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Abstract

Protein O-GlcNAcylation, involving the b-attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group
of serine or threonine residues, is an O-linked glycosylation catalyzed by O-GlcNAc transferase (OGT). Molecular
level investigation of the basis for OGT’s substrate specificity should aid understanding how O-GlcNAc contributes
to diverse cellular processes. Due to an increasing number of O-GlcNAcylated peptides with site-specific
information identified by mass spectrometry (MS)-based proteomics, we were motivated to characterize substrate
site motifs of O-GlcNAc transferases. In this investigation, a non-redundant dataset of 410 experimentally verified
O-GlcNAcylation sites were manually extracted from dbOGAP, OGlycBase and UniProtKB. After detection of
conserved motifs by using maximal dependence decomposition, profile hidden Markov model (profile HMM) was
adopted to learn a first-layered model for each identified OGT substrate motif. Support Vector Machine (SVM) was
then used to generate a second-layered model learned from the output values of profile HMMs in first layer. The
two-layered predictive model was evaluated using a five-fold cross validation which yielded a sensitivity of 85.4%, a
specificity of 84.1%, and an accuracy of 84.7%. Additionally, an independent testing set from PhosphoSitePlus,
which was really non-homologous to the training data of predictive model, was used to demonstrate that the
proposed method could provide a promising accuracy (84.05%) and outperform other O-GlcNAcylation site
prediction tools. A case study indicated that the proposed method could be a feasible means of conducting
preliminary analyses of protein O-GlcNAcylation and has been implemented as a web-based system, OGTSite,
which is now freely available at http://csb.cse.yzu.edu.tw/OGTSite/.

Introduction
A type of O-linked glycosylation, Protein O-GlcNAcyla-
tion (O-GlcNAc), attaches a single N-acetylglucosamine
(GlcNAc) to serine (Ser)/threonine (Thr) residues [1].
O-GlcNAc, commonly found on cytoplasmic and nuclear
proteins, has been shown to modulate molecular processes

and cellular processes [2]. O-GlcNAc transferase (OGT)
is an enzyme responsible for the addition of O-GlcNAc
during glycosylation. On the other hand, an enzyme
O-GlcNAcase (OGA) can remove O-GlcNAc. Recently,
extracellular O-linked b-N-acetylglucosamine (EOGT) [3],
an atypical OGT, has been reported to be responsible
for extracellular O-GlcNAcylation of secreted and mem-
brane glycoproteins [4]. Protein O-GlcNAcylation is also
responsible for regulating cell-cell and cell-matrix inter-
actions [5]. Accumulating evidence suggests that OGTs
may act as a nutrient sensor that links hexosamine bio-
synthesis pathway to oncogenic signaling and regulation
of factors involved in glucose and lipid metabolism [6].
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The O-GlcNAc-dependent regulation seems to play an
important role in the signaling pathways involved in
metabolic reprograming of cancer cells [7]. In addition,
O-GlcNAcylation is also an important post-translational
modification and deregulation of this mechanism
has been linked to various diseases such as diabetes [8],
Alzheimer disease [9] and cancers [10-12].
With the improvement in mass spectrometry technolo-

gies, O-GlcNAcylated proteins in postsynaptic density
[13], murine synapse [14], mouse brain [15], rat brain [16],
mouse embryonic stem cell [17], and Hela cells [18], have
been identified in recent years. However, precise identifi-
cation of O-GlcNAcylation sites remains to be a challenge
due to its dynamic characteristics [19]. Due to an interest
to better identify O-GlcNAcylation sites and reduce
experimental efforts, computational prediction of site
motifs and O-GlcNAcylation sites have been considered.
Previously, Gupta and Brunak have developed YinOYang -
an O-GlcNAcylation prediction tool trained using 40
O-GlcNAcylation sites [20]. Chen et al. have developed a
similar tool incorporating structural topology to identify
O-glycosylation sites on transmembrane proteins [21].
The increase in experimentally identified O-GlcNAcy-
lation sites motivates new developments including
OGlcNAcScan, which was trained using 373 O-GlcNA-
cylation sites [22]. More recently, a new prediction
tool, O-GlcNAcPRED, has been proposed claiming to
have better performance than the aforementioned tools
[23]. In the midst of these developments, Carage et al.
have demonstrated that ensembles of support vector
machine (SVM) classifiers could outperform single
SVM classifier in terms of predicting protein glycosyla-
tion sites [24].
Although several computational methods have been

