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Abstract

Background: Recent advances in RNA sequencing (RNA-Seq) technology have offered unprecedented scope and
resolution for transcriptome analysis. However, precise quantification of mRNA abundance and identification of
differentially expressed genes are complicated due to biological and technical variations in RNA-Seq data.

Results: We systematically study the variation in count data and dissect the sources of variation into
between-sample variation and within-sample variation. A novel Bayesian framework is developed for joint estimate
of gene level mRNA abundance and differential state, which models the intrinsic variability in RNA-Seq to improve
the estimation. Specifically, a Poisson-Lognormal model is incorporated into the Bayesian framework to model
within-sample variation; a Gamma-Gamma model is then used to model between-sample variation, which
accounts for over-dispersion of read counts among multiple samples. Simulation studies, where sequencing counts
are synthesized based on parameters learned from real datasets, have demonstrated the advantage of the
proposed method in both quantification of mRNA abundance and identification of differentially expressed genes.
Moreover, performance comparison on data from the Sequencing Quality Control (SEQC) Project with ERCC spike-
in controls has shown that the proposed method outperforms existing RNA-Seq methods in differential analysis.
Application on breast cancer dataset has further illustrated that the proposed Bayesian model can ‘blindly’ estimate
sources of variation caused by sequencing biases.

Conclusions: We have developed a novel Bayesian hierarchical approach to investigate within-sample and
between-sample variations in RNA-Seq data. Simulation and real data applications have validated desirable performance
of the proposed method. The software package is available at http://www.cbil.ece.vt.edu/software.htm.

Background
Next Generation Sequencing (NGS) technology has
opened a new era for transcriptome analysis, which grants
the ability to investigate novel biological problems, such as
alternative splicing, differential isoforms, gene fusion, etc.
By piling up millions of reads along the reference genome,
RNA-Seq technology can obtain signals in a much larger
dynamic range with much higher accuracy compared to
traditional microarray based technologies. For RNA-Seq

analysis, the most popular routine is to determine the
expression of genes (abundance quantification) and to
identify differentially expressed genes (DEGs).
Methods that quantify gene/isoform level expression

mainly fall into two categories: Poisson count mode
(e.g., Cufflinks [1], etc) and linear regression model
(e.g., Isolasso [2], SLIDE [3], BASIC [4], etc.). The major
challenge in accurate quantification of gene expression is
that large systematic bias in sequencing counts has been
observed due to multiple factors. In contrast to uniform
assumption of read distribution, it has been reported that
sequence counts show a variety of physical and chemical
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biases, including transcript length bias, GC-content bias,
random hexamer priming bias, etc [5-7].
Differential analysis of RNA-Seq data has been focused

on modeling variance among biological replicates or
samples in the same phenotype group. EdgeR [8] is the
first method that models the ‘between-sample’ variability
by replacing the Poisson model with Negative Binomial
model. Various statistical methods have been proposed to
model the variance among samples in biological groups,
aimed to improve overall fitting of count data or robust-
ness against outliers [9-12].
Despite initial success to model uncertainties asso-

ciated with sequencing counts from different aspects,
there lacks a systematic effort to address variability in
RNA-Seq data. We dissect the variance in sequencing
counts along two dimensions: over-dispersion of read
counts within the same sample (i.e., within-sample
variation) and over-dispersion of read counts among
individuals from the same biological group (i.e.,
between-sample variation). Within-sample variation
typically leads to large variance of read counts among
genomic loci (e.g., nucleotides or exons), which have
similar expression level in the same sample. It is typi-
cally caused by technical artifacts such as uncorrected
systematic bias and gene specific random effects. On the
other hand, between-sample variation is mostly due to
biological differences among samples under the same
condition. To increase the accuracy of abundance esti-
mation so as to improve DEG identification, immediate
attention is needed to developing a unified model that
takes care of both forms of variation in RNA-Seq data.
We propose a computational method, namely Bayesian
Analysis of Dispersed Gene Expression (’BADGE’), to
model variability in RNA-Seq data. A full Bayesian
model is employed to simultaneously account for
within-sample variation and between-sample variation to
improve inference. The proposed method has several
novel contributions compared to existing methodologies:
1) a unified Bayesian causality model is developed for
joint abundance estimation and DEG identification. The
improved accuracy in profiling mRNA abundance can
facilitate the identification of DEGs, which may in turn
refine the parameter learning in abundance quantifica-
tion. 2) A Poisson-Lognormal regression model is incor-
porated to model within-sample variation [13]. Instead
of dealing with multiples sources of technical bias and
variation separately, the proposed method can ‘blindly’
detect over-dispersion pattern within the individual
sample. 3) Gamma-Gamma model [14] is used to model
between-sample variation, which accounts for over-
dispersion of read counts among multiple samples.
BADGE is a unified computational method that exten-
sively models variability in RNA-seq data to improve
abundance quantification and DEG identification.

