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Abstract

Background: Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a
commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple
parameters, the selection of which is controversial and depends on the intended purpose. This study describes the
results of tests conducted to support parameter selection, towards the goal of enabling further biomarker
discovery.

Methods: This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained
from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions.
Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of
the sample standard deviation s, or the entropy-maximizing rChon), the data length N, the weighting factors n for
fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested
for normality using Lilliefors’ composite goodness-of-fit test. Consequently, the p-value was calculated with either a
two sample t-test or a Wilcoxon rank sum test.

Results: The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement
that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in
regularity. N should be at least 200 data points for r = 0.2 s and should even exceed a length of 1000 for r = rChon.
The results for the weighting parameters n for the fuzzy membership function show different behavior when
coupled with different r values, therefore the weighting parameters have been chosen independently for the
different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is
reasonable with r = rChon or r = 0.2s.
Conclusions: Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless,
as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter
combinations are suggested for the methods considered. Yet, due to the high number of potential parameter
combinations, further investigations of entropy for heart rate variability data will be necessary.

Background
Heart rate variability (HRV) is the variation of the time
interval between consecutive heartbeats. It highly
depends on the extrinsic regulation of the heart rate
(HR) and reflects the balance between the sympathetic
and the parasympathetic nervous system [1]. Batchinsky
et al. [2] develop a collection of methods for using HRV

to describe regular periodic oscillations in the heart rate,
attributed to the vagal and/or sympathetic branches of
the autonomic nervous system.
Research on HRV has attracted considerable attention in

the fields of psychology and behavioral medicine. It has its
origin in the search for non-invasive correlates of injury
severity which can be extracted from available signals in
order to discover new cardiac biomarkers [2]. These
signals are usually ones that are routinely measured, and
include sources like a photoplethysmogram or the electro-
cardiogram (ECG) [3]. Electrocardiography is an interpre-
tation of the electrical activity of the heart over some
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period of time. It is a non-invasive procedure, using elec-
trodes attached to the surface of the skin, and is com-
monly used to measure the heart rate, the regularity of the
beats, and characterize properties or injuries in the heart
chamber. An R-to-R interval (RRI) describes the latency
between two consecutive R peaks in the ECG. The RRI
time series are used as input for the determination of
HRV parameters.
In studies of HRV, both time- and frequency-domain

measures are typically used by practitioners and research-
ers [1,4]. Additionally, further knowledge about the
subject’s status can be discovered by the evaluation of cer-
tain patterns and shifts in an “apparent ensemble amount
of randomness” of a stochastic process [5]. This random-
ness, as well as the predictability of this process, can be
measured by entropy [6]. Thus, it is a commonly used tool
to describe the regularity of large biomedical data sets.
The more regulatory inputs a system has, the higher its
irregularity is, due to interference of those regulatory sys-
tems. This assumption is also true for many biomedical
systems such as HRV [7]. Therefore, it is a reasonable
hypothesis that a more regular heart rate variability is con-
nected to a defect in a regulatory system. To measure this
irregularity, Pincus et al. proposed approximate entropy
(ApEn) [8]. Further types of entropy were developed based
on this method to improve it [9]. Because of its ability to
measure regularity, entropy is widely used as a diagnostic
tool in medicine to derive and discover biomarkers in
large biomedical data. Its applications range from sudden
infant death syndrome [7], to complexity analysis of intra-
cranial pressure dynamics during periods of severe intra-
cranial hypertension [10], to quantification of amplitude
variations in mechanomyographic signals [11], to analysis
of short gait data sets [12], to automatic detection of nor-
mal, pre-ictal, and ictal conditions from recorded electro-
encephalography signals [13], to the postural sway in
stroke patients [14].
The approach to quantify the structural complexity (or,

inversely, regularity) of the HRV is called heart rate com-
plexity (HRC) and utilizes methods derived from nonlinear
dynamics. Note that complexity and variability are not
necessarily the same [15]. A periodical signal, such as a
sine wave, is variable but not complex. This property
allows complexity measures to ignore the complicated
periodic oscillations to at least some extent [16].
To date, numerous entropy types are widely accepted

