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Abstract

Background: Time-course gene expression experiments are useful tools for exploring biological processes. In this
type of experiments, gene expression changes are monitored along time. Unfortunately, replication of time series is
still costly and usually long time course do not have replicates. Many approaches have been proposed to deal with
this data structure, but none of them in the field of pathway analysis. Pathway analyses have acquired great
relevance for helping the interpretation of gene expression data. Several methods have been proposed to this aim:
from the classical enrichment to the more complex topological analysis that gains power from the topology of the
pathway. None of them were devised to identify temporal variations in time course data.

Results: Here we present timeClip, a topology based pathway analysis specifically tailored to long time series
without replicates. timeClip combines dimension reduction techniques and graph decomposition theory to
explore and identify the portion of pathways that is most time-dependent. In the first step, timeClip selects the
time-dependent pathways; in the second step, the most time dependent portions of these pathways are
highlighted. We used timeClip on simulated data and on a benchmark dataset regarding mouse muscle
regeneration model. Our approach shows good performance on different simulated settings. On the real dataset,
we identify 76 time-dependent pathways, most of which known to be involved in the regeneration process.
Focusing on the ‘mTOR signaling pathway’ we highlight the timing of key processes of the muscle regeneration:
from the early pathway activation through growth factor signals to the late burst of protein production needed for
the fiber regeneration.

Conclusions: timeClip represents a new improvement in the field of time-dependent pathway analysis. It
allows to isolate and dissect pathways characterized by time-dependent components. Furthermore, using
timeClip on a mouse muscle regeneration dataset we were able to characterize the process of muscle fiber
regeneration with its correct timing.

Background
Time course gene expression experiments are widely
used to study the dynamics of biological processes.
Usually, the main goal of such experiments is to identify
genes modulated along a biological process or after a
system perturbation (such as drug treatments or genetic
modifications). However, time course data are costly
and usually long time series have few or no replicates.
In this context a differentially expressed gene can be

defined as a gene with the expression profile changing
significantly along time and/or across multiple condi-
tions. Several statistical models have been proposed to
account for clusters and differential expression in the
contest of time series with [1-18] and without replicates
[10,19-21], but none of them were proposed in the con-
text of pathway analysis. Pathway analysis has acquired
great relevance in the last years especially for the ability
to increase interpretability of gene expression results.
Expression experiments typically provide lists of differ-
entially expressed genes (DEGs) that represent the start-
ing point for result interpretation. This step is not trivial
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and remains challenging for this type of analysis. The
grouping of genes into functionally related entities (such
as pathways) is of great help in the interpretation of the
results. Several methods have been proposed to this
aim, based on very different statistical tests and null
hypotheses [22,23]. Broadly speaking, they can be
divided into the classical enrichment analysis [24-28],
working on gene lists selected through a gene-level test,
and the novel global and multivariate approaches
[29-37], that define a model for the whole gene set (see
[22,38-40] for a comprehensive reviews and comparative
analysis). The latter can be further divided into ‘topolo-
gical’ and ‘non-topological’ methods according to their
ability to gain power from the topology of the pathway
[25,35,36,41-43].
A pathway is a complex structure comprising chemical

compounds mediating interactions and different types of
gene groups (e.g. protein complexes or gene families)
that are usually represented as single nodes but whose
measures are not available using gene expression data.
However, after appropriate biologically-driven conver-
sion [44,45], a biological pathway can be represented as
a graph where genes and their interactions are, respec-
tively, nodes and edges of the graph.
Taking advantage of the structure of the graph, Massa

et al. [35] used Gaussian graphical model theory to test
both differences in mean and in covariance matrices
between two experimental conditions. In particular, gra-
phical models are useful to decompose the overall graph
(obtained from a pathway) into smaller components (cli-
ques), that can be explored and tested in detail. Martini et
al. [36] proposed an extension of this method, called
CliPPER, based on a two-step empirical approach. In the
first step, it selects pathways with covariance matrices
and/or means significantly different between experimental
conditions dealing with the p >> n case; in the second
step, it identifies the sub-paths (called signal paths) most
associated with the phenotype.
Pathway analysis is mainly tailored to two-groups

comparisons and few efforts have been dedicated to the
time course design. Here, we propose a modification of
[36], called timeClip, to deal with long time course
data without replicates. Specifically, timeClip com-
bines principal component analysis, regression models
and graph decomposition to explore temporal variations
across and within pathways. Moreover, timeClip
implements an easy and effective visualization of the
dynamics of the pathways.
On simulated datasets, timeClip shows good perfor-

mances in term of power, specificity and sensitivity.
Using real data on mouse muscle regeneration [46], we
obtain excellent results in agreement with the scientific
literature.

