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Abstract

Background: Error correction is an important step in increasing the quality of next-generation sequencing data for
downstream analysis and use. Polymorphic datasets are a challenge for many bioinformatic software packages that
are designed for or assume homozygosity of an input dataset. This assumption ignores the true genomic
composition of many organisms that are diploid or polyploid. In this survey, two different error correction
packages, Quake and ECHO, are examined to see how they perform on next-generation sequence data from
heterozygous genomes.

Results: Quake and ECHO perform well and were able to correct many errors found within the data. However,
errors that occur at heterozygous positions had unique trends. Errors at these positions were sometimes corrected
incorrectly, introducing errors into the dataset with the possibility of creating a chimeric read. Quake was much
less likely to create chimeric reads. Quake’s read trimming removed a large portion of the original data and often
left reads with few heterozygous markers. ECHO resulted in more chimeric reads and introduced more errors than
Quake but preserved heterozygous markers.
Using real E. coli sequencing data and their assemblies after error correction, the assembly statistics improved. It
was also found that segregating reads by haplotype can improve the quality of an assembly.

Conclusions: These findings suggest that Quake and ECHO both have strengths and weaknesses when applied to
heterozygous data. With the increased interest in haplotype specific analysis, new tools that are designed to be
haplotype-aware are necessary that do not have the weaknesses of Quake and ECHO.

Background
The prevalence of next-generation sequencing (NGS)
has increased throughput for generating genomic data
and our ability to perform genomic analysis. Genomic
analyses continue to increase our ability to understand
genetic diseases and disorders.
NGS technologies take short fragments of DNA

obtained from the genome of an organism of interest.
The fragments are then sequenced. Sequencing reads is
the process of identifying a fragment’s constituent
nucleotides through chemical processes. A fragment
with all bases identified, whether correctly or incor-
rectly, forms a read [1].

These reads are used in several different types of ana-
lyses. One example of this is in genome assembly. The
generated reads are assembled into the source genome
through a process of identifying reads that originated
from the same regions and assembling them by merging
them into longer, contiguous sequences called contigs.
Assembly is complex and difficult due to the short
length of sequenced reads and requires volumes of high
fidelity data to be accomplished accurately [2].
NGS technologies are, however, imperfect and misi-

dentify some of the nucleotides contained in a DNA
fragment as they are being sequenced [1]. Thus, errors
are introduced into the reads. These errors are proble-
matic because they introduce false genetic information
into a dataset and complicate genome assemblies. Error
correction packages have been created that use different
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techniques in order to locate misidentified bases during
sequencing and to correct them to their true sequence
[3]. This allows for recovery of data that could otherwise
confound a genome assembler. While error correction
software is intended to correct errors, it can also intro-
duce errors into a readset through mis-correction.
Genome assembly becomes even more complicated in

the presence of heterozygosity. Many organisms have a
ploidy greater than one, including humans. Diploid and
polyploid organisms inherit genetic information from mul-
tiple sources (e.g., a maternal and paternal source). One
set of genetic variation inherited from a parent is called a
haplotype. When sequencing and assembling the genome
of an organism, haplotype conservation is important for
preserving and understanding the biological reality of an
organism’s genome. Despite lower heterozygosity rates in
humans compared to some organisms [4], proper identifi-
cation of polymorphism remains fundamental to geno-
type-phenotype analyses.
Many current genome assemblers do not maintain segre-

gated haplotypes [5]. Conservation of separate haplotypes
during genome assembly allows for better understanding
of complex diseases and phenotypes that have not been
associated with single variations. Haplotype-aware analyses
allow for more powerful understanding of haplotypes and
phenotypes. They also enable better protein structure pre-
diction [6]. Studies of the effects of heterozygosity on error
correction performance are lacking.
In this study, two different error correction techniques

are comparatively analyzed by examining their effects on
next-generation sequencing data from a heterozygous
genome. These two packages are Quake and ECHO.

Quake
Quake is a k-spectrum based approach to base-call error
correction. Quake analyzes the k-mer coverage distribu-
tion. Then, a cut-off is determined from the distribution
that identify trusted and untrusted k-mers. Trusted k-mers
are used to identify errors in the readset. A set of possible
corrections is made and searched to find the correction
with the maximum likelihood of making all k-mers trusted.
In addition to correcting miscalled bases, Quake also trims
reads. Trimming is the process of removing the ends of
reads to remove low quality bases. Quake requires that the
value of k be specified at runtime. A formula is given
by the creators of Quake to calculate k based on genome
size [7].