developed to predict protein O-GlcNAcylation sites, there
is currently no such tool that includes the investigation of
potential OGT substrate motifs. It has been reported that
molecular level investigation on OGT substrate specificity
may aid in understanding how O-GlcNAc contributes to a
diverse set of cellular processes [25]. With this, we were
motivated to characterize O-GlcNAcylation sites with the
consideration of amino acid composition [26]. In this
study, we apply maximal dependence decomposition
(MDD) to explore potential OGT substrate motifs for the
experimentally verified O-GlcNAcylation sites. Statistically
significant substrate motifs were further tested its predic-
tion power by cross-validation evaluation and independent
testing. A two-layered machine learning method, incorpor-
ating profile hidden Markov model (HMM) and support
vector machine (SVM), was utilized to construct the
predictive models. Furthermore, to facilitate the study of
protein O-GlcNAcylation, MDD-identified substrate
motifs were exploited to implement a web-based tool for

identifying O-GlcNAcylation sites with corresponding
OGT substrate motifs.

Material and methods
Construction of positive and negative training data sets
Due to the high-throughput mass spectrometry-based
glycol-proteomics [27], several databases [22,28-30]
have been developed for cumulating experimentally
verified O-GlcNAcylation sites by manually surveying
the glycosylation-associated literatures. In this work,
the data set for training the predictive model of
O-GlcNAcylation sites was mainly extracted from
dbOGAP [22], O-GlycBase [31], and UniProtKB [32].
From dbOGAP, a total of 250 and 142 sites for
O-GlcNAcylated serine (Ser) and threonine (Thr) on
172 proteins were collected. From O-GlycBase version
6.0, 24 sites for O-GlcNAcylated Ser and Thr from
17 proteins were collected. In UniProtKB, experimen-
tally verified O-GlcNAcylation data were first filtered
by removing entries annotated as “by similarity”,
“potential”, “probable”. This resulted to the collection
of 66 and 51 sites for O-GlcNAcylated Ser and Thr
on 53 proteins. To avoid data redundancy, each data
obtained from one database was compared to the data
obtained from the other databases based on its
O-GlcNAcylated site position and the UniProtKB
accession number utilized by all three databases.
Redundancy was removed by retaining only one record
in the event of finding multiple records of the same
site position and accession number. After the removal
of redundant data, we have obtained 261 and 149 non-
redundant sites for O-GlcNAcylated Ser and Thr on
176 proteins.
As shown in Table 1 the combined non-redundant data

of 410 experimentally verified O-GlcNAcylation sites from
dbOGAP, OGlycBase and UniProtKB was regarded as the
positive data for the investigation of OGT substrate motifs
and the construction of predictive models. With an
attempt to explore the substrate motifs of O-GlcNAc
transferases, sequence fragments were extracted using a
window length of 11 centered on O-GlcNAcylated Ser and
Thr residues [33,34]. In this investigation, the sequence
fragments centered on non-O-GlcNAcylated Ser and Thr
residues were regarded as negative training data. After
removing identical sequence fragments, a total of 17381
and 10587 negative sequence fragments for Ser and Thr
residues were obtained from 176 O-GlcNAcylated
proteins.

Detection of OGT substrate motifs
The O-GlcNAc transferase (OGT) exhibits substrate site
specificity for the sugar donor recognition mechanism and
the interaction to target proteins [35]. In this investigation,
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a recursively statistical method, maximal dependence
decomposition (MDD) [36], was applied to the positive
training data in order to discover substrate motif signa-
tures of O-GlcNAcylation sites by clustering a large-scale
dataset of aligned sequences into subgroups that contain
statistically significant substrate motifs. MDD extract
motifs according to the conserved biochemical property of
amino acids. In order to do this, the twenty types of amino
acids are categorized into five groups: polar, acidic, basic,
hydrophobic, and aromatic groups, as shown in Table S1
(Additional file 1). A contingency table of the amino acids
occurrence between two positions is then constructed, as
presented in Figure 1. MDD utilizes chi-squared test to
test the dependence of amino acid occurrence between
two positions, Ai and Aj, surrounding the O-GlcNAcylated
site [37]. The chi-squared test implemented in MDD is
defined as:

χ2(Ai, Aj) =
5∑

m=1

5∑

n=1

(Xmn − Emn)
2

Emn
(1)

where Xmn represented the number of sequences hav-
ing amino acids from group m in position Ai and amino
acids from group n in position Aj, for each pair (Ai , Aj)

with i≠j. Emn is calculated as
XmR · XCn

X
, where XmR =

Xm1+ ...+Xm5, XCn = X1n+ ...+X5n, and X denotes the
total number of sequences. If a strong dependence is
detected (defined as that the chi-square value was larger
than 34.3, corresponding to a cutoff level of P = 0.005
with 16 degrees of freedom) between two positions,
then the process is continued as described [38]. More-
over, a minimum cluster size is set when applying MDD
to cluster the sequences in the positive training data. If
the data size of a subgroup was less than the given para-
meter, the subgroup will not be divided any further. For
this study, MDD was executed using various values in
order to obtain an optimal minimum cluster size.

Construction of two-layered prediction model
In this work, the two-layered machine learning method,
incorporating profile hidden Markov model (HMM) and
support vector machine (SVM), was used to construct
the predictive model from the positive data and negative
data of the training set. As presented in Figure 2, profile
HMM is generated for each MDD-clustered subgroup in
first layer. After applying MDD clustering on O-GlcNA-
cylated data, the sequence fragments of each MDD-clus-
tered subgroup is taken as a training set to build a profile
HMM. An HMM detects distant relationships between
amino acid sequences by describing a probability distribu-
tion over a potentially infinite number of sequences [39].
In this study, we utilized the software package HMMER
[39] in order to build profile HMMs, to calibrate the
HMMs, and to search putative O-GlcNAcylation sites
against the protein sequences. As models are built based
on positive instances of a class, only positive data are uti-
lized to build a predictive model. For each model of the
MDD-clustered subgroups, a threshold parameter is
selected for identifying potential positive sites from a
query [39]. The optimal threshold is the value that gives
the most optimal cross-validation performance for each
training model. For every search, HMMER returns a bit
score and an expectation value (E-value) for each
sequence fragment. The bit score is the base two loga-
rithm of the ratio between the probability that the query
sequence is a significant match and the probability that
the query is produced by a random model. Additionally,
the E-value represents the expected number of sequences
with a score greater than or equal to the returned
HMMER bit scores. A search result with an HMMER bit
score greater than the threshold parameter is taken as a
positive prediction. While decreasing the bit score thresh-
old favors finding true positives, increasing the bit score
threshold favors finding true negatives. Therefore, the
threshold must be optimized to obtain a balanced num-
ber of true positives and true negatives.

Table 1. Data statistics of positive and negative training data

Data resource Residue Number of O-GlcNAcylated
sites (Positive data)

Number of non-O-GlcNAcylated
sites (Negative data)

Number of non-O-GlcNAcylated sites
(Balanced negative data)

dbOGAP Serine 250 18,570 -

Threonine 142 11,240 -

OGlycBase Serine 24 1,013 -

Threonine 24 694 -

UniProtKB Serine 66 4,851 -

Threonine 51 3,255 -

Non-redundant
dataset

Serine 261 17,381 261

Threonine 149 10,587 149

Combined 410 27,968 410
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Figure 1 Analytical flowchart of MDD clustering.

Figure 2 Conceptual diagram of constructing two-layered prediction model from MDD-identified substrate motifs.
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In second layer, a binary SVM classifier is trained using
the bit scores of profile HMMs. Based on binary classifi-
cation, SVMs map the input samples into a higher
dimensional space using a kernel function. It then finds a
hyper-plane that discriminates between the two classes
with maximal margin and minimal error. For this study,
we employed a public SVM library, LIBSVM [40], to gen-
erate the second-layered model from the bit scores of
positive and negative training data. The radial basis func-

tion (RBF) K(Si, Sj) = exp(−γ ||Si − Sj||2) was used as

the kernel function of the SVM. The LIBSVM library is
able to produce a probability ranging from 0 to 1 for
each prediction; in default, a probability value higher
than 0.5 is defined as a positive instance. In order to
avoid a biased prediction performance, the negative train-
ing data was balanced with the positive training data. To
select a representative set of negative data, K-means clus-
tering [36,41] was employed with reference to previous
PTM prediction methods [42-47]. This resulted in an
equal number of positive and negative sequence frag-
ments for the training data (Table 1).

