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Abstract

Background: Protein complexes play important roles in biological systems such as gene regulatory networks and
metabolic pathways. Most methods for predicting protein complexes try to find protein complexes with size more
than three. It, however, is known that protein complexes with smaller sizes occupy a large part of whole
complexes for several species. In our previous work, we developed a method with several feature space mappings
and the domain composition kernel for prediction of heterodimeric protein complexes, which outperforms existing
methods.

Results: We propose methods for prediction of heterotrimeric protein complexes by extending techniques in the
previous work on the basis of the idea that most heterotrimeric protein complexes are not likely to share the same
protein with each other. We make use of the discriminant function in support vector machines (SVMs), and design
novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance
vector machines (RVMs). We perform 10-fold cross-validation computational experiments. The results suggest that
our proposed two-phase methods and SVM with the extended features outperform the existing method NWE,
which was reported to outperform other existing methods such as MCL, MCODE, DPClus, CMC, COACH, RRW, and
PPSampler for prediction of heterotrimeric protein complexes.

Conclusions: We propose two-phase prediction methods with the extended features, the domain composition
kernel, SVMs and RVMs. The two-phase method with the extended features and the domain composition kernel
using SVM as the second classifier is particularly useful for prediction of heterotrimeric protein complexes.

Background
To identify a set of proteins as a functional protein com-
plex is essential for understanding molecular systems in
living cells. Several proteins form a complex and work as
a transcription factor, whereas there exist another type of
proteins that work as enzymes. Hence, to identify pro-
teins that constitute such transcription factors is useful
for uncovering gene regulatory networks and metabolic
pathways. Many computational methods have been
developed for predicting protein complexes from pro-
tein-protein interaction networks [1,2]. Enright et al.
developed the Markov cluster (MCL) algorithm [3],

which repeatedly executes two operators called expansion
and inflation to a matrix whose element represents the
transition probability from a protein to another. The
expansion operation takes the power of the matrix, and
the inflation operation takes the Hadamard power of the
matrix. MCL is fast and efficient because of these opera-
tions. Macropol et al. developed the repeated random
walks (RRW) method [4], which iteratively expands a
cluster depending on the probabilities in steady states of
random walks with restarts. Maruyama and Chihara
improved the RRW method by weighting the restart
probabilities and proposed the node-weighted expansion
(NWE) method [5]. Bader and Hogue developed the
molecular complex detection (MCODE) method [6],
which uses a modified clustering coefficient defined by
edge density in a subset of the original and adjacent
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vertices to find densely connected regions. King et al.
developed the restricted neighborhood search clustering
(RNSC) method [7], which selects clusters generated by a
cost function according to the cluster size, density and
functional homogeneity. Altaf-Ul-Amin et al. developed
DPClus [8], which tries to find densely connected
regions. Chua et al. developed the protein complex pre-
diction (PCP) method [9], which finds maximal cliques
using the functional similarity weight based on indirect
interactions. Liu et al. developed the clustering based on
maximal cliques (CMC) method [10], which generates all
maximal cliques from the protein-protein interaction
networks, and assembles highly overlapped clusters based
on their interconnectivity. Wu et al. developed the core-
attachment based (COACH) method [11]. Most methods
basically focus on finding densely connected subgraph in
protein-protein interaction networks. Hence, it is consid-
ered to be difficult that they detect small protein com-
plexes because, for instance, the edge density of two
interacting proteins is always 1.0 even if the proteins do
not form a complex.
However, protein complexes with small sizes occupy a

large part of whole known protein complexes. CYC2008 is
a comprehensive catalogue of 408 manually curated yeast
protein complexes [12]. In the catalogue, 172 complexes
(42%) are heterodimeric, and 87 complexes (21%) are het-
erotrimeric as reported also in [13]. In our previous study,
hence, we developed a method using our proposed kernel
for predicting heterodimeric protein complexes [14],
which outperforms an existing method using the naive
Bayes classifier [15]. In this paper, we propose prediction
methods for heterotrimeric protein complexes by extend-
ing techniques in our previous method on the basis of the
idea that heterotrimeric protein complexes are not likely
to share the same protein with other heterotrimeric pro-
tein complexes. For that purpose, we apply supervised
learning methods twice such as support vector machine
(SVM) [16] and relevance vector machine (RVM) [17].
Tatsuke and Maruyama developed the proteins’ partition
sampler (PPSampler) method based on the Metropolis-
Hastings algorithm, which generates clusters whose sizes
follow a power-law distribution, and outperforms other
existing methods in F-measure for whole protein com-
plexes [13]. For prediction of heterotrimeric protein com-
plexes, they reported that the F-measure of NWE was
better than those of the existing methods, MCL, MCODE,
DPClus, CMC, COACH, RRW, and PPSampler. We per-
form 10-fold cross-validation, and calculate the average
F-measure. The results suggest that our proposed methods
outperform the existing method NWE.