Method
Pathway annotation
A critical step in the field of topology based pathway ana-
lyses is the availability and the quality of the pathway
topology. Our group has recently developed graphite a
Bioconductor package for the storage, interpretation and
conversion of pathway topology to gene-only networks
[44]. graphite discriminates between different types of
biological gene groups and propagates gene connections
through chemical compounds. Specifically, protein com-
plexes are expanded into a clique (all proteins connected
to the others), while the gene families are expanded with-
out connections among them; see [44,45] for more details.
The current version of graphite Bioconductor package
is limited to human, so here we build a dedicated
graphite package for mouse KEGG pathways. This
package is available at http://romualdi.bio.unipd.it/
wp-uploads/2013/10/graphite.mmusculus_0.99.2.tar.gz.

timeClip: general approach
A pathway is composed by multiple genes so to reduce
the dimension of a whole or of a portion of a pathway,
we used principal component analysis. Then the first
principal component is explored for temporal variation.
A vast amount of techniques exist for analyzing regu-
larly sampled time series. Unfortunately, the irregular
sampling of the values (a common practice in biology)
makes direct use of such estimation techniques impossi-
ble. To avoid the well known biases associated with the
most common approach for irregularly sampled time
series based on transforming unevenly-spaced data into
equally spaced observations using some form of interpo-
lation, here we propose to use a regression model com-
bining a polynomial trend and a continuous-time
Gaussian autoregressive process of order 1 (AR(1)).
Then, timeClip resembles the two-steps approach of
CliPPER. In the first step, the whole pathway is
explored for its temporal variation. If the pathway is
defined as time-dependent, in the second step, timeClip
decomposes the pathway into a junction tree and high-
lights the portion mostly dependent on time. A general
schema of the approach is summarized in Figure 1.
Step 1: exploring the whole pathway
Let Xn × t be the normalized log transformed gene
expression matrix with genes on the rows and experi-

ments (equal to time points t) on the columns. Let XP
p×t

the sub-matrix of genes belonging to pathway P. Path-
way P has p genes. Then, on the transpose of XP, XP’,
we perform principal component analysis (PCA). We
used both the classical (R package stats) and the robust

(rrcov R package) version of PCA. Let ZP
p×t be the scores

matrix and LP
p×t the loadings matrix. We call ZP

1, · · · , ZP
p
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the p principal components. In this way, the first PCs
summarize the temporal variation of the genes in path-
way P (if present). Thus, from now on we will indicate ZP

i

as ZP
i (t). A similar approach was recently proposed by

[15] (PCA-maSigFun). PCA-maSigFun uses principal
component analysis to identify temporally-homogeneous
groups of gene within the pathway.
Then, for irregularly sampled time series we assume that

our irregularly sampled signal ZP
i (t) can be decomposed

as Z(t) = p(t) + ∈(t), where p(t) is a deterministic function,
hereafter called “trend”, and ∈(t) is the realization of a

stationary stochastic process with mean zero. Extensive
exploratory analysis suggests that a reasonable choice for
the trend component is a polynomial of degree 2 in t, i.e.,

p(t) = β0 + β1t + β2t2

with b1 capturing existing temporal behaviors of ZP
1(t)

and b2 correcting for potential non linearities.
Moreover, we assume that ∈(t) follows a continuous-

time Gaussian autoregressive process of order 1. The
model is fitted using generalized least squared (as imple-
mented in nlme R package). The representative p - value