Methods
Bayesian Analysis of Dispersed Gene Expression (BADGE)
We have developed a computational method, namely
Bayesian Analysis of Dispersed Gene Expression
(BADGE), to model extensive variability in RNA-Seq data.
BADGE explicitly models both between-sample variation
and within-sample variation to improve abundance quan-
tification and DEG identification. In this paper, we only
focus on the gene level analysis, while the concept can be
straight-forwardly generalized for genes with multiple
transcripts (isoforms).
Let yg,i,j represent observed counts that fall into the ith

(1 ≤ i ≤ Ig) exon region of gene g (1 ≤ g ≤ G) in sample
j (1 ≤ j ≤ J), which follows Poisson distribution with
mean gg,i,j. Ig is the number of exons in gene g. G is the
total number of genes. J = J1 + J2 is the total number of
samples, where J1 and J2 denote samples in condition
1 and 2, respectively. Within-sample over-dispersion
indicates that gg,i,j has unknown heterogeneity across the
gene rather than taking constant value. A hierarchical
Bayesian model is constructed to model within-sample
variation of RNA-Seq data as follows:

yg,i,j ∼ Poiss(γg,i,j), (1)

γg,i,j = xg,iβg,j exp(Ug,i,j), (2)

Ug,i,j ∼ N(0, τ ), s.t.
∑
i

Ug,i,j = 0, (3)

τ ∼ Gamma(a, b), (4)

where bg,j is the true expression level of gene g for sam-
ple j. xg,i is the length of the ith exon weighted by the
library size of sample j. Ug,i,j is the unknown within-sample
variation parameter, which follows normal distribution
with mean 0 and precision τ. ‘Flat’ prior is assigned for τ
by setting its shape a = 1 and rate b = 0. Equations (1-4)
are also known as the Poisson-Lognormal regression
model with identity link function.
Not only does the read count yg,i,j exhibits over-

dispersion, but also bg,j has variation across multiple
samples in the same biological group. To model
between-sample variation carried by bg,j, we adopt the
Gamma-Gamma model that is widely used in microar-
ray gene expression analysis [14] into the Poisson count
model. Let j1 and j2 represent samples in condition 1
and 2. dg is the binary differential state of gene g, where
dg = 0 means gene g is not differentially expressed; dg =
1, otherwise. The Gamma-Gamma model for RNA-Seq
differential expression is given by:

If dg = 0, βg,j ∼ Gamma(α,λg), (5)
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λg ∼ Gamma(α0, v), (6)

or if dg = 1, βg,j1 ∼ Gamma(α,λ(1)
g

),βg,j1 ∼ Gamma(α,λ(2)
g

) (7)

λ
(1)
g ,λ(2)

g ∼ Gamma(α0, v), (8)

and v ∼ Gamma(a0, b0), (9)

where λ
(1)
g and λ

(2)
g are the rate parameters of

Gamma distribution. If dg = 0, λ
(1)
g = λ

(2)
g = λg ; if

dg = 1,λ(1)
g �= λ

(2)
g . a is the shape parameter for bg,j,

which does not depend on differential state dg More-
over, we assume that the pooled rate parameter lg from
the gene population further follows Gamma distribution
with shape parameter a0 and rate parameter v. We
assign non-informative priors for hyper-parameters a,
a0, dg(P(dg = 1)= πg = 0.5) and v(a0 = 1, b0 = 0). The
sub-model defined by Equations (5-9) considers
between-sample variation within the same group, which
borrows knowledge from the entire population to
improve parameter estimation of individual genes.
Figure 1 gives the Bayesian hierarchical dependency