Five-fold cross validation and performance evaluation
Five-fold cross validation was performed in order to evalu-
ate the predictive performance of each model using var-
ious parameters. For this process, the training data is
divided into five groups by splitting each dataset into
approximately equal sized subgroups where one subgroup
is regarded as the test set while the remaining four sub-
groups are regarded as the training set. This process is
repeated five times with each subgroup being used as a
test set once [48]. The following measures were used to
gauge the average predictive performance of the trained
models: Sensitivity (Sn) = TP / (TP+FN), Specificity (Sp) =
TN / (TN+FP), Accuracy (Acc) = (TP + TN) / (TP+FP+
TN+FN), and Matthews Correlation Coefficient

(MCC) =
(TP × TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
,

where TP, TN, FP and FN represent the numbers of true
positives, true negatives, false positives and false negatives,
respectively. After thirty rounds of cross-validation pro-
cess, average Sn, Sp, Acc and MCC values were calculated
for each model. The predictive model with the best aver-
age performance was then selected for further evaluation
by independent testing dataset.

Construction of independent testing data set
In order to address a potential overestimation of the
predictive performance of the models due to over-fit-
ting, an independent test was carried out. For this analy-
sis, experimentally validated sequences obtained from
PhosphoSitePlus [49] were used as independent testing
data. A total of 779 and 582 experimentally verified sites

for O-GlcNAcylated Ser and Thr on 542 proteins were
obtained from PhosphoSitePlus. Similar to the construc-
tion of positive training set, the sequence fragments cen-
tered on O-GlcNAcylated Ser and Thr residues are
extracted using 11-mer window length. Additionally,
O-GlcNAcylated sequence fragments homologous to the
positive training data were removed in order to generate
a non-homologous independent testing data. As a result,
a total of 956 sequence fragments, consisting of 522 and
434 O-GlcNAcylated Ser and Thr residues, respectively,
were regarded as the positive data for independent testing.
On the other hand, sequence fragments centered on non-
O-GlcNAcylated Ser and Thr residues were regarded as
negative data for independent testing. Upon removing
homologous data, a total of 60976 sequence fragments
(38682 and 22294 non-O-GlcNAcylated Ser and Thr resi-
dues) were collected for the negative testing data.

Results and discussion
Amino acids composition of O-GlcNAcylation sites
This study aims to investigate the OGT substrate motifs
based on the amino acid composition surrounding
O-GlcNAcylation sites. Figure 3(A) presents the compar-
ison of amino acids composition between positive data
(410 O-GlcNAcylated sites) and negative data (27968
non-O-GlcNAcylated sites). O-GlcNAcylated sites appear
to conatin more hydrophobic amino acids than non-O-
GlcNAcylated sites. On the other hand, non-O-GlcNAcy-
lated sites appear to contain more charged amino acids
than O-GlcNAcylated sites. Polar amino acids appear to
be well distributed in both data sets. The position-speci-
fic amino acids composition surrounding the O-GlcNA-
cylation sites is visualized using WebLogo as shown in
Figure 3(B). O-GlcNAcylated Ser/Thr (positive data) resi-
dues and unmodified ones (negative data) were centered
on position 0, and the flanking amino acids (-5~+5). The
difference between the amino acid composition of O-
GlcNAcylated and non-O-GlcNAcylated sites is further
visualized using TwoSampleLogo [50], as shown Figure 3
(C). It can be clearly observed that the most pronounced
feature of O-GlcNAcylation sites is the abundance of
hydrophobic amino acids Proline (P), Valine (V), and
Alanine (A), locating centrally around position -2 and +3.
Besides, the polar amino acids, Threonine (T) and Serine
(S), also located centrally at position -1 and +1. Addition-
ally, charged amino acids, especially the positively
charged Lysine (K) and Arginine (R) were dominant at
position -2, -4 and -5, suggesting that the distant amino
acids in sequence, which may be close to O-GlcNAcyla-
tion sites in three-dimensional structure, showed notable
difference between modified and unmodified sites.
Another featured characteristic is the depletion of P and
L at +1 and +2, respectively, which is immediately adja-
cent to the O-GlcNAcylation sites. It should also be
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noted that S, T, and Glutamate (E) were also found to be
less frequent around position -2, -3, and +5.