Figure 1 timeClip. Global overview of timeClip approach.
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of pathway P, pP, is then taken to be the p - value of the
test of nullity of b1 (obtained by a t-test as implemented in
the gls function of the nlme R package). Bonferroni cor-
rection is used to adjust p - values for multiple tests.
We evaluated the possibility to fit a polynomial regres-

sion not only on the first PC, but also on few additional
ZP

i , with i = 2, 3. However, we did not find significant
improvements in the final list of significant time-dependent
pathways (data not shown).
Step 2: decomposing the pathway
Pathways declared as time-dependent in step 1 are then
moralized, triangulated and decomposed into a junction
tree as described in [36].
Briefly, moralization inserts an undirected edge between

two nodes that have a child in common and then elimi-
nates directions on the edges; triangulation inserts edges
in the moralized graph so that in the moralized graph all
cycles of size ≥ 4 have chords, where a chord is defined as
an edge connecting two non-adjacent nodes of a cycle. A
clique in the triangulated graph is a complete subgraphs
having all its vertices joined by an edge while a junction
tree construction is a hyper-tree having cliques as nodes
and satisfying the running intersection property according
to which, for any cliques C1 and C2 in the tree, every cli-
que on the path connecting C1 and C2 contains C1 ∩ C2

[36,47]. For a given graph there could be more than one
junction tree. Here we force the root of the junction tree
to be in agreement with the structure of the pathway.
A clique k of pathway P, noted as CP

k (with k = 1,..., K),
is composed by a subset of genes in P, cP

k . Let Xp
ck be the

sub-matrix of X corresponding to the genes of the cli-
que CP

k . For each clique k of P we apply the same
approach as described in step 1: PCA transformation
and then a linear model with polynomial trend and
autoregressive process of order 1 on the first PCs. The
p- value of clique k in pathway P, pCP

k is given by the
p of the b1 of the polynomial regression. Finally, the
best time-dependent paths within a pathway P, hereafter
called SPj, j = 1,..., J, are identified using the relevance
measure as described in [36]. Briefly, a path is a chain of
consecutive time-dependent cliques (pCP

k
≤ 0.05) with

gaps at most of size one. Then, for each path in the
pathway a cumulative score is calculated along the path:
lower the the p – value of a clique in the path, higher
the contribution to the score, in case of gap the score is
penalized. The final score of a path is the maximum
value reached by the score along the path. Then, the
score is normalized for the path length; this quantity is
called relevance [36].
As final results, for each time-dependent pathway, we

report a list of relevant paths, ranked according to their
relevance. Currently, step 2 is the most innovative feature
of timeClip and, as far as we known, there are no
existing tools using a similar strategy.

Simulated data
As some paths may be declared time-dependent by
timeClip step 2 simply as a consequence of type I
errors in timeClip step 1, we used a simulation to
evaluate the percentage of false positives under the null
hypothesis and to estimate the statistical power in differ-
ent scenarios.
False positive rate estimation
Given a pathway P and its graph structure (G), for 1,000
runs we randomly generate a gene expression matrix Xn × t

from a multivariate normal distribution with zero mean
and variance ∑, with

∑
∈ S+(G) (where S+(G) is the set of

symmetric positive definite matrices with null elements
corresponding to the missing edges of G). In this case,
gene expression profiles are time independent. Then, for
each run we calculate pP (either for the case of irregularly
and regularly sampled time points, see Section Step 1:
exploring the whole pathway). Under this scenario, at the
nominal level a = 0.05 we expect a number of rejections
around 5%. We repeat the simulation for different values
of n (n = 5, 10, 15, 20, 25, 30) and t (t = 5, 10, 15, 20, 30).
Power estimation
In order to be sure that the model were able to identify
time-dependency coming from different models, we simu-
late data using polynomial models, autoregressive models
of order 1 and a combination of both (polynomial models
with autocorrelated errors). Then, the power is estimated
for irregularly and regularly sampled time points.
Given a pathway P and its graph structure (G), for

1,000 runs we randomly generate a gene expression
matrix X(n − s) × t from a multivariate normal distribution
with zero mean and variance ∑ with

∑
∈ S+(G).