graph for all the parameters involved in the BADGE
method using plate notation. There are three plates in
Figure 1: The inner plate denotes dependency among
read counts within Ig exons in gene g; middle plate
denotes dependency among J samples; and the outmost
plate represents G genes. Observation y, represented by
shaded circle, is the raw exon level RNA-Seq count (for
gene level count data, Ig = 1), which depends on mRNA
abundance b, gene design matrix x and within-sample
over-dispersion parameter U. b further depends on group
level between-sample over-dispersion Gamma parameter
l and a, and U depends on global within-sample over-
dispersion parameter τ. Parameter l is determined by gene
level differential state d, and its priors ν and a0. dg (differ-
ential state of gene g) is assumed to follow P(dg = 1) = πg
= 0.5. Hyper-parameters a0, b0, π, a, and b, shown in
shaded square, are fixed to construct non-informative
priors (see additional file 1).

Estimate model parameters using Gibbs sampling
The joint posterior distribution of all parameters given
observation y (read count) and x (exon length) is given by:

P(β,U, τ ,λ, d,α,α0, v|y, x)
∼ P(y|β,U, τ ,λ, d,α,α0, v, x)P(β,U, τ ,λ, d,α,α0, v|x)
∼ P(y|β, x,U, τ , )P(U|τ )P(β|λ,α)P(λ|d,α0, v)P(τ )P(d)P(α)P(α0)P(v)

∼
∏
g

∏
j1

∏
i

(
(xg,iβg,j1

exp(Ug,i,j1))
yg,i,j1

yg,i,j1!
.e−xg,iβg,j1 exp(Ug,i,j1)

)

×
∏
g

∏
j2

∏
i

(
(xg,iβg,j2

exp(Ug,i,j2 ))
yg,i,j2

yg,i,j2 !
.e−xg,iβg,j2 exp(Ug,i,j2)

)

×
∏
g

∏
j

∏
i

√
τ e

−τ

U2
g,i,j

2

×
∏
g

⎛
⎝∏

j1

(λ(1)
g )

α

�(α)
βα−1
g,j1

e−λ
(1)
g βg,j1 ×

∏
j2

(λ(2)
g )

α

�(α)
βα−1
g,j2

e−λ
(2)
g βg,j2

⎞
⎠

×
∏
g

(
vα0

�(α0)
(λ(1)

g )
α0−1

e−vλ(1)
g × vα0

�(α0)
(λ(2)

g )
α0−1

e−vλ(2)
g

)dg

×
∏
g

[
vα0

�(α0)
(λ(1)

g )
α0−1

e−vλ(1)
g × I(λ(1)

g − λ
(2)
g )

]1−dg

× ba

�(a)
τ a−1e−bτ ×

∏
g

πg × ba00
�(a0)

va0−1e−b0v,

(10)

For Poisson-Lognormal regression model, the poster-
ior distributions of parameters bg,j, Ug,i,j and τ can be
sampled from their corresponding conditional distribu-
tions as:

P(βg,j|y,Ug) ∼ β

∑
i
yg,i,j

g,j

(
−βg,j

∑
i

xg,i exp(Ug,i,j)

)

∼ Gamma

(∑
i

yg,i,j + 1,
∑
i

xg,i exp(Ug,i,j)

)
,

(11)

P(Ug,i,j|βg,j, τ , y) ∼ exp (Ug,i,j)yg,i,j × exp(−βg,jxg,i exp(Ug,i,j)) × exp

(
−

τU2
g,i,j

2

)
, (12)

Figure 1 Dependency graph of model parameters in BADGE.
Observation (read count) y is shaded, while the random variables
are denoted as circles. Fixed parameters are denoted as shaded
squares. Exon length information x is denoted as oval. Ig is the
number of exons, J is the total number of samples in two groups,
and G is the number of genes. Note that parameter l actually is a
parameter set {l(1), l(2)}, which correspond to two sample
conditions.