Methods
In this section, we propose prediction methods for hetero-
trimeric protein complexes. More accurately, we consider

the following problem: Given a network of protein-protein
interactions weighted by some reliability, determine
whether or not three distinct proteins that are connected
in the protein-protein interaction network form a protein
complex. Let G(V, E) be an undirected graph with a set V
of vertices and a set E of edges, representing the protein-
protein interaction network. Here, a vertex represents a
protein, an edge (i, j) represents an interaction between
proteins Pi and Pj, and the weight wij represents reliability
and strength of the interaction between Pi and Pj. In this
paper, we use the WI-PHI database [1] as edge weights,
which has been calculated from heterogeneous biological
experimental data. We call Pi a neighboring protein to Pj if
(i, j) ∈ E. Then, our proposed methods use the support
vector machine (SVM), its discriminant function, and the
relevance vector machine (RVM).

Support and relevance vector machine
We briefly review the support and relevance vector
machines [16,17]. Suppose that N training data {xi, ti}
with target ti ∈ {-1, 1} are given. For our purpose, xi
corresponds to a set of three distinct proteins, ti = 1
corresponds to the case that the set forms a heterotri-
meric protein complex. Then, we consider linear models
represented by the form

y(x) =
M∑
i=1

aiφi(x) + b, (1)

where ji denotes a basis function, M denotes the num-
ber of basis functions, ai denotes the coefficient, and b
denotes the bias parameter. In the SVM, ji(x) is implicitly
defined as K(xi, x) with a positive semidefinite kernel func-
tion K, M is equal to N, and ai and b are determined by
maximizing the margin. New sets x of proteins are classi-
fied according to the sign of y(x). We make use of this dis-
criminant function y(x) in our proposed methods.
The RVM is a Bayesian sparse kernel technique for clas-

sification and regression, and shares some characteristics
of the SVM. As well as the SVM, the basis functions of the
RVM are given by kernels, which are not required to be
positive semidefinite. It, however, is known that training
time of the RVM is in general longer than that of the
SVM. In the RVM, a hyperparameter gi for each parameter
ai and a prior distribution over parameters ai are intro-
duced to obtain a sparse model. For the classification, the
model in Eq. (1) is transformed as s(y(x)), where s(y)
denotes the logistic sigmoid function 1/(1 + e-y), and ai
and b are determined by maximizing the marginal log-
likelihood with respect to g.

Extension of feature space mapping
In our previous study, we proposed seven feature space
mappings for prediction of heterodimeric protein
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complexes [14]. These are based on the idea that the
reliability of the interaction in a heterodimer should be
high and conversely the reliability of the interaction
between a protein in a heterodimer and a protein not in
the heterodimer should be low. We extend the feature
space mappings for two interacting proteins to map-
pings for three proteins. Table 1 shows detailed
extended mappings for three distinct proteins Pi, Pj, and
Pk that are connected in the protein-protein interaction
network. Here the fifth mapping in the previous study is
eliminated because more neighboring proteins increase
the maximum of differences close to the maximum of
neighboring weights denoted by (F3). (F1) and (F2)
denote the maximum and minimum of the weights of
interactions between Pi, Pj, and Pk, respectively. The
first feature in the previous study is the weight of the
interaction between two proteins. Since there are at
least two interactions for three focused proteins and we
cannot use all the weights as elements of our feature
vector without changes, we take the maximum and mini-
mum of the weights (see Figure 1). In addition, the pro-
teins in a heterotrimer should interact with each other,
and (F2), which is the minimum of the weights, is expected
to be high. (F3) and (F4) denote the maximum and mini-
mum of the weights of interactions between either of
Pi, Pj, Pk and a neighboring protein Pr, respectively, where
r ≠ i, j, k and (i, r) ∈ E, (j, r) ∈ E, or (k, r) ∈ E. It is consid-
ered that (F3), which is the maximum of the neighboring
weights of a heterotrimer, should be lower than the
weights of interactions in the heterotrimer. Consider the
case that a protein Pr interacts with two of proteins Pi, Pj,
and Pk, where Pr is not any of Pi, Pj, and Pk (see Figure 1).
If the weights of both interactions are large, these pro-
teins including Pr may form a complex. We introduce
the maximum of smaller weights of interactions with
neighboring proteins Pr denoted by (F5). (F6) and (F7)
denote the maximum and the minimum of the numbers
of domains contained in Pi, Pj, and Pk, respectively. The
number of domains in a protein complex is expected to
be large because domains are considered as mediators
of protein-protein interactions.