as measures of the HRC. However, since their function is
controlled by three, four or six parameters, there are
many possible combinations to choose from. The selec-
tion of criteria for these parameters is controversial and
heavily depends on the intended purpose and the data at
hand [17]. The variation of only one parameter often
results in highly non-linear behaviour [12]. Therefore,
results of calculations with different parameters cannot

be easily extrapolated from existing data, but have to be
computed individually. Hence, the variation of several
parameters in order to optimize the reliability of the
results is a very time consuming process. To be used in
daily routine, reasonable parameters have to be selected
prior to the evaluation of HRC.
The determination of appropriate parameters for

entropy in general [11,12,18-20] and for HRV applica-
tions in particular [16,17,21,22] is the subject of on-
going research. A summary of the current knowledge
regarding parameter selection is given in the subsection
“Parameter selection”. In order to verify the results of
previous publications and to extend them by the usage of
more entropy measures, this work focuses on the para-
meter selection for approximate, sample, fuzzy and fuzzy
measure entropy and their implications for HRV data.
The objective of this paper is to provide a reference for
choosing parameters for HRV applications based on their
influence on the different entropies’ ability to distinguish
significantly between pathological and non-pathological
recordings. The main research questions addressed in
this paper are: (1) what does the choice of the threshold
value(s) mean for the entropies to be a direct measure of
regularity, (2) how does the data length influence signifi-
cance for different data sets, (3) how should the weight-
ing factor(s) be chosen for fuzzy and fuzzy measure
entropy, and finally, (4) what are the constraints for
choosing the threshold values?.

Methods
In the following sections approximate (ApEn), sample
(SampEn), fuzzy (FuzzyEn) and fuzzy measure entropy
(FuzzyMEn) are described in detail. They are built on each
other and ordered by increasing complexity. The number
of parameters increases from three for ApEn to six for
FuzzyMEn, with the basic parameters staying the same
and being extended by new ones in each step. Afterwards,
the challenge of parameter selection and the tests con-
ducted for the parameters to the different entropy types
are described. Finally, the data used for all performed tests
are briefly described.

Approximate entropy
The main idea behind approximate entropy is that a
sequence is regular if a subsequence and an expansion of
the subsequence are similar. It was developed by Pincus
[8] and is calculated the following way.
Given a sample sequence {u1, . . . , uN }, a template

length m and a threshold value r, the sequence is first
split into overlapping sequences {Xm

1 , . . . ,X
m
N−m+1} of

length m, with Xm
i := {ui, . . . , ui+m−1}. For example, for

the input sequence {1, 2, 3, 4, 5} the overlapping
sequences are {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}} for m = 3.

Mayer et al. BMC Bioinformatics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2105/15/S6/S2

Page 2 of 11



Next, define Cm
i as the number of j = 1, . . . , N − m + 1,

for which d(Xm
i ,X

m
j ) < r , where d(Xm

i ,X
m
j ) is the Cheby-

shev distance, i.e., the maximum distance between two ele-
ments of Xm

i and Xm
j . Constructing the same sequences,

but with template length m + 1, yields Cm+1
i . Then, φm

and φm+1 are defined as:

φm :=
1

N − m + 1

N−m+1∑
i=1

ln
(

Cm
i

N − m + 1

)
, and (1)

φm+1 :=
1

N − m

N−m∑
i=1

ln
(

Cm+1
i

N − m

)
. (2)

The approximate entropy is then defined as
ApEn (m, 4) := lim

N→∞
(φm − φm+1), which can be esti-

mated by ApEn (m, r,N) := φm − φm+1 .