Substrate site motifs of O-GlcNAc transferases
This study focuses on the characterization of potential
OGT substrate motifs based on the amino acid compo-
sition surrounding O-GlcNAcylation sites. In order to
detect the potential OGT substrate motifs from large
scale O-GlcNAcylation data set, we applied the MDD
to further cluster all 410 experimentally verified O-
GlcNAcylated peptide sequences into subgroups by
iteratively capturing the positions with maximal depen-
dence of amino acids composition. As illustrated in
Figure 4, the MDD-identified substrate motifs were
visualized in a tree-like structure. Firstly, position -3
had the maximal dependence with the occurrence of
hydrophobic amino acid group. Subsequently, all 205
sites containing the hydrophobic group in position -3
could be further divided into two subgroups: subgroup
OGT1 (100 sites) represented the occurrence of hydro-
phobic amino acids in position -2 with maximal depen-
dence, whereas subgroup OGT2 (105 sites) had no
occurrence of hydrophobic amino acids in position -2.
It would be noticed that the subgroup OGT1 gives the
substrate motif of hydrophobic amino acids in both
positions -3 and -2, which is consistent with the consen-
sus motif previously suggested as P-P-T-[ST]-T-A [22].
In right subtree, the data (205 sites) without the hydro-
phobic amino acids in position -3 were divided into two

subgroups: subgroup OGT3 (95 sites) involved the max-
imal dependence of hydrophobic amino acids in posi-
tion -2, yet the other (110 sites) had no occurrence of
hydrophobic amino acids in position -2. Furthermore,
the 110 sites containing could be divided into two sub-
groups: subgroup OGT4 (39 sites) represented the
occurrence of hydrophobic amino acids in position -1
while the other (71 sites) had no occurrence of hydro-
phobic amino acids in position -1. The hydrophobic
residues indicate its contribution in the interfaces of
protein-protein interactions. Finally, totally seven OGT
substrate motifs (marked in red) were identified with
significant dependences (P-value < 0.005). Subgroups
OGT5 and OGT6 depicted the conserved motifs of
polar amino acids at positions +1 and -1, respectively.
However, subgroup OGT7, that contains the remaining
22 O-GlcNAcylation sites, had a little conserved motif
of glycine (G) residue at position -1. Interestingly, the
small size and flexibility of G residue is probably
responsible for making it suitable for the structural
adjustments required during the protein-protein inter-
actions [51]. Table S2 (Additional file 2) shows the
number of O-GlcNAcylation sites (positive data) in each
MDD-identified OGT substrate motif.

Predictive performance of the identified substrate motifs
To identify how to best classify O-GlcNAcylation from
non-O-GlcNAcylation sites, the predictive models were
trained with each of the following: OGT1, OGT2,

Figure 3 Amino acids composition surrounding the O-GlcNAcylation sites. (A) Comparison of amino acids composition between positive
data (410 O-GlcNAcylation sites) and negative data (27968 non-O-GlcNAcylation sites). (B) Position-specific amino acids composition surrounding
the O-GlcNAcylation sites. (C) TwoSampleLogo (p-value<0.05) between positive data and negative data.
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OGT3, OGT4, OGT5, OGT6, OGT7, as well as all OGTs
combined. The predictive power of each model was evalu-
ated by measuring the sensitivity (Sn), specificity (Sp), accu-
racy (Acc), and Matthews correlation coefficient (MCC).
According to evaluation of five-fold cross-validation, the
single HMM trained from all 410 positive data yield a sen-
sitivity of 68.8%, a specificity of 70.7%, an accuracy of
69.8%, and an MCC value of 0.395. As shown in Table 2
the HMM trained from OGT1 subgroup, that contains a
conserved motif of hydrophobic amino acids at positions -2
and -3, provided the highest predictive power with a sensi-
tivity of 93.0%, a specificity of 89.0%, an accuracy of 91.0%,
and an MCC value of 0.821. Among all others, the HMM
trained from OGT4 subgroup yielded the lowest sensitivity
0.71.8%, while the HMM trained from OGT7 subgroup
yielded the lowest specificity at 68.2%. Among the seven
subgroups, the HMM trained from OGT7 subgroup pro-
vided a lowest accuracy at 70.5%. Additionally, combining
seven OGT HMMs (MDD-clustered HMMs) could achieve
the predictive performance of 83.7% sensitivity, 77.1% spe-
cificity, 80.4% accuracy, and 0.609 MCC value. This