In addition to the extended features, we examine the
domain composition kernel developed in our previous
study [14]. We defined equivalence =d between two pro-
teins Pi and Pj as the condition that Pi consists of the
same domains of Pj , and defined equivalence =c

between two sets xi and xj that consist of {Pi1 , · · ·,Pin}
and {Pj1 , · · ·,Pjn}, respectively, as ∃σ ∈ Sn∀k(Pik=dPjσ(k) ),
where Sn denotes the symmetric group of degree n on
the set {1, ..., n}. Then, the domain composition kernel
Kc was defined by

Kc(xi, xj) =

{
1 (if xi=cxj),

0 (otherwise).
(2)

Two-phase learning approach
Our proposed methods take two-phase learning
approach. The basic idea for designing our methods is
that heterotrimeric protein complexes are not likely to
share the same protein with other heterotrimeric protein
complexes. We estimate model parameters of SVM
using training data in the first phase, and predict
whether or not the training data and the neighboring
sets sharing at least one protein with the training data
are heterotrimeric protein complexes, respectively.
Then, the second phase predictor makes use of the dis-
criminant values obtained by the first phase predictor. It
is expected that the discriminant values for a target set
of proteins and its neighboring set do not become large
together if heterotrimeric protein complexes do not
share the same protein.
Suppose that the training data set comprises N sets xi

of three distinct proteins with the corresponding label
ti ∈ {-1, 1}. For each xi, we calculate 7-dimensional fea-
ture vector f(1)(xi) using (F1),…,(F7) shown in Table 1

Table 1 Feature space mapping from three distinct
proteins Pi, Pj, Pk.

(F1) max
{(p,q)∈E|p,q∈{i,j,k}}

wpq

(F2) min
{(p,q)∈E|p,q∈{i,j,k}}

wpq

(F3) max
{(p,r)∈E|p∈{i,j,k},r /∈{i,j,k}}

wpr

(F4) min
{(p,r)∈E|p∈{i,j,k},r /∈{i,j,k}}

wpr

(F5) max
{(p,r),(q,r)∈E|p,q∈{i,j,k},p �=q,r /∈{i,j,k}}

min{wpr ,wqr}
(F6) max{# domains of Pi, # domains of Pj, # domains of Pk}

(F7) min{# domains of Pi, # domains of Pj, # domains of Pk}

Figure 1 Example of a subgraph including three focused
proteins Pi, Pj, Pk and their neighboring proteins. In this
example, protein Pr is neighboring to both of Pi and Pk.
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and the kernel matrix whose (i, j)-th element is 〈 f (1)(xi),
f (1)(xj)〉 + aKc(xi, xj), where a is a constant and 〈·, ·〉
denotes the inner product. Then, we obtain the model
parameters in Eq. (1) by applying the SVM to the train-
ing data set. Let N (x) be all sets of three distinct pro-
teins that are neighboring to x and connected in the
protein-protein interaction network, where we call xi a
neighboring set to xj if xi and xj share the same protein
and xi is not xj (see Figure 2). For each xi, we calculate
the discriminant values y(xi) and y(x) for all x ∈ N (xi).
Since the discriminant values may include outliers, by
taking the averages of positive and negative discriminant
values separately, we define four feature space mappings
for xi,

f (2s)(xi) = y(xi), (3)

f (2p)(xi) =
1

|{x ∈ N (xi)|y(x) > 0}|
∑

{x∈N (xi)|y(x) > 0}
y(x), (4)