ECHO
ECHO utilizes a multiple sequence alignment (MSA)
approach in order to perform base-call error correction.
Based on a probabilistic model, ECHO first clusters reads
from the same region of the source genome then corrects
the reads. ECHO does not require input of genome size

or any other input parameters to be run. The authors
state that “[ECHO] explicitly models heterozygosity in
diploid genomes and provides a reference-free method
for detecting bases that originated from heterozygous
sites” [8].

Results
Synthetic datasets
Quake
Both haploid and diploid genome sizes of the genome
were used when calculating the appropriate k for Quake.
The results from using the haploid and diploid genome
sizes had nearly identical results. Quake’s general perfor-
mance does not appear to change much as heterozygosity
increases. Quake’s performance on both heterozygous and
homozygous errors considered together does not appear
to change much as heterozygosity increases (see Figure 1).
When correcting the datasets with all reads for a particu-

lar error and heterozygosity rate combined (heterozygous
dataset) and using the diploid and the haploid genome
sizes as parameters, the error-corrected reads showed
several of the same general trends for the first three error
rates for errors at heterozygous positions. The rate of
errors at heterozygous locations that were corrected
correctly increased. The rate of errors at heterozygous
locations that were not corrected decreased. The rate of
errors at heterozygous locations corrected to the wrong
haplotype was low (near 0) and varied little. The rate of
errors at heterozygous locations corrected to neither of the
haplotypes was low (near 0) and varied little. Finally, the
rate of heterozygous locations that had no error corrected
to the other haplotype or to neither haplotype was low and
varied little (see Figure 2).
A comparison of the first three error rates showed two

variations. First, the rate of errors at heterozygous loca-
tions corrected to the wrong haplotype increased slightly
as the error rate increased. Second, the rate of non-error
heterozygous locations corrected to the wrong haplotype
was slightly increased with increased error rates.
When correcting the datasets split by haplotype

(homozygous datasets), several general trends hold for
the first three error rates at all levels of heterozygosity.
The rate of errors at heterozygous locations corrected
correctly was high. The rate of errors at heterozygous
locations not corrected was low. The rate of errors at
heterozygous locations corrected to the wrong haplotype
was low. Lastly, the rate of errors at heterozygous loca-
tions corrected to neither of the haplotypes was low.
ECHO
ECHO differs from Quake because it does not require the
user to specify parameters at runtime. Therefore, ECHO
was run once on the heterozygous datasets and again on
the homozygous datasets with no variation of parameters.
The accuracy of ECHO was similar to Quake as little
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Figure 1 Errors at heterozygous and homozygous positions (all errors) as treated by Quake and ECHO. Rate of occurrence is defined as
how often an error is treated in a specified way out of all heterozygous and homozygous errors. The haploid genome size was used when
running Quake.

Figure 2 Errors at only heterozygous positions as treated by Quake and ECHO. The two error correction programs’ performance on errors
at heterozygous positions when given the heterozygous dataset at ≈ 3.7% error rate. Rate corrected is defined as the number of corrections
made at erroneous heterozygous bases out of all erroneous heterozygous bases in the dataset. The haploid genome size was used when
running Quake.
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variation in performance when observing all errors (see
Figure 1) was found. The rate of errors at heterozygous
locations that were corrected correctly increased. The rate
of errors at heterozygous locations corrected to the wrong
haplotype decreased. The rate of errors at heterozygous
locations that were not corrected decreased. Observed
variations between the first three error rates show that
the rate of non-error heterozygous locations corrected to
the other haplotype decreases as the error rate increases
(see Figure 2).
ECHO’s correction of the homozygous data for the first

three error rates produced trends similar to Quake’s. The
rate of errors at heterozygous locations corrected correctly
was high. The rate of errors at heterozygous locations was
low. The rate of errors at heterozygous locations corrected
to the wrong haplotype or to neither haplotype was low.