Then, the expression profiles of the remaining s genes,
with s ≤ n are simulated to have different degree of
time-dependency. Specifically, we use polynomial models
(Equation 1), autoregressive models of order 1 (Equation
2, where ∈* is a white noise) and the combination of
both (Equation 3, where ∈ an AR(1)).

xs(t) = α0 + α1t + α2t2 + ε∗ (1)

xs(t) = ϕ0 + ϕ1xs(t − 1) + ε∗ (2)

xs(t) = α0 + α1t + α2t2 + ϕ1εs(t − 1) (3)

The coefficients a* are independently generated from a U
(−5, 5), and �i are generated so as to achieve stationarity. In
this way, we simulate expression profiles with different
degrees of temporal variations. Then, for each run we cal-
culate pP (see Section Step 1: exploring the whole pathway).
Under this scenario, the number of rejection estimates the
statistical power. We repeat the simulation for different
combinations of �, n, s and t.
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Real data: Muscle regeneration model
The benchmark dataset used [46] (GSE469) follows
mouse muscle regeneration after intra-muscluar injec-
tion of cardiotoxin. Regeneration process is followed for
27 unevenly spaced time-points with only two technical
replicates for each time-point. Expression data were pro-
duced using single channel Affimetrix microarrays. The
probes in the platform were annotated with EntrezGene
custom CDF (version 14) [48] and data was normalized
using the robust multi array analysis (rma) and quantile
normalization. Then, technical replicates were averaged
to get one measure for every time-point.

Implementation and Visualization: the wheel of time
timeClip is implemented as an R package available from
the authors. The package allows to analyze equally and
non-equally spaced time series according to the user set-
ting. To get better insights into the temporal activation of
the different portions of the pathway, we develop a new
way of visualization using Cytoscape software [49] and
Rcytoscape Bioconductor package. The visualization,
called the wheel of time, allows visualizing pie charts
inside network nodes. For each pathway, timeClip
exports in Cytoscape the structure of the junction tree
where each time-dependent clique has a pie chart that
represents the time trend. Specifically, the pie is divided
into as many slices as the number of time points in the
dataset. Each slice in the pie is colored (from green to red)
according to the scores of first principal component: the
higher the value, the stronger the activation of a clique in
a specific time point (red color) and viceversa (green).

Results and discussion
Many biological processes need to be followed and
monitored along time. In these cases time course
designs are ideals: higher the number of time points, fin-
est the monitoring process. However, long time courses
are often characterized by small or no replicates. Here,
we present timeClip, a two-step approach to perform
topological pathway analysis for time course gene
expression data, specifically tailored to long time series
without replicates (Figure 1). In the first step, we select
pathways that show time dependency. In the second
step, the selected pathways are decomposed into cliques
and the time-dependent portions are isolated. In the
next sections, we will show the performance of time-
Clip using simulated and real datasets.

Simulations results
Two simulation strategies have been considered. The first
one was designed to estimate the number of false posi-
tives under the null hypothesis of no temporal variation,
the second to estimate the statistical power (see section
method for details).

Table 1 and Table S1 (Additional file 1) report the per-
centage of false positives obtained with different n and t
for the irregularly and regularly sampled time points,
respectively. The average false positive percentage for
each t and n is always limited to ~4-5%, with the excep-
tion of small time series (t = 5) and equally spaced time
points where it is slightly higher. Thus, we can conclude
that, in general, for long time series we have an excellent
control of type I error even with exceptionally low sam-
ple sizes.
Table 2 and Table S2 (Additional file 1) report the

number of true positives obtained with n = 30 and differ-
ent t and s for equally and not-equally spaced time points
respectively. Here, the genes with temporal variation are
simulated using different models (if s is the number of
time-dependent genes among the n of the pathway, we
simulate s/3 with polynomial, s/3 with AR(1) and s/3
with the combination of both). As expected, the power
increases with the increase of t and s: the longer the time
course and the higher the number of time dependent
genes s within the pathway, the higher the power.
Specifically, when the time course is short (t = 10 − 20)

the maximum power reaches 60%, while with long time
series t = 30 the power is above 80%. Moreover, it is worth
noting that the increase of the time dependent genes does
not affect significantly the power level. The greater impact
that the number of time points has on statistical power
with respect to the number of time-depending genes can
be explained by the presence of two steps in our strategy:
i) a data reduction step (with PCA on genes within