Gu et al. BMC Bioinformatics 2014, 15(Suppl 9):S6
http://www.biomedcentral.com/1471-2105/15/S9/S6

Page 3 of 11



P(τ |U) ∼ τ
a−1+

J
∑
g
Ig

2 × exp

⎛
⎝−

⎛
⎝b +

∑
g,i,j

U2
g,i,j

2

⎞
⎠ τ

⎞
⎠

∼ Gamma

⎛
⎜⎝a +

J
∑
g
Ig

2
, b +

∑
g,i,j

U2
g,i,j

2

⎞
⎟⎠ .

(13)

We pool all the samples from Ug,i,j and get its estimate

Ûg,i,j =
1

T − tb + 1

T∑
tb
Ut

g,i,j, where Ut
g,i,j denotes sampled

Ug,i,j at sample t. tb is the last sample when burn-in

stops. T is the total number of Gibbs samples. Ûg,i,j will

be passed to the Gamma-Gamma model to estimate
parameters associated with DEG identification.
Similarly for the Gamma-Gamma model, we sample

the parameters b, l, a, a0, v and d according to their
conditionals. The posterior distribution of βj(βj1 ,βj2)
can be sampled from:

P(βg,j1 |yg,j1 ,λ
(1)
g ,α) ∼ Gamma

(∑
i

yg,i,j1 + α,
∑
i

xg,i exp
(
Ûg,i,j1

)
+ λ

(1)
g

)
, (14)

P(βg,j2 |yg,j2 ,λ
(2)
g ,α) ∼ Gamma

(∑
i

yg,i,j2 + α,
∑
i

xg,i exp
(
Ûg,i,j2

)
+ λ

(2)
g

)
. (15)

If dg = 1,

P
(
λ
(1)
g |β(1)

g , ν,α,α0

)
∼ Gamma

⎛
⎝J1α + α0,

∑
j1

βg,j1 + ν

⎞
⎠ , (16)

P
(
λ
(2)
g |β(2)

g , ν,α,α0

)
∼ Gamma

⎛
⎝J2α + α0,

∑
j2

βg,j2 + ν

⎞
⎠ ; (17)

If dg = 0,

P
(
λ
(1)
g |βg, ν,α,α0

)
= P

(
λ
(2)
g |βg, ν,α,α0

)
∼ Gamma

⎛
⎝Jα + α0,

∑
j

βg,j + ν

⎞
⎠ . (18)

The posterior distribution of ν follows Gamma distri-
bution that is given by:

P (ν|λ,d,α,α0) ∼ Gamma

⎛
⎝

⎛
⎝G +

∑
g

dg

⎞
⎠α0 + a0,

∑
g

(
λ
(1)
g + λ

(2)
g × dg

)
+ b0

⎞
⎠ . (19)

According to Wei etal. [14], the posterior distribution
of d given b, a, a0 and ν can be derived as:

P(dg|β,α,α0, ν) =

⎛
⎜⎜⎜⎜⎜⎝K1K2

(∏
j1

βg,j1 × ∏
j2

βg,j2

)α−1

(
ν +

∑
j1

βg,j1

)J1α+α0
(

ν +
∑
j2

βg,j2

)J2α+α0

⎞
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dg

×

⎛
⎜⎜⎜⎜⎜⎝K

(∏
j1

βg,j1 × ∏
j2

βg,j2

)α−1

(
ν +

∑
j1

βg,j1 +
∑
j2

βg,j2

)(J1+J2)α+α0

⎞
⎟⎟⎟⎟⎟⎠

1−dg

× πg,

(20)

where

K1 =
να0�(J1α + α0)
�J1 (α)�(α0)

,K2 =
να0�(J2α + α0)
�J2 (α)�(α0)

, and K =
να0�((J1 + J2)α + α0)

�J1+J2 (α)�(α0)
.

The posterior distribution of a0 and a are given by:

P(α0|ν,λ,d) ∼
∏
g

(
να0

�(α0)

(
λ
(1)
g

)α0−1 ×
(

να0

�(α0)

(
λ
(2)
g

)α0−1
)dg

)
, (21)

P(α|β,λ) ∼
∏
g

⎛
⎜⎝∏

j1

(
λ
(1)
g

)
�(α)

βα−1
g,j1

×
∏
j2

(
λ
(2)
g

)α

�(α)
βα−1
g,j2

⎞
⎟⎠. (22)

We use Gibbs sampling method [4,13,15,16] to esti-
mate the posterior distributions of individual parameters
iteratively from their complex joint distribution. For
parameters b, ν, τ, and l, we use conjugate priors to
sample from their conditional distributions with stan-
dard probability distributions (Gamma distribution). For
parameters (U, a0 and a) that do not have conjugate
priors, we use Metropolis-Hastings sampling to sample
their posterior distributions. Please see more details
about the implementation of Gibbs sampler in addi-
tional file 1.