Sample entropy
Richman and Moorman showed in [23] that approximate
entropy is biased towards regularity. Thus, they modified
it to sample entropy. The main difference between the two
is that sample entropy does not count self-matches, and
only compares the first N − m subsequences instead of all
N − m + 1, so the same amount of subsequences are used
in jm and jm+1 [23]. It is calculated in the following way.
Given a sample sequence {u1, . . . , uN}, a template length

m, and a threshold value r, first the overlapping sequences,
{Xm

1 , . . . ,X
m
N−m} are constructed as for ApEn. As opposed

to ApEn, Cm
i is now defined as the number of j = 1, . . . ,

N − m, for which d(Xm
i ,X

m
j ) < r where i ≠ j, where

d(Xm
i ,X

m
j ) is again the Chebyshev distance. Applying the

same for template length m + 1 results in:

φm :=
1

N − m

N−m∑
i=1

Cm
i

N − m − 1
, and (3)

φm+1 :=
1

N − m

N−m∑
i=1

Cm+1
i

N − m − 1
. (4)

Sample entropy is then defined as
SampEn(m, r) := lim

N→∞
(lnφm − lnφm+1), which can be

estimated by SampEn(m, r,N) := ln φm − lnφm+1.

Fuzzy entropy
ApEn and SampEn are very sensitive with respect to the
threshold parameter r. They show, on one hand, a very
abrupt behavior, and on the other hand less significance
for small r, as was discussed in [9] and can be seen in
figure 1. To soften these effects, Chen et al. developed
fuzzy entropy, which uses a fuzzy membership function

instead of the Heaviside function [9]. FuzzyEn is calculated
as follows.
Let m and r again be the template length and the

threshold value and n a weight for the fuzzy membership
function. Sequences {Xm

1 , . . . ,X
m
N−m+1} are defined as for

ApEn and SampEn from an input sequence {u1, . . . , uN},
with Xm

i := {ui, . . . , ui+m−1}. Next, these sequences are

transformed into sequences, {Xm
1 , . . . ,X

m
N−m+1}, where

X
m
i := {ui − u0i, . . . , ui+m−1 − u0i} and u0i is the mean

value of Xm
i , i.e.,

u0i :=
m−1∑
j=0

ui+j
m

. (5)

Next, using a fuzzy membership function x ® µ(x, n, r)
a membership matrix Dm is calculated, where each ele-

ment is defined as Dm
i,j := μ(d(X

m
i ,X

m
j ), n, r) . According

to Chen et al. [9], fuzzy membership functions must be
continuous and convex. The first property guarantees
only slow similarity changes, and by the second condition
self-similarity is a maximum of the function. For all tests
conducted in this study, x → e−(x/r)n was chosen as the
fuzzy membership function as in [9]. For n ® ∞ this
fuzzy membership function converges to the Heaviside
function. These steps are repeated for template length
m + 1 to get Dm+1. Consequently, φm and φm+1 are
calculated the following way:

φm :=
1

N − m

N−m∑
i=1

N−m∑
j=1,j�=i

Dm
i,j

N − m − 1
, and (6)

φm+1 :=
1

N − m

N−m∑
i=1

N−m∑
j=1,j�=i

Dm+1
i,j

N − m − 1
. (7)

Fuzzy entropy is defined as FuzzyEn(m, r,n) := lim
N→∞

(lnφm − lnφm+1)

and can be estimated by FuzzyEn(m, r,n,N) := lnφm − lnφm+1.

Fuzzy measure entropy
Liu et al. proposed adding a function for global similarity
to the fuzzy entropy and called the combination fuzzy
measure entropy [24]. It can be calculated as follows.
Given a data sequence {u1, . . . , uN}, a template length m,

two threshold values rL and rF, and two weighting para-
meters nL and nF (rL and nL correspond to the local
term and rF and nF to the global one), a sequence
{Xm

1 , . . . ,X
m
N−m+1} is constructed like before. In the

next step, it is transformed into a local sequence
{XLm1 , . . . ,XLmN−m+1} and a global sequence,

{XFm1 , . . . ,XFmN−m+1} , with XLmi := Xm
i − u0i where u0i is

defined as in (5) and XFmi := Xm
i − umean, and umean is the

mean value of the complete data sequence {u1, . . . , uN}.
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Using the local and the global parameters for the
fuzzy membership functions, the matrices DLm and DFM

are defined as DLmi,j := μ(d(XLmi ,XL
m
j ), nL, rL) and

DFmi,j := μ(d(XFmi ,XF
m
j ), nF , rF) . Afterwards, all these steps

are repeated for template length m + 1 to get DLm+1 and
DFm+1. Finally, φm

L ,φ
m
F ,φ

m+1
L and φm+1

F are defined as:

φm
L :=

1
N − m

N−m∑
i=1

N−m∑
j=1,j�=i

DLmi,j
N − m − 1

, (8)

φm
F :

1
N − m

N−m∑
i=1

N−m∑
j=1,j�=i

DFmi,j
N − m − 1

, (9)

φm+1
L :=

1
N − m

N−m∑
i=1

N−m∑
j=1,j�=i

DLm+1
i,j

N − m − 1
, and (10)

φm+1
F :=

1
N − m

N−m∑
i=1

N−m∑
j=1,j�=i

DFm+1
i,j

N − m − 1
. (11)

Fuzzy measure entropy is then defined as FuzzyMEn

(m, rL, rF, nL, nF) := lim
N→∞

(lnφm
L − lnφm+1

L + lnφm
F − lnφm+1

F ),

which can be estimated by
FuzzyMEn(m, rL, rF , nL, nF, N) := (lnφm

L − lnφm+1
L + lnφm

F − lnφm+1
F ) .

Parameter selection
As one can see in the description of each entropy, the
various entropy types have three, four or six parameters.
Thus, there are many possible combinations to choose
from. The parameters which are varied in the test cases,

their ranges and values mentioned in the literature, and
the choice of certain fixed parameters are described here.
The most common choice for the template length is

m = 2, as it was recommended by Pincus and Goldber-
ger for ApEn [7], by Yentes et. al for SampEn [12], and
confirmed by other studies, e.g. [20]. A false nearest
neighbor method is also sometimes used, but according
to Chon et al. the standard choice leads to the statisti-
cally best solutions for ApEn for human heart rate varia-
bility data [25]. In [9,24], the template length is set to m
= 2 for other entropy types as well. For comparability,
this value was used for all tests.
Some publications describe a sensitivity of the entro-

pies to the data length N [1,6,8]. Therefore, the signifi-
cance of the entropies calculated of parts of the heart
rate variability data has been tested with increasing data
set size.
For the threshold parameter r, Pincus suggested in [8]

to choose a value between 0.1 s and 0.25 s, where s is
the sample standard deviation of the data sequence. This
is also the standard range in most publications, with the
most common choice of r = 0.2 s [17,21,23,24,26]. To
examine threshold parameters in the standard range,
they were tested with heart rate variability data.
In [19,27], the so called flip-flop effect is described,

where for some values of the threshold value r a signal has
a higher entropy compared to another and for other
choices of r a lower one. This is also shown in [21] for
heart rate variability data. To test for this effect, various
entropies of signals from one database were calculated
with parameters inside the standard range. Lu et al. also
showed this effect in [26]. Therefore, they proposed choos-
ing r ∈ [0.1 · s, 1.0 · s] for ApEn in such a way as to

Figure 1 Entropy values for different threshold values (Flip-flop effect). Entropy values for different threshold values r = rL = rF ∈ [0.1s,
0.25s] for pathological (square markers) and non-pathological (diamond markers) data sets, parameters: m = 2, n = nL = 3, nF = 2, databases:
chf2 vs. np (A) and mit vs. np (B)
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maximize the entropy value. Since finding a maximum is
computationally very expensive, Chon et al. created in [25]
an empirical formula to calculate an r, hereinafter called
rChon, which approximates a maximizing r. For m = 2, it
can be formulated as:

rChon := (−0.036 + 0.26
√

σ1/σ2)/
4
√
N/1000, (12)

where s1 is the standard deviation of the distances in the
data sequence, i.e., the standard deviation of {(u1 − u2), . . .
, (uN−1 − uN)}, and s2 the standard deviation of the com-
plete data sequence. This formula was derived from non-
physiological data and Liu et al. showed in [17] that it is
not always a good approximation of the maximizing r, but
actually leads to more significant results than the maxi-
mizing r, when applied to heart rate variability data.
Regarding fuzzy function parameters, Chen et al. [9]

used n = 2 and r = 0.2 s for test signals. They described
in [9] that for a larger n, the closer data points are
weighted more strongly. Liu et al. [24] used the weighting
factors nL = 3, nF = 2 and rL = rF = 0.2s for heart rate
variability analysis. Their choices for nL and nF were
given without any motivation.

