of second-generation
sequencing data. Briefings in bioinformatics 2013, 14(2):193-202.

8. Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer
(IGV): high-performance genomics data visualization and exploration.
Briefings in bioinformatics 2013, 14(2):178-192.

9. Seow SC: Designing and engineering time: the psychology of time perception
in software: Addison-Wesley Professional 2008.

10. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and Cufflinks. Nature
protocols 2012, 7(3):562-578.

11. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.

12. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J,
Curwen V, Down T: The Ensembl genome database project. Nucleic acids
research 2002, 30(1):38-41.

doi:10.1186/1471-2105-16-S18-S11
Cite this article as: Chang et al.: Light-RCV: a lightweight read coverage
viewer for next generation sequencing data. BMC Bioinformatics 2015
16(Suppl 18):S11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Chang et al. BMC Bioinformatics 2015, 16(Suppl 18):S11
http://www.biomedcentral.com/1471-2105/16/S18/S11

Page 8 of 8

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S18
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S18

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	User interface
	Performance evaluation
	Case study

	Conclusions
	Methods
	Web technology
	Read coverage construction algorithm
	Multi-resolution profiles
	Two-stage architecture
	Storage format

	Competing interests
	Authors’ contributions
	Acknowledgements
	Declaration
	Authors’ details
	References