Results and discussion
Over-dispersion of RNA-Seq counts in two dimensions:
between-sample variation and within-sample variation
Even though RNA-Seq has been proved to be more accu-
rate and less sensitive to background noise than traditional
microarray technology [17], large variance in sequencing
counts has complicated the detection of hidden biological
signals. Increasing evidence shows that read counts in
RNA-Seq data have much larger variance than the mean
(i.e., ‘over-dispersion’), which requires replacing the
Poisson model with more sophisticated count models
such as Negative Binomial model [8]. Figure 2 (a) shows
the scatter plot of mean versus variance for three RNA-
Seq datasets: basal breast cancer samples from The Cancer
Genome Atlas (TCGA) project [18], human B cell datasets
from Cheung et al.[19], and a mouse dataset [20]. The
slopes of the least squares (LS) fit lines for all scatter plots
are apparently larger than the Poisson model, which
implies severe over-dispersion in all three RNA-seq data-
sets. In addition to variability across samples (’between-
sample variation’), we have also observed strong variance
of sequencing counts among genomic loci in the same
biological sample (’within-sample variability’). Figure 2 (b)
shows the scatter plots of counts that fall in 100nt bins
along the same gene within the same sample. One TCGA
breast cancer sample and one MCF7 breast cancer cell
line sample [21] are used as examples. Figure 2 (b) shows
strong within-sample over-dispersion of read counts
in both RNA-Seq samples, implying the presence of
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unknown sources of variability. Figure 2 (c) shows the var-
iation of sequencing bias among all the genes within one
sample. Despite an overall tendency where read coverage
is biased towards the 3’-end of the transcript, subgroups of
the genes in the genome exhibit diverse patterns showing
either a bias towards the 5’-end or having depleted cover-
age on both ends. In Figure 2 (d), we further show an
example of read coverage for gene S100A9 (exon 2) across
four samples from TCGA basal breast cancer dataset. The

base level coverage has two distinct patterns, indicating
large variation of unknown read bias in the same group.
The ambiguity in coverage pattern cannot be explained by
deterministic systematic bias, and therefore need to be
corrected for accurate estimation of RNA-Seq abundance.

Generate simulation data based on real RNA-Seq datasets
To generate realistic synthetic data that represent char-
acteristics of real RNA-Seq data, we adopted a

Figure 2 Between-sample variation and within-sample variation in RNA-Seq data.(a) Three datasets are used to show the over-dispersion
of reads across samples. Scatter plots are in log 2 scale. (b) In both MCF7 breast cancer samples and TCGA breast cancer patient samples, we
observe that the variance of read counts is significantly larger than the average counts in 100nt bins. (c) Bias patterns of genes in the same
sample are further dissected. In contrast to a general right-tailed (biased towards 3’-end of transcript) coverage, we also observe groups of genes
that have either biased expression towards the 5’-end, or depleted expression in both ends. (d) An example to show variation of sequencing
bias among biological samples.
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simulation strategy proposed by Wu et al. [10] to first
estimate model parameters from real datasets and then
use them to generate sequencing counts based on
human annotation file (version: GRCh37/hg19). Two
RNA-Seq datasets were used in the study: 1) a mouse
dataset with 10 C57BL/6J (B6) mouse samples and 11
DBA/2J (D2) mouse samples [20]; 2) 23 basal breast
cancer samples from the TCGA project [18]. For the
TCGA dataset, we divided the patients (which received
chemotherapy treatment) into two groups: early re-cur-
rent group (recurrence time < 2 yrs, 13 samples) and
late recurrent group (recurrence time > 3 yrs, 10 sam-
ples). Figure 3 gives the trace plots of sampled model
parameters. We used thin = 10 for the Gibbs sampling
process, which means to record every 10th sample. It
took BADGE several hours to estimate posterior distri-
butions using 10,000 iterations on real dataset. We have
also plotted auto-correlation curves of each parameter