Test cases
To get further knowledge of the parameters, heart rate
variability data were used to compare different choices
of rL, rF and n, nL and nF with respect to the resulting
significance of the statistical tests comparing pathologi-
cal and normal cases.
The following test cases using the data described in the

Data section have been conducted to answer the research
questions stated in the Background section and to support
an “optimal” parameter selection for all entropy types for
heart rate variability data. For each research question, one
test case has been designed (except for the third, which is
covered in two test cases: one for each entropy type under
consideration). All tests have been conducted consecu-
tively. Fixed parameters have been taken from literature or
based on the outcomes of preceding tests.
Test case 1
Variation of the threshold values r = rL = rF within the
standard interval [0.1 s, 0.25 s] [8] to show its influence
on the entropy values and the aforementioned flip-flop
effect [21,27]. Fixed parameters were m = 2, n = nL = 3
and nF = 2 [7,24]. For data length N, the data length of the
shortest RR interval sequence of the available data N =
1126 sets was used.
Test case 2
Variation of the data length N = x · 110 with x ∈ [1, 10] to
show its influence on the significance. Maximum N was
1100 due to the length of the available test data. Fixed
parameters were m = 2, n = nL = 3, nF = 2 and r = rChon
or r = 0.2 s [7,17,21,23-26].

Test case 3
Variation of the weighting factor n for FuzzyEn in the
interval [1, 6] to show its influence on the significance.
Fixed parameters were m = 2 and r = rChon or r = 0.2 s
[7,17,21,23-26]. N = 1000 was chosen based on the
results of test case 2.
Test case 4
Variation of the weighting factors nL and nF for Fuzzy-
MEn in the interval [1, 6] to show their influence on the
significance. Fixed parameters were m = 2 and rL = rF =
rChon or rL = rF = 0.2 s [7,17,21,23-26]. N = 1000 was
chosen based on the results of test case 2.
Test case 5
Variation of the threshold values rL and rF for Fuzzy-
MEn in an interval of [0.25 · rChon, 6 · rChon] and in an
interval of [0.1 s, 0.25 s][8] to show their influence on
the significance. The parameter m = 2 was fixed [7]. N
= 1000, nL and nF were chosen based on the results of
the previous tests.
In order to test for their statistical significance, the calcu-

lated entropies were first tested for normality using Lillie-
fors’ composite goodness-of-fit test [28]. If this test was
positive for all results within a subset of a test case (i.e.,
certain database and/or choice for r), the p-value was cal-
culated with a two sample t-test, and otherwise a Wilcoxon
rank sum test was performed. To ensure comparability, the
same statistical test was used for each subset of a test case.
Since statistical tests used in this work are based on the

same null hypothesis, the same subject groups, the same
endpoints and only slight variations of the analysis
method, interaction of the observed results is not only
possible, but highly probable. On the other hand, p-value
adjustments such as the commonly used Bonferroni cor-
rection assume uncorrelated endpoints and are therefore
considered inappropriate for the tasks in this work [29].
Besides, the aim of this work is not to test whether there
is a difference between groups, but to investigate the abil-
ity of varied methods to detect those differences.
Due to the high computational complexity of the tests

conducted (e.g., the calculation of the variation of the
weighting factors nL and nF for FuzzyMEn takes several
hours for only one r and one comparison of databases),
the authors had to refrain from more robust randomized
testing strategies (i.e., the permutation of the original
data), since the computation time would multiply by at
least a thousand times.

Data
All data used for the described tests have been taken
from http://Physionet.org[30], a free-access, on-line
archive of physiological signals. They are described in
detail in this section.
To create a control group all databases described as