investigation indicated that the application of MDD cluster-
ing could improve the performance on the prediction of
protein O-GlcNAcylation sites.
With reference to a previous work applying two-layered

SVMs on the prediction of viral phosphorylation sites [52],
this work further combined seven profile HMMs (first
layer) and one SVM (second layer) into a two-layered pre-
diction model, which provides a better performance than
the combination of seven OGT HMMs (MDD-clustered
HMMs). The two-layered prediction model yielded a sen-
sitivity of 85.4%, a specificity of 84.1%, an accuracy of
0.84.7%, and an MCC value of 0.695. In this investigation,
the model providing best performance was further evalu-
ated by independent testing set.

Independent testing and comparison with other
prediction tools
The final non-redundant data of independent testing set
consisting of 956 positive sites and 60976 negative sites
was utilized for further evaluating the constructed mod-
els. As shown in Table 3 the single HMM trained using

Figure 4 The tree view of potential OGT substrate motifs identified by MDD clustering on 410 O-GlcNAcylation sites.
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all positive data achieved a sensitivity of 63.70%, a specifi-
city of 65.72%, an accuracy of 65.69%, and an MCC value
of 0.076. The MDD-clustered HMMs achieved a sensitiv-
ity of 87.13%, a specificity of 74.15%, an accuracy of
74.38%, and an MCC value of 0.171. This investigation
indicated that a greater prediction power could be
obtained by using MDD-clustered HMM models than
that by a single HMM model. Additionally, the two-
layered model achieved a sensitivity of 86.61%, a specifi-
city of 84.01%, an accuracy of 84.05%, and an MCC value
of 0.231. The independent testing demonstrated that the
two-layered model could perform better than MDD-
clustered HMMs and could provide a promising accuracy
for 542 experimentally verified O-GlcNAcylated proteins,
which were not considered within the construction of
predictive model.
To further demonstrate the effectiveness of our method,

the independent testing set was used to compare the two-
layered model with three popular O-GlcNAcylation
site prediction tools, YinOYang, O-GlcNAcScan, and
O-GlcNAcPRED. Table 3 indicated that the prediction
power yielded by our two-layered model was superior to
that by other three prediction tools. By using default
threshold value (0.5), YinOYang yielded a sensitivity of
46.97%, a specificity of 83.01%, an accuracy of 82.46%, and
an MCC value of 0.097. O-GlcNAcScan achieved a

sensitivity of 42.99%, a specificity of 84.00%, an accuracy
of 83.37%, and an MCC value of 0.089. O-GlcNAcPRED
provided a lowest independent testing performance:
57.95% sensitivity, 63.00% specificity, 62.92% accuracy, and
0.053 MCC value. This independent testing indicated that
the two-layered model could provide balanced sensitivity
and specificity for such unbalanced positive and negative
datasets. The proposed method also provided comparable
accuracy with that analyzed by O-GlcNAcScan. Overall, as
presented in Figure S1 (Additional file 3), the proposed
method outperformed the three prediction tools.

Web-based system for the identification of O-
GlcNAcylation sites
With the time-consuming and lab-intensive experimental
identification of protein O-GlcNAcylation sites, a biologist
may only concluded that a protein can be O-GlcNAcylated
but the precise O-GlcNAcylation sites remains unknown.
Therefore, an effective prediction server can help to focus
efficiently on potential sites. After evaluation by cross-
validation and independent testing, the two-layered model
with best predictive performance was adopted to imple-
ment a web-based system, named OGTSite, for predicting
O-GlcNAcylated sites with potential OGT substrate motifs.
As shown in Figure 5, users can submit their protein
sequences in FASTA format or just provide the UniProtKB

Table 2. Five-fold cross validation results on profile HMMs learned from all data and seven MDD-clustered subgroups