in supplementary materials (additional file 1). We
further explored the variability of RNA-Seq data by close
examination of estimated model parameters. For within-
sample variability, two typical values of over-dispersion
prior parameter τ have been estimated, where τ = 0.44 in
mouse dataset and τ = 1.78 in TCGA dataset. In our
Poisson-Lognormal regression model, τ is the precision
parameter (inverse of Gaussian variance s2) that controls
overall degree of within-sample over-dispersion. Smaller τ
indicates larger variation of read counts across the tran-
scriptome. Small value of τ observed in real datasets
strongly supported our motivation that read counts along
one transcript must be corrected for improved abundance
estimation. Between-sample variability is jointly deter-
mined by a, a0, and ν. Small value in ν (0.001 in mouse
and 0.2 in TCGA sample) yield large variation of VAR
(l), where VAR (b) increases when l takes small value.
We used the model parameters estimated from real

Figure 3 Estimate of model parameters from real datasets.(a) Model parameters estimated from mouse dataset. (b) Model parameters
estimated from TCGA basal breast cancer dataset. For most parameters, we record 900 samples (thin = 10, i.e., record every 10th sample) after
the first 100 burn-in samples. An exception was made for learning parameter τ in TCGA dataset to reduce memory usage in estimating Poisson-
Lognormal regression model (200 samples were recorded, among which first 50 were discarded as burn-in).
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datasets to generate read counts for simulation. Please
refer to supplementary materials in additional file 1 for
more detailed description of simulation data.

Performance comparison for abundance estimation on
simulation data
We incorporated the estimated parameter τ from real
datasets to generate synthetic data and studied the perfor-
mance of the BADGE method for abundance estimation.
We compared our method with four commonly used
methods for RNA-Seq normalization, which were: reads-
per-kilobase-per-million (RPKM), DESeq, trimmed mean
of M-values (TMM) and upper quantile normalization
(UQUA). RPKM [22] is calculated through normalizing
reads by length of genomic features (genes and exons) and
total library size. DESeq normalization is implemented by
DESeq (1.14.1) [9], which is a differential gene identifica-
tion method based on negative binomial model. TMM
was originally developed in edgeR [8] and later included
into BioConductor package NOISeq [23]. NOISeq (2.0.0)
also has separate implementations of RPKM and UQUA
methods, which were used here for performance compari-
son. Based on estimated parameters from real RNA-Seq
datasets (mouse and TCGA breast cancer data), we
selected typical model parameters to simulate count data:
s = 0.75, 1 and 1.5; ν = 0.1 and 0.001; a = 2 and a0 = 0.5.
We used the average correlation of normalized counts
with ground truth gene expression to measure the accu-
racy of abundance quantification across multiple samples.
Figure 4 gives the average correlation for all competing
methods under different model settings. From Figure 4,
we see that the BADGE method had robust performance
under different over-dispersion settings by maintaining a
performance measure (correlation to ground truth) very
close to 1. Among the rest of the normalization methods,
DESeq, TMM and UQUA achieved comparable perfor-
mance across multiple parameter settings, while RPKM

had the least favourable performance in all scenarios. Our
computational result is quite consistent with the observa-
tion by Dillies et al. [24] that DESeq and TMM (edgeR)
are much better normalization methods than RPKM.

Performance comparison for differentially expressed gene
(DEG) identification on simulation data
We compared BADGE with four existing methods: DESeq
(1.14.1, fitType=local), edgeR (3.4.2, default), DSS (2.0.0,
default), EBSeq (1.3.1, default), for differentially expressed
gene (DEG) identification from RNA-Seq data. We used
parameters learned from real datasets to generate simula-
tion data. Within-sample variability is controlled by preci-
sion parameter τ (or standard deviation s), and we set τ =
1.78 (i.e., s = 0.75, which was learned from TCGA basal
dataset) and τ = 0.44 (i.e., s = 1.5, which was learned from
mouse dataset.). According to estimated parameters from
real datasets, we set a = 2, a0 = 0.5, while varied ν between
0.001 and 0.1, which was consistent with the parameter
settings in abundance estimation. For each parameter set,
we randomly selected 10 genesets from hg19 annotation
file to evaluate the variance of the performance. Area-
under-the-curve (AUC) of the receiver operating charac-
teristic (ROC) curve was used as performance measure-
ment. Tables 1, 2, 3 give the AUC values for each method
along with standard deviations (listed in parentheses) of
AUCs across 10 experiments.
We simulated RNA-Seq gene expression with three dif-