non-pathological were combined into one database,
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afterwards called np. This database contains the Normal
Sinus Rhythm RR Interval Database, which consists of
the beat annotations of 54 long-term ECG recordings,
digitized at 128 samples per second, of subjects with
normal sinus rhythm (30 men, aged 28.5 to 76, and
24 women, aged 58 to 73). Furthermore, it includes the
MIT-BIH Normal Sinus Rhythm Database, which con-
sists of 18 long-term recordings (5 men, aged 26 to 45,
and 13 women, aged 20 to 50) digitized at 128 samples
per second. The Fantasia Database of 120-minute
recordings of twenty young (10 men and 10 women;
21 - 34 years old) and twenty elderly (10 men and 10
women; 68 - 85 years old) healthy subjects with ECG
digitized at 250 Hz was also used [31]. The record
“fantasia/f1o09” had to be excluded due to its high num-
ber of supraventricular premature beats. This results in
a total database size of 111 recordings. RR intervals
greater than 2.5 seconds were excluded to ignore
artifacts.
Two databases were used to search for pathological

effects. One was the Congestive Heart Failure RR Inter-
val Database, afterwards referred to as chf2, which
includes 29 long-term ECG recordings, with a sampling
frequency of 128 Hz, of subjects aged 34 to 79 (8 men
and 2 women; gender not known for the remaining sub-
jects) with congestive heart failure (NYHA classes I, II,
and III) [32].
The second one was the MIT-BIH Arrhythmia Data-

base, afterwards called mit, which contains 48 half-hour
recordings, sampled with a frequency of 360 Hz, from 47
subjects (25 men aged 32 to 89 years and 22 women aged
23 to 89 years) [33]. It contains a set of randomly chosen
signals and 25 signals especially chosen to include exam-
ples of uncommon but clinically important arrhythmias
recorded at the BIH Arrhythmia Laboratory [33].
The two databases chf2 and mit were always evaluated

separately to keep the results as homogeneous as possi-
ble and to avoid the mutual neutralization of ab- nor-
malities. To ensure comparability, the data length N was

equal for all recordings. Longer recordings were cropped
at the beginning and the end in equal shares.
In a way, this work can be considered as a pilot study,

as only previously recorded data are used. Furthermore,
the findings of this work will be incorporated in follow-
up studies.

Results
The following sections show the results of our tests,
which are described in the Test cases section above. An
overview of these results is given in Table 1.
The results were tested for normality using Lilliefors’

composite goodness-of-fit test. Throughout the whole
test case 2, which combines results of two different
ways to determine r (see figure 2), data were either nor-
mally or not normally distributed. Hence, entropy values
were compared using the Wilcoxon rank sum test.
Entropies calculated with r as multiple of s were distrib-
uted normally in our test scenarios and could therefore
be compared using the two sample t-test (as in figures 3
(B, D), 4 (B, D) and 5 (B, D)). Entropy values derived
using r as multiple of rChon, on the other hand, were not
normally distributed and hence compared using Wilcox-
on’s rank sum test (as in figures 3 (A, C), 4 (A, C) and 5
(A, C)). Only findings of the same statistical test are
combined in the following sections.
Figure 1 corresponds to test case 1 and shows the effect

of different threshold values on the entropy values. One of
the defining characteristics of FuzzyEn and FuzzyMEn,
their relative insensitivity to changes in r, is clearly visible.
The flip-flop effect can be observed for ApEn. For the chf2
database, entropy values are higher for pathological data
where r <0.15 s, whereas they are lower for r >0.15 s.
This behavior is reversed for the mit database, with lower
entropy values for pathological data for r <0.18 s and
higher entropy values for pathological data for r >0.18 s.
The results for test case 2, analyzing the sensitivity of

the entropy types to the data length are represented in
figure 2. The more data points evaluated, the higher the

Table 1 Summary of the best results achieved for each test case.

Test case
number

Test case description Results with

r = rChon r = 0.2 s

1 Variation of the threshold values r = rL = rF within the standard interval
[0.1 s, 0.25 s]

Not applicable Flip-flop effect verified for ApEn but not
for other entropies

2 Variation of the data length N = x · 110 with x ∈ [1,10] Significant with
N > 1000

Significant with N > 200

3 Variation of the weighting factor n for FuzzyEn in the interval [1,6] Significant with
n < 3

Significant with n = 1

4 Variation of the weighting factors nL and nF for FuzzyMEn in the interval
[1,6]

Best results with
nL = 2, nF = 1

Best results with
nL = 1, nF = 3

5 Variation of rL and rF for FuzzyMEn in an interval of [0.25 · rChon, 6 · rChon]
and in an interval of [0.1s, 0.25s]

inconclusive
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Figure 2 Influence of data length on significance. The influence of the data length on the significance of the entropy types, parameters: m =
2, r = rL = rF = rChon or r = rL = rF = 0.2s, n = nL = 3, nF = 2, databases: chf2 vs. np (A) and mit vs. np (B)