Real sequencing data
Quake
Assemblies using Quake-corrected reads were superior to
the uncorrected assembly (see Table 1). The corrected
assembly had a decreased number of contigs, larger N50,
and an increased largest contig length. The assembly using
Quake-corrected reads where the raw reads were segre-
gated by strain during correction performed better than
the assembly when all reads were corrected together. N50
nearly doubled when comparing the assembly of reads
segregated by strain during correction to the assembly
with reads together during correction. The length of the
largest contig also increased significantly.
ECHO
Assemblies using ECHO-corrected reads made improve-
ments to the uncorrected assembly (see Table 1). The
improvements were not as drastic as those made by
Quake. The N50 size remained at 100 base pairs for both
assemblies after using ECHO. The largest contig created
by both assemblies was better than the uncorrected
assembly. It was also slightly improved in the assembly

where strains were corrected together compared to when
strains were corrected separately. The number of contigs
also drops when compared to the uncorrected assembly
and is additionally improved when the reads were cor-
rected with strains segregated.

Discussion
General trends
Both error correction software packages increased their
rate of correctly correcting errors at heterozygous loca-
tions as the heterozygosity rate increased. This may be
the case because as heterozygosity increases, the haplo-
types become more unique. As the sequences become
more unique, the error correction algorithms are able to
treat the homologs as unique sequences. As can be
seen, reads from an organism with high heterozygosity
were error corrected better than reads from an organism
with low heterozygosity. However, many interesting
organisms, such as humans, have low heterozygosity [9].

Quake
Quake differed from ECHO by its conservative nature
when choosing whether or not to error correct. This
trend manifested itself in the high rate of errors at het-
erozygous positions that Quake did not correct when
heterozygosity was low. At lower heterozygosity rates, the
variations between homologs were sparse. There were,
therefore, fewer surrounding heterozygous markers to
indicate a proper correction for an error. Quake was less
certain of how to correct a putative error at these low
heterozygosity rates and preferred to leave them uncor-
rected. A benefit of this can also be seen by the lower
rate at which errors were introduced into the readset by
Quake (see Figure 3). Fewer errors being corrected is
undesirable but also results in fewer introduced errors.
Quake has a low rate of correcting heterozygous errors

to the wrong haplotype. Additionally, it did not introduce
errors at non-error heterozygous positions by correcting
them to the wrong or neither haplotype (see Figure 3).
Additionally, few chimeric reads were present after correc-
tion (see Figure 4). The low levels of introduced errors
and chimeric reads can be attributed to conservative cor-
recting and trimming of reads.
Trimming reads may have given Quake an advantage in

introducing few errors and creating few chimeric reads. A
downside to this, however, can be seen by looking at the
proportion of reads that contain > 1 heterozygous mar-
ker. As heterozygosity increases, Quake has much fewer
reads with > 1 heterozygous marker compared to ECHO
(see Figure 5). Reads with > 1 heterozygous marker are
essential to haplotype specific genome assembly. Variants
contained within the same read can be used to associate
them with each other. This association of variants can be
used to form a haplotype [10]. Upon further analysis,

Table 1 The SOAPdenovo2 E. coli assembly.

Correction
Algorithm

How Corrected Contigs N50 Largest
Contig

Raw reads 486825 100 7110

Quake Corrected
together

25642 661 28841

Quake Corrected
separately

18153 1143 36891

ECHO Corrected
together

392668 100 10094

ECHO Corrected
separately

348885 100 9563

There were five different assemblies. The assembly of raw reads involved no
correction. For both Quake and ECHO, the reads were corrected separately by
strain and corrected together with reads from both strains present then
assembled. The number of contigs, the N50 size and the length of the largest
contig of each assembly is shown.
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Figure 3 Introduced errors at non-error heterozygous positions. Showing heterozygous dataset with ≈ 3.7% error rate where errors were
introduced at non-error positions. Introduced errors consisted of non-error bases at heterozygous positions that were corrected to the wrong or
neither haplotype. Rate of introduced errors is defined as the number of mis-corrections at non-error heterozygous positions out of all the
non-error heterozygous positions in the dataset.

Figure 4 Chimeric after correction. Rate chimeric reads is defined as the number of chimeric reads out of all reads that have > 1
heterozygous marker given a heterozygous dataset at ≈ 3.7% error rate.
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approximately 60% of all errors in reads that were cor-
rected were removed through trimming (see Figure 1).
40% of these errors were at heterozygous sites when an
error rate of approximately 3.7% was used.