Models Number of positive data Number of negative data Sn Sp Acc MCC

Single HMM with all data 410 410 68.8% 70.7% 69.8% 0.395

HMM with OGT1 100 100 93.0% 89.0% 91.0% 0.821

HMM with OGT2 105 105 83.8% 71.4% 77.6% 0.557

HMM with OGT3 95 95 85.3% 75.8% 80.5% 0.613

HMM with OGT4 39 39 71.8% 74.4% 73.1% 0.462

HMM with OGT5 30 30 73.3% 73.3% 73.3% 0.467

HMM with OGT6 19 19 78.9% 73.7% 76.3% 0.527

HMM with OGT7 22 22 72.7% 68.2% 70.5% 0.410

MDD-clustered HMMs (Combined 7 OGT HMMs) 410 410 83.7% 77.1% 80.4% 0.609

Two-layered model (7 HMMs + 1 SVM) 410 410 85.4% 84.1% 84.7% 0.695

Table 3. The comparison of independent testing results between our methods and other three O-GlcNAcylation
prediction tools

Methods TP FN TN FP Sn Sp Acc MCC

Single HMM with all data 609 347 40072 20904 63.70% 65.72% 65.69% 0.076

MDD-clustered HMMs
(7 OGT HMMs)

833 123 45212 15764 87.13% 74.15% 74.38% 0.171

Two-layered model
(7 HMMs + 1 SVM)

828 128 51224 9752 86.61% 84.01% 84.05% 0.231

YinOYang 449 507 50619 10357 46.97% 83.01% 82.46% 0.097

O-GlcNAcScan 411 545 51219 9757 42.99% 84.00% 83.37% 0.089

O-GlcNAcPRED 554 402 38414 22562 57.95% 63.00% 62.92% 0.053
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accession number. The system returns the predictions,
including O-GlcNAcylated position and flanking amino
acids. Users can also access the substrate motifs used for
predicting the O-GlcNAcylation sites. Take Synapsin-1
(Syn1) of Rattus norvegicus as an example, 11 sites such as
S55, T56, T87, S96, S103, S261, S430, S516, T524, T562
and S576 have been experimentally verified as O-GlcNAcy-
lation sites [53]. OGTSite predicted a total of 14 potential
O-GlcNAcylation sites, including 11 true positive predic-
tions. Although S191, T303 and T566 have not yet been
validated as the O-GlcNAcylation sites, they have the
potential OGT3 and OGT4 substrate motifs, respectively.
This case study suggests the feasibility of this model
to identify the S/T residues that can be modified by
O-GlcNAc moiety.

Conclusion
This study presents a novel scheme to identify potential
substrate specificity of O-GlcNAc transferase based on a
set of experimentally verified O-GlcNAcylation sites.
We have demonstrated the utility of MDD clustering
method in the characterization of substrate motifs of
O-GlcNAcylation sites. Additionally, the proposed pipe-
line includes the effectiveness of the identified MDD-
detected short linear motifs to predict O-GlcNAcylated

sites. A five-fold cross-validation evaluation showed the
power of MDD-identified substrate motifs in the predic-
tion of O-GlcNAcylated sites. Moreover, the two-layered
model combining seven profile HMMs and one SVM
could provide the best performance. The two-layered
model has been used to implement an online system,
OGTSite, for an effective identification of protein
O-GlcNAcylation sites. By identifying potential
O-GlcNAcylation sites using the proposed method, we will
be providing a reliable lead to the scientific community to
minimize costs and effort for experimentally verifying
actual O-GlcNAcylation sites. It should be noted that the
proposed method could also be extended to include more
meaningful substrate motifs by further acquiring experi-
mentally verified O-GlcNAcylation sites. Additionally, a
more abundant set of experimentally verified O-GlcNAcy-
lation sites with protein tertiary structure information
could be used to strengthen site prediction capabilities [54].

Availability
The proposed method is implemented as a web-based
resource, which is now freely available to all interested
users at http://csb.cse.yzu.edu.tw/OGTSite/. All of the
dataset used in this work is also available for download
in the website.

Figure 5 A case study of O-GlcNAcylation sites prediction on Synapsin-1 (Syn1) of Rattus norvegicus.
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