ferent scenarios: genes that were highly differentially
expressed, moderately differentially expressed and weakly
differentially expressed (see supplementary materials in
additional file 1 for more information). From Tables 1, 2,
3, we see that the BADGE method consistently outper-
formed existing methods in different parameter settings
(highlighted in bold). For highly differentially expressed
genes (Table 1), the performance of the other methods
degraded as we decreased τ, while BADGE was able to

Figure 4 Performance comparison for abundance estimation on simulation data.
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maintain good performance by employing a Poisson-
Lognormal model to account for within-sample variability.
For genes that were weakly differentially expressed (Table
3), BADGE achieved a maximum improvement of AUC
up to 1.3, compared to the second best method EBSeq
(Table 3, τ = 0.44, ν = 0.001).

Performance comparison for differentially expressed gene
(DEG) identification on Sequencing Quality Control (SEQC)
data
We compared the performance of BADGE with existing
RNA-Seq differential gene identification methods on the
Sequencing Quality Control (SEQC) dataset with ERCC
spike-in controls [25]. 92 artificial transcripts were
mixed into a real RNA-Seq library with different ratios
(1:1 for none differentially expressed genes, and 4:1, 2:3
and 1:2 for differentially expressed genes), which were
used as ground truth differential states for differential
gene identification. Gene level counts were downloaded

from http://bitbucket.org/soccin/seqc. We compared the
ROC curves between BADGE and four other methods
used in the simulation study for differential gene identi-
fication, which were DESeq [9], edgeR [8], DSS [10] and
EBSeq [11]. Figure 5 shows the ROC curves of the five
competing methods.
On the SEQC dataset, BADGE had the best perfor-

mance among all five methods by achieving an AUC very
close to 0.9. The second best method was DSS with an
AUC about 0.85. DESeq (AUC = 0.7624) and edgeR (AUC
= 0.7675) had very close performance, which was consis-
tent with the previous results reported by Rapaport et al.
[25]. EBSeq, on the other hand, had the least favourable
performance (AUC = 0.71) on this specific dataset and it
failed to detect the most strongly differentially expressed
genes: its sensitivity was less than 0.1 when its specificity
was about 0.9. By close examination of the ‘left’ ROC
curves of the five methods, we can further infer that
BADGE should have significantly better precision than the

Table 1 Performance comparison using AUC for DEG identification (highly differentially expressed genes)

s (τ) ν BADGE DESeq edgeR DSS EBSeq

0.75 0.001 0.939 0.921 0.919 0.881 0.928

(1.78) (0.018) (0.017) (0.018) (0.055) (0.017)

0.1 0.918 0.894 0.895 0.889 0.906

(0.018) (0.018) (0.020) (0.024) (0.021)

1.5 0.001 0.925 0.881 0.875 0.809 0.890

(0.44) (0.014) (0.029) (0.032) (0.082) (0.030)

0.1 0.924 0.868 0.865 0.858 0.875

(0.023) (0.027) (0.025) (0.027) (0.022)

Table 2 Performance comparison using AUC for DEG identification (moderately differentially expressed genes)

s (τ) ν BADGE DESeq edgeR DSS EBSeq

0.75 0.001 0.901 0.724 0.753 0.739 0.750

(1.78) (0.071) (0.070) (0.081) (0.197) (0.069)

0.1 0.905 0.768 0.760 0.852 0.781

(0.076) (0.051) (0.066) (0.071) (0.044)

1.5 0.001 0.882 0.691 0.699 0.790 0.725

(0.44) (0.056) (0.041) (0.042) (0.088) (0.035)

0.1 0.890 0.743 0.729 0.798 0.748

(0.080) (0.070) (0.081) (0.074) (0.058)