ECHO
One of the strengths of ECHO is that no user input
parameters are required in order to run. There is also
no trimming. This leaves entire reads intact except for
when corrected. The lack of trimming may or may not
be a weakness depending on the needs of the user.
ECHO showed itself to be aggressive in terms of error

correction. This differentiates it from Quake’s conserva-
tive tendencies. Aggressive correction proved to be a
good feature when presented with homozygous data.
However, it was detrimental when heterozygous data
was present. At low heterozygosity rates, ECHO cor-
rected errors and non-errors at heterozygous positions
to the wrong or neither haplotype approximately 10% of
the time in the worst cases at the lowest error rate.
ECHO corrected many errors that Quake did not cor-
rect at low heterozygosity rates. However, it also intro-
duced more errors into the readset. The effects of
introducing errors at heterozygous positions can be seen
in the number of chimeric reads after correction.

ECHO produced more chimeric reads than Quake (see
Figure 4). As discussed earlier, this feature can be detri-
mental for downstream use of these corrected reads. The
most likely reason for this increase in chimeric reads is the
lack of read trimming in ECHO when errors are encoun-
tered near the end of a read. This leaves all heterozygous
positions present in a read. Having more heterozygous
positions present is a key feature for haplotype-aware
studies. Compared to Quake, the number of reads that
contain > 1 heterozygous base is higher, especially as
heterozygosity increases (see Figure 5). Though more
reads may be chimeric, the higher number of reads with
multiple heterozygous markers may be beneficial.

Real sequencing data
Using either Quake or ECHO improved the real sequence
data genomic assemblies. The overall number of contigs
returned after assembly were decreased on all error-cor-
rected assemblies. This is important because with fewer
returned contigs, the scaffolding graph is much less com-
plicated. More improvements can be found when using
Quake compared to ECHO. It is unclear how much of the
improvement that was found after using Quake is attribu-
ted to read trimming or due to the correction of errors.
The improvements seen in all error-corrected assemblies

Figure 5 Reads with > 1 heterozygous marker after correction. These are reads from the heterozygous dataset at ≈ 3.7% error rate. Rate
reads with > 1 heterozygous marker is defined as the number of reads that have > 1 heterozygous marker out of all the reads in the dataset.
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shows how error correcting can improve downstream ana-
lysis. The assembly created from reads corrected by Quake
when the reads were separated by strain was significantly
better than the assembly produced with mixed reads. A
haplotype-aware error correction algorithm should be able
to achieve this level of performance.

Conclusion
Neither Quake nor ECHO performed adequately as an
error correction algorithm on heterozygous data. An
acceptable error correction algorithm for heterozygous
reads would provide results similar to Figure 1 when
correcting a heterozygous dataset.
ECHO is a very aggressive corrector. Quake, on the

other hand, is much more conservative. Aggressive cor-
rection provides the benefit of correcting many of the
errors. It also results in the introduction of errors. Many
of these errors occur at heterozygous positions. Conser-
vative correction results in more of the original errors
persisting through the correction phase but fewer new
errors being introduced.
An important distinction between the original errors

and introduced errors should be made. Original errors
are much less detrimental to downstream analysis than
introduced errors. Introduced errors are placed in non-
random locations and decrease the ability to compensate
for these errors through high coverage.
In addition to correction accuracy, the number of het-

erozygous markers present after correction should also be
considered. Because Quake trims reads, a large portion of
heterozygous bases were removed from the datasets. This
created fewer errors but left fewer heterozygous markers
in the corrected dataset. ECHO, although it had lower
accuracy as a result of more introduced errors and mis-
corrections of read errors, left all heterozygous positions
in the corrected dataset.
Looking at the effects on real sequencing data and their

subsequent assemblies was also enlightening and showed
effects of error correction on real data. It is shown that
both algorithms improve the assembly. The effects of
haplotype-aware error correction can particularly be seen
in the case of Quake when the reads from each strain
were segregated.
There is much improvement that can be made to

error correction algorithms to better handle heterozy-
gous datasets. haplotype-aware correction algorithms
should be able to enhance genome analysis. Other
approaches also include read classification and segrega-
tion by haplotype before error correcting. Segregating
the data creates datasets that resemble homozygous
data. Thus, many current bioinformatic tools could be
used on heterozygous datasets that are segregated by
haplotype.