Table 1 Simulation results - False positives rate with
different pathway dimensions n and irregularly sampled
time points t.

t = 5 t = 10 t = 15 t = 20 t = 25 t = 30

n = 5 0.04 0.03 0.03 0.05 0.04 0.04

n = 10 0.04 0.04 0.04 0.04 0.04 0.04

n = 15 0.03 0.03 0.03 0.03 0.04 0.04

n = 20 0.04 0.03 0.05 0.04 0.03 0.04

n = 25 0.04 0.04 0.04 0.04 0.04 0.04

n = 30 0.04 0.04 0.04 0.05 0.03 0.04

Table 2 Simulation results - Power estimate in case of
n = 30 and different time course length t and time
dependent genes s.

s = 3 s = 6 s = 9 s = 21 s = 15 s = 30

t = 5 0.08 0.08 0.09 0.1 0.1 0.09

t = 10 0.53 0.47 0.47 0.47 0.44 0.45

t = 15 0.68 0.61 0.55 0.53 0.48 0.49

t = 20 0.74 0.67 0.67 0.62 0.61 0.59

t = 25 0.75 0.68 0.65 0.63 0.61 0.64

t = 30 0.84 0.77 0.82 0.84 0.81 0.84

Irregularly sampled time points.
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pathways) and ii) a model-fitting step of the reduced vari-
ables on time points. PCA is an efficient method to detect
variance components in the data. Thus, even in case of a
small number of time-dependent genes, the first PC is able
to capture the time trend when present. On the other
hand, once the trend is captured, the goodness of fit of the
regression model increases by increasing the number of
time points. The use of robust PCA does not change the
performance of the method substantially (data not shown).

Case study: muscle regeneration model
Step 1 results
In step 1 every pathway is explored for its temporal
dependence. In the benchmark dataset, we have to deal
with 27 not equally spaced times (14 of which are
equally spaced).
Comparing step 1 results for equally and not equally

spaced time-point we obtain an overlap of 70%. This
high degree of overlap makes us confident about the
reliability of our approach. We summarized the results
in the heat map of Figure 2 (values reported in Addi-
tional file 2). The heat map is obtained using the scores
of the first principal component of each time-dependent
pathway. From the unsupervised cluster analysis, we can
define 3 pathway groups characterized respectively by a
‘very early’,’early-intermediate’ and ‘intermediate-late’
activation. Pathways characterized by a very early activa-
tion like ‘Malaria’ and ‘African trypanosomiasis’ reflect
the early activation of the inflammation processes
deputed to clean injured fibers. These processes are car-
ried-out by macrophages that have a central role in the
‘Malaria’ and ‘Africa trypanosomiasis’ pathways. Macro-
phages clean up injured fiber and release growth factors
like vascular endothelial growth factor (VEGF) and
hepatocyte growth factor (HGF) [50].
In the early-intermediate pathway group, we can see

the effects of the early signal secretion: in fact, the
group contains pathways like ‘mTOR signaling pathway’,
‘VEGF signaling pathway’, ‘Insulin signaling pathway’
and other metabolic pathways like ‘Ether lipid metabo-
lism’ and ‘Citrate cycle (TCA cycle)’. Globally, these
pathways indicate that the regeneration progress has
begun.
’mTOR signaling pathway’, probably the most impor-

tant pathway in the muscle regeneration, on one side sus-
tains VEGF signaling and on the other promotes protein
production needed for clonal expansion of the myoblasts,
their growth and fusion. In particular, mTOR integrates
growth factor signaling with a variety of signals from
nutrients (amino acids metabolism activate mTOR path-
way) and cellular energy status [51]. The energy status of
the cell is indeed monitored by those pathways involved
in energy metabolism like ‘carbohydrate digestion and

adsorption’, ‘Citrate cycle (TCA cycle)’ and ‘Fatty acid
metabolism’. These processes are very important in the
regeneration process, in fact, it was demonstrated that
glycolitic metabolism is restored after three days from
myofibril formation [52].
Intermediate-late activation pathways mainly present