Figure 3 Significance of FuzzyEn for different choices of n. Significance of FuzzyEn for different choices of n for r = rChon (A, C) and r = 0.2s
(B, D); parameters: m = 2, N = 1000, databases: chf2 vs. np (A, B) and mit vs. np (C, D)
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separation between pathological and non-pathological data.
When using the threshold value r = 0.2 s, significance is
already reached with N ≥ 200 data points, whereas with r =
rChon more data (N ≥ 1000) are needed before significance
is reached. Comparing the different methods when using
r = 0.2 s, one can see that they only differ when N is very
small. With higher N , their behavior converges.
Figure 3 presents the results of test case 3, showing

that the results become insignificant for n >3 with r =
rChon, and for n >1 with r = 0.2 s in the mit database
(C, D). The increasing p-values are below the signifi-
cance level (p <0.05) for the chf2 database within the
observed range of n (A, B).
Figure 4, corresponding to test case 4, shows a higher

significance for nL ≤ 2 and all values of nF (A), or in the
case of r = 0.2 s for nF ∈ [2, 3.5] (B). In figure 4 (C and
D) the situation is different: the best results are achieved
with nF < 1.5 and nL ≥ 2 for r = rChon in case C, whereas
for r = 0.2 s (D) the best performance is reached with
nL < 1.5 and any nF.

The results for test case 5 are shown in figure 5. They
represent the ability of FuzzyMEn to differentiate
between chf2 and np (A and B) and mit and np (C and
D) for different choices of the threshold values rF and rL,
when chosen as multiples of rChon in the range of [0.25 ·
rChon, 6 · rChon] (A, C), and calculated according to the
results of test case 4 with nL = 2 and nF = 1, or inside the
standard range of [0.1 s, 0.25 s] (B, D), calculated with
nL = 1 and nF = 3. In (A), the best results are achieved
with rL <

∼

1 · rChon or rF <
∼

1 · rChon , whereas they have
to be greater than or equal to 1 · rChon in (C) for good
performance. In (B), rL <0.12 s or rL >

∼

0.2σ yield signifi-
cant results, however rF does not matter that much. In
contrast, the best performance in (D) is achieved with
rF >

∼

0.18σ and rL∈ [0.14 s, 0.22 s].

Discussion
As a summary of the following discussion of the previously
presented results, the combinations of parameters which
yielded the best results are listed in Table 2.

Figure 4 Significance of FuzzyMEn for different choices of nL and nF. Significance of FuzzyMEn for different choices of nL and nF for rL = rF
= rChon (A, C) and rL = rF = 0.2 s (B, D); parameters: m = 2, N = 1000, databases: chf2 vs. np (A, B) and mit vs. np (C, D)
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Some of the tests concerning the parameter selection
showed no clear results. A couple of evaluations
revealed contradicting results depending on the database
(chf2 vs. mit ) or on the chosen parameters (e.g., r = rL
= rF = rChon vs. r = rL = rF = 0.2s). The latter is easy to
overcome by choosing a different set of parameters
based on the choice of the threshold value r. However, a
compromise must be found in order to find parameters
suitable for both databases.
One of the hardest difficulties lies in the choice of the

threshold value r due to the flip-flop effect, i.e., for some
parameters one data set has a higher entropy compared
to another, but this order is reversed for different para-
meter choices [17,27]. This can occur for simple signals,
but also when analyzing heart rate variability data, as in
figure 1. This leads to difficulties with the interpretation
of the entropy, i.e., the direct assignment of entropy
values to pathological or non-pathological data without a
given r. In our tests, the effect occurred for ApEn, but it