Methods
Heterozygous datasets were created, error correction soft-
ware packages were applied to the reads, and the corrected
reads were analyzed in order to evaluate error correction
software performance on heterozygous genomes.

Data generation
A 4,940,000 base-pair region of chromosome 20 from
Homo sapiens [Gen-Bank: http://www.ncbi.nlm.nih.gov/
nuccore/NT_011387.8] was used as one of the haplotypes.
The sequence was then duplicated. HapMaker was used to
introduce heterozygosity at 50 different levels (0.2% to
10% at 0.2% intervals) into the duplicate sequence [11].
The heterozygosity introduced duplicate sequence was
used as another haplotype. The simulated diploid genome
contained reads from the original sequence and the het-
erozygosity introduced duplicate. Haplotypic differences
were limited to single nucleotide base variations. ART was
used to generate 75 base pair Illumina single reads at 40x
coverage per dataset [12]. For each level of heterozygosity,
four datasets at different error rates were created:

1 ≈ 3.7%
2 ≈ 4.6%
3 ≈ 5.8%
4 ≈ 7.3%

This resulted in 200 unique datasets with combina-
tions of different heterozygosity and error rates.

Using the error correction software
The 200 readsets were corrected separately using Quake
and ECHO. For each algorithm, the readsets were cor-
rected once with all of the reads for a particular error
and heterozygosity rate present (heterozygous dataset)
and again with the reads separated by haplotype (homo-
zygous dataset). The performance of the different error
correction algorithms were then compared for heterozy-
gous and homozygous readsets.

Analysis
Synthetic data
The efficacy of the error correction software packages was
measured at the nucleotide and the readset level. This
research focusses on base pairs at heterozygous positions.
Each base in the readset was examined to determine if the
base was modified by the error correction software. A base
that was modified by the error correction software was
denoted as corrected. A heterozygous base pair that is an
error or non-error can be handled in several ways:

• corrected correctly : a base that is corrected to what
is found in the source genome
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• corrected to the wrong haplotype: a mis-correction,
a base at a heterozygous position that is corrected to
its homologous pair
• corrected to neither haplotype: a mis-correction, a
base at a heterozygous position that is corrected to
neither of the haplotypes present
• not corrected : a base at a heterozygous position is
left as found

In addition to the nucleotide level analysis, a readset level
analysis was conducted. The number of chimeric reads
within a corrected dataset was found. A chimeric read
must have > 1 heterozygous marker and have different
haplotypes represented at these positions. A non-chimeric
read only has one haplotype at all the heterozygous mar-
kers it contains. An algorithm with good performance on
heterozygous datasets will have few chimeric reads.
This analysis was performed using synthetic genomes

based on the human reference genome and readsets where
the location of each read and correct nucleotide sequence
was known. Unknown sample position and correct
sequence of a read makes knowing exactly how the error
correction algorithms performed impossible to know for
real genomic data. Thus, only single base errors and cor-
rections were analyzed using synthetic data in this study.
Real sequencing data
In addition to using synthetic data, an analysis using real
data was performed. Genomic assemblies were gener-
ated using SOAPdenovo2 [13]. SOAPdenovo2 uses a de
Bruijn graph approach to solving the genome assembly
problem. The k-mer size for these assemblies was set to
31. These assemblies were used to compare the effects
of error correction on real data.
Two strains of Escherichia coli were selected. Whole

shotgun sequence data for the strains [SRA:SRR800579
and SRA:SRR784244] were gathered from the Sequence
Read Archive (SRA) hosted by NCBI. These data are 101
base pair Illumina HiSeq 2000 reads at approximately 50x
coverage per strain. The reads from these two strains were
combined to generate real data that is representative of
the sequence data from a diploid organism. The reads
were corrected and assembled to see how error correction
affected them. This analysis was accomplished by first
creating a baseline assembly by using all uncorrected reads
from both strains together. Two assembly pipelines were
used for both Quake and ECHO:

• Combine reads from both strains, correct the com-
bined file, then assemble
• Keep reads separate by strain, correct the two files
separately, combine corrected reads, then assemble

This resulted in four assemblies from corrected reads
and one assembly from the uncorrected reads.

The N50 and length of the longest contig were mea-
sured for each of the five assemblies. A larger N50 and
a longer longest contig are indicators of a higher quality
genome assembly. It is expected that the quality of the
assemblies at the base pair level will also be higher with
corrected readsets.
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