pathways involved in inflammatory responses like ‘B and
T Cell receptor signaling pathway’, ‘Toll-like receptor
signaling pathway’, ‘Adipocytokine signaling pathway’
and ‘Leukocyte transendothelial migration’. Recent dis-
coveries reveal complex interactions between skeletal
muscle and the immune system that regulate all phases
of the muscle regeneration [50]. Moreover in this path-
way group there is the ‘Axon guidance’ and ‘Dopaminer-
gic synapse’ pathways that are involved in nervous
impulse transduction. We can speculate that at the end
of the regenerative processes nervous system can con-
tact the restored contractile cells to ensure and maintain
their functionality.
This contains also pathways involved in signaling trans-

duction like ‘HIF-1 signaling pathway’. HIF-1 has been
recently demonstrated to be essential for skeletal muscle
regeneration in mice [53]. In fact this pathway manages a
plethora of signals and interface with pathways like
mTOR signaling pathway, PI3K-Akt signaling pathway,
MAPK signaling pathway, Citrate cycle (TCA scycle),
Calcium signaling pathway, VEGF signaling pathway and
Ubiquitin mediated proteolysis. Together with all these
pathways, ‘HIF-1 signaling pathway’ finely tune the bal-
ance between oxygen consumption.
In step 1, we are able to see only the strongest signals

and not always the pathway name alone reflects the
activity of the pathway. To tackle the complexity of the
pathway, timeClip step 2 deeply investigates the tim-
ing activation of different portion of the pathway.
Step 2 results
In the second step, we focused on the the Akt-mamma-
lian target of rapamycin (mTOR) signaling pathway. It
regulates a pletora of signals: cell growth, VEGF signaling
pathway, autophagy and its action is related to other
pathways known to be involved in the muscle regenera-
tion like Insulin signaling pathway and MAPK signaling
pathway [54].
The junction tree of mTOR signaling pathway (Figure

3A) starts with Igf1 (Insulin-like growth factor 1) as
represented in the KEGG map (Figure 3B). Within
mTOR signaling pathway we identified a total of 6 paths,
ranked by their relevance score (Table 3).
The most relevant of these paths goes from the 1st to the

21st clique and contains 16 cliques. The second and the
third path share a big portion with the first one. This big
portion goes from clique 1 to cliques 13 (blue nodes on
the junction tree - Figure 3A) and contains genes like Igf1,
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Insulin, Mapk3, Mtor and Akt that globally represent the
backbone of the pathway where the starting activating sig-
nal is regulated by Igf1. Then Pi3k, Mapk and Akt trans-
late the signal and activate Mtor that organize the

effectors. From the junction tree we can identify three dif-
ferent terminal effectors: the first, in pink, is the portion
that brings to the VEGF signaling pathway. The second, in
purple, is the regulation of autophagy and the third, in

Figure 2 Heat map of pathway PCs. Heat map colored according to the expression of the first PCs from green to red. According to the color
pattern, pathways are divided in early, early-intermediate and late-intermediate. Time is measured in hours after treatment.
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yellow, is the regulation of protein synthesis that is neces-
sary for the skeletal muscle mass recovery during regener-
ating processes [55]. In the panel C of Figure 3, we
summarized the timing of the ‘mTOR signaling pathway’
activation. With the wheel of time, we can see that the
pathway backbone is activated in the early phases. The
portion that brings to the VEGF signaling pathway is acti-
vated in the late phases. The effectors that bring to autho-
phagy are switched off at the end of the regenerative

precess while the activation of the protein synthesis begun
from the early-intermediate phases and last till the end of
the process.
Recently, as discussed before, it was demonstrated the

involvement of HIF-1 in the skeletal muscle regeneration
process [53]. We observed that the most relevant path of
HIF-1 signaling pathway is 37 cliques long underlining its
importance in this process. This path is activated by differ-
ent growth factors (Igf, Ins, Egf) and signals are translated
through Akt and mTOR towards HIF-1a/b. Hif-1a regu-
lated many processes from the oxygen balance to apopto-
sis (See Additional file 3). Such downstream effectors
confirm its importance in skeletal muscle regeneration in
accordance with results obtained from [53].