is also reported to occur for SampEn and FuzzyEn as well
by Boskovic et al. [27]. The flip-flop effect does not allow
us to make a clear statement, as in [7-9,17], that a higher
entropy corresponds to a higher irregularity. Since this
effect can happen for all different entropy values [27],
they should not be seen as a direct measure of regularity,
but rather as an indicator of differences in regularity with
regard to certain time periods.
Compared to the threshold value, the data length N

seems to have a smaller effect on the ability of the entropy
measures to differentiate pathological from non-pathologi-
cal data sets. Generally, a larger N leads to a higher prob-
ability of significance. If possible, the data length N should
be longer than 200 data points when using r = 0.2 s. This
finding is consistent with previous studies, e.g. [12]. Sur-
prisingly, it should even exceed a length of 1000 data
points when using r = rChon, assuming a continuing trend
in figure 2. Due to the length of the available test data, the
range had to be restricted for this test. In case of HRV

Figure 5 Significance of FuzzyMEn for different choices of rL and rF. Significance of FuzzyMEn for different choices of rL and rF in an interval
of [0.25 · rChon; 6 · rChon] with nL = 2, nF = 1 (A, C) and in an interval of [0.1s, 0.25s] with nL = 1, nF = 3 (B, D); parameters: m = 2, N = 1000,
databases: chf2 vs. np (A, B) and mit vs. np (C, D)
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data, N is the number of recorded heartbeats and therefore
proportional to the duration of the recording. Thus, to
increase N, longer measurements are necessary. The Task
Force of The European Society of Cardiology and The
North American Society of Pacing and Electrophysiology
[4] recommends a duration of five minutes for short time
recordings, which would result in 300 data points at an
average heart rate of 60 beats per second. This would be
sufficient when using r = 0.2 s, but not for r = rChon.
These considerations should be kept in mind when dealing
with HRV data.
Due to the different behavior when varying n, nL and nF

given different threshold parameters r = rL = rF = rChon
and r = rL = rF = 0.2 s, the parameters n, nF and nL have
been chosen independently for the different threshold
values. This is no constraint to the method, since the
choice of r is known beforehand anyway (and is not based
on the potentially unknown medical condition of the sub-
ject). The values nL = 2 and nF = 1 for rL = rF = rChon, and
nL = 1 and nF = 3 for rL = rF = 0.2 s showed better results
than nL= 3, nF = 2 as proposed by Liu et al. in [24]. Unsur-
prisingly, similar values were found for n, as n for FuzzyEn
equals nL for FuzzyMEn. For consistency, n = nL = 2 for
r = rChon and n = nL = 1 for r = 0.2 s are recommended.
The tests concerning rF and rL showed that there is no

optimal choice, since the results in figure 5 (A) and (C)
as well as (B) and (D) contradict each other. Neverthe-
less, both rF = rL = rChon and rF = rL = 0.2 s, as
described in the literature [9,24,25], are the most rea-
sonable compromise between figure 5 (A) and (C), and
(B) and (D), respectively.
Finally, a number of important limitations of this study

need to be considered. First, this study is limited to pre-
viously recorded signals of only two different cardiac dis-
eases due to the availability of data. As already mentioned
in the Data section, a separate evaluation is warranted, to
avoid the mutual neutralization of abnormalities. Further-
more, the template length was fixed to m = 2 for all calcu-
lations, as the number of possible variations of parameters
would get too high otherwise and m = 2 seems to be a rea-
sonable choice in all investigated literature, e.g., [8]. In [34]
it was reported that spikes due to recording errors in heart
rate variability data can disturb ApEn and SampEn. No
tests were done to examine this behavior for the included
entropies. Finally, the study did not evaluate the depen-
dency of the entropies on age and gender as reported in
literature [35,36].

Conclusions
The results of the presented study clearly stress the
need for further investigations of signal entropy for
heart rate variability data. Given the wide range of dif-
ferent medical conditions of subjects, the assortment of
available methods to calculate entropy, and their custo-
mizability with up to six degrees of freedom, it is almost
impossible to cover all combinations in a single study.
Future work will therefore be focused on overcoming
the limitations of the presented work, i.e., extending the
evaluations to other cardiac diseases, the variation of the
template length m, investigating the robustness with
respect to recording errors, and the relation of the para-
meter choice to age and gender.
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