Table 3 Performance comparison using AUC for DEG identification (weakly differentially expressed genes)

s (τ) ν BADGE DESeq edgeR DSS EBSeq

0.75 0.001 0.793 0.656 0.680 0.603 0.687

(1.78) (0.099) (0.058) (0.084) (0.133) (0.031)

0.1 0.778 0.659 0.663 0.695 0.684

(0.092) (0.043) (0.062) (0.075) (0.049)

1.5 0.001 0.806 0.641 0.647 0.635 0.669

(0.44) (0.080) (0.028) (0.071) (0.134) (0.029)

0.1 0.823 0.687 0.680 0.724 0.682

(0.109) (0.072) (0.063) (0.104) (0.073)

Gu et al. BMC Bioinformatics 2014, 15(Suppl 9):S6
http://www.biomedcentral.com/1471-2105/15/S9/S6

Page 8 of 11

http://bitbucket.org/soccin/seqc


competing methods, whose sensitivity went all the way up
to 0.7 before any sacrifice in specificity.

’Blind’ estimation of hidden heterogeneity in RNA-Seq
data
In contrast to uniform random sampling, read counts in
RNA-Seq data show large variance due to different
sources of hidden heterogeneities. By using a Poisson-
Lognormal regression model, BADGE can ‘blindly’
estimate hidden heterogeneities across the transcriptome
to minimize overall variability in sequencing counts
without using additional information (e.g., genome
sequence information in huge Fasta file to calculate GC

percentage). In BADGE model, the variability of each
individual exon is carried by parameter Ug,i,j (gene g,
exon i, sample j), while the overall degree of variation is
controlled by τ. Based on sampled parameters from real
datasets, we further investigated Ug,i,j to see how
systematic artifacts in RNA-Seq (such as transcript length
bias and GC content) can be de-convoluted by BAGDE
method. Figure 6 shows the histogram of Pearson’s corre-
lation between estimated Ug,i,j and: 1. transcript location;
2. GC content. From Figure 6 (a), we see strong positive
correlation between estimated over-dispersion parameter
Ug,i,j and transcript location, which indicates that most of
the genes had biased expression towards 3’-end of the

Figure 6 Dissecting read variability into sequencing bias.(a) Estimated over-dispersion parameter Ug,i,j shows strong correlation with
transcript location. (b) GC content bias can also be inferred from Ug,i,j. Top expressed 2631 genes (number-of-exons>10) from one TCGA basal
sample are used in this study.

Figure 5 Performance comparison for differentially expressed gene identification on the SEQC dataset.
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transcript in our dataset, while about 15 percent of the
genes had low correlation (<0.5). In addition, a significant
correlation between Ug,i,j and GC-content bias (extremely
low or high GC content are associated with low abun-
dance [26]) were also observed in Figure 6 (b). These
observations support that BADGE can correctly estimate
hidden sources of variation in RNA-Seq data ‘blindly’
without using transcript location information or sequence
information.

Conclusions
Large variation in RNA-Seq data has become the major
obstacle against accurate estimation of gene expression
and DEG identification. Much effort has been made to
model variation across biological replicates, while lim-
ited attention is paid to tackle extensive over-dispersion
observed in sequencing counts. For short-read sequen-
cing technologies (e.g., Illumina), multiple sources of
systematic bias have been identified, including transcript
length bias, GC-content bias, etc. However, in-depth
investigation of real RNA-Seq datasets has revealed the
following complications: 1) Sequencing bias not only
changes from one gene to another, but also varies among
samples (Figure 2(c) and (d)); 2) Gene expression is
jointly influenced by multiple bias factors, which leads to
large variation across the entire transcriptome (Figure 6).
However, current research activities have been focused
on addressing individual bias corrections, which lacks a
unified effort to account for total variability in RNA-Seq
data. Therefore, we propose the BADGE method to
extensively model both within-sample variability (bias
and random variance) and between-sample variability
(biological variations among replicates or within the same
phenotype group) to improve quality of inference.

Additional material

Additional file 1: Supplementary materials. This additional file
contains supplementary information for the main text, including
parameter setting for BADGE method, computational implementation,
simulation design, supplementary figures and tables, etc.
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