Comparison with other methods
In this section we compare timeClip step 1 results with
the methods proposed by [15]. Step 2, that is the most
innovative feature of timeClip, cannot be compared to
any existing tool. [15] proposed two different strategies.
The first one, called maSigFun, considers individual

Figure 3 Activation of the mTOR signaling pathway. Panel A. Junction tree of the mTOR signaling pathway (using graphite R package and
database KEGG). The top ranked time-dependent paths identified in timeClip step 2 are highlighted using the wheel of time visualization.
Panel B. KEGG representation of mTOR signaling pathway. Genes are colored according to the paths in panel A. Panel C. Enlargement of the
wheels of time representative of the main block of mTOR signaling pathway: from t0 to t27 (clock-wise) every slice of the pie is colored
according to the value of the clique first PC (green means no activation; red means activation).

Table 3 mTOR signaling pathway: relevant paths
identified by timeClip step 2

path starting
clique

ending
clique

lenght Relevance average
Relevance

1;21 1 21 16 102.11 6.38

1;23 1 23 13 74.39 5.72

1;16 1 16 12 67.79 5.65

1;12 1 12 5 27.43 5.49

1;4 1 4 4 26.01 6.5

25;26 25 26 1 1.9 1.9
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genes as different observations of the expression profile
of the pathway. The second approach PCA-maSigFun
uses PCA to identify groups of genes showing different
time-dependencies. maSigFun did not give any signifi-
cant time-dependent pathway using our dataset describing
skeletal muscle regeneration (p ≤ 0.05), while PCA-maSig-
Fun returned 59 significant KEGG pathways (p ≤ 0.05). 26
out of 59 (44%) pathways are in common with timeClip
step 1 results. Indeed, both the methods retrieve mTOR
signaling pathway, however PCA-maSigFun did not call
HIF signaling pathway as significant, although it seems to
be closely related to the muscle regeneration [53]. Most of
the PCA-maSigFun specific pathways (15 out of 33)
referred to metabolic processes like Inositol phosphate
methabolism, Pyruvate metabolism, Tyrosine metabolism,
Glycerolipid metabolism. The remaining pathways are
highly heterogeneous and comprise Acute myeloid leuke-
mia, Bladder cancer, Melanoma, Pancreatic cancer.

Conclusions
Pathway analysis is a useful and widely used statistical
approach to test groups of genes between two or more
biological conditions. Although many efforts have been
dedicated to implement novel gene set analysis in a
multivariate and topological contexts, few of them deal
with time course experiments. Time course experiments
are used to monitor the dynamics of biological processes
under physiological conditions or after perturbations.
In this context there is a clear trade-off between the

number of time points and the number of replicates. In
general, if the goal of the study is the identification of time-
dependency, long time course are required at the expense
of replicates; on the other hand, if the goal is the character-
ization of short term response a large number of replicates
for each time point is required to increase statistical power.
In general, there are few long time series datasets and in
our opinion this is partly due to the experimental costs but
also to the lack of effective methods to study and interpret
results. Here, we present timeClip, an empirical two-
step approach specifically tailored to long time course gene
expression data without replicates. Using simulated data
timeClip shows good performance in terms of control-
ling type I error and power. Furthermore, we successfully
identify most of the key pathways involved in the early,
middle and late phases of the skeletal muscle regeneration
process. A visualization tool has also been implemented to
tackle the dynamics of the transcriptome.

Additional material

Additional file 1: Additional tables. This file contains additional
tables mention on the text (pdf format).

Additional file 2: Figure 2 Heat map values. This file contains the
values used to create the heat map in Figure 2. In column 2 the

pathways that are called significant also by PCA-maSigFun with an
alpha <= 0.05 are marked with “*”. In addition p - values and
adjusted p - values (Bonferroni) for timeClip are show in col 3 and
4 (tab delimited format).

Additional file 3: Activation of the HIF-1 signaling pathway. KEGG
representation of HIF-1 signaling pathway. Genes of the 37 clique
long path colored in cyan.
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