f (2n)(xi) =
1

|{x ∈ N (xi)|y(x) < 0}|
∑

{x∈N (xi)|y(x) < 0}
y(x),(5)

f (2a)(xi) =
1

|N (xi)|
∑

(x∈N (xi)

y(x), (6)

where |S| denotes the number of elements in the set S.
Here, we define f (2p)(xi) = 0 ( f (2n)(xi) = 0, f (2a)(xi) = 0) if
|{x ∈ N (xi)|y(x) > 0}| = 0(|{x ∈ N (xi)|y(x) < 0}| = 0, |N (xi)| = 0).
We compose 11-dimensional feature vector f (2)(xi) using
f (1), f (2s), f (2p), f (2n) and f (2a), calculate the kernel matrix
with the (i, j)-th element 〈 f (2)(xi), f

(2)(xj )〉 + aKc(xi, xj),

and we apply some supervised learning method. It should
be noted that our methods use only training data to esti-
mate model parameters. For test data x, we calculate
〈 f (2)(xi), f

(2)(x)〉 + aKc(xi, x) for training data xi, and
determine whether or not x is a heterotrimeric protein
complex according to the second classifier.

Computational experiments
Data and implementation
To evaluate our proposed methods, we performed com-
putational experiments and compared them with the
existing method NWE [5]. We used the WI-PHI data-
base [1] containing 49607 interacting protein pairs
except self interactions as input weights of interactions,
which is available at the supporting information web
page of the paper. The weights were obtained from
high-throughput yeast two-hybrid data [18,19] and sev-
eral biological databases such as BioGRID [2] and BIND
[20] by using a log-likelihood score (LLS) to each data-
set and the socioaffinity (SA) index [21] that measures
the log-odds score of the number of times that two pro-
teins are observed to interact to the expectation value
from the dataset.
We prepared datasets using heterotrimeric protein

complexes in CYC2008 protein complex catalogue [12],
which contains 87 heterotrimeric protein complexes,
and is available at http://wodaklab.org/cyc2008/. We
restricted positive and negative examples to sets of three
distinct proteins that form a single connected compo-
nent in the input protein-protein interaction network.
Thus, 7 heterotrimers were eliminated, and we used 80
heterotrimers as positive examples. For negative exam-
ples, we extracted 32647 sets of three proteins included
in protein complexes with size more than three of
CYC2008, and we selected uniquely at random 100
examples from the sets because our methods require
many neighboring sets of three proteins for an example
in the second phase. It is considered that negative exam-
ples selected from such sets are more difficult to be
classified than those selected from all sets of three pro-
teins except heterotrimers.
For NWE, we set some options related with the size of

complexes so that NWE output protein complexes with
size two or more from the WI-PHI protein-protein inter-
action network in the same way as [13], and extracted
only protein complexes with size three from the result.
For measuring the performance, we used accuracy,

precision, recall, and F-measure defined by

accuracy =
TP + TN

TP + TN + FP + FN
, (7)

precision =
TP

TP + FP
, (8)

Figure 2 Example of a subgraph including a focused set of
proteins and neighboring sets of proteins. Each neighboring set
of three proteins shares at least one protein with the focused set
(black circle). In this example, set S1 of three proteins shares two
proteins with the focused set, and S2, S3 share one protein,
respectively.
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recall =
TP

TP + FN
, (9)

F - measure =
2 · precision · recall
precision + recall

, (10)

where TP, FP, and FN mean the number of true posi-
tive, false positive, false negative examples, respectively.
We used ‘libsvm’ (version 3.11) [22] and ‘SparseBayes’

package (version 2.0) [23] as implementations of SVM
and RVM, respectively.

Results
We performed 10-fold cross-validation, and took the
average of accuracy, precision, recall, and F-measure.
Furthermore, we repeated this procedure 10 times for
other datasets with randomly selected negative exam-
ples, and took the average. Table 2 shows the results on
the average of accuracy, precision, recall, and F-measure
by our proposed methods and NWE. ‘SVM+SVM’ and
‘SVM+RVM’ denote two-phase methods using SVM and
RVM as the second classifier, respectively. ‘SVM’
denotes usual SVM using only features f (1). a denotes
the coefficient of the domain composition kernel Kc. We
examined a = 0.5 because the case was best for predic-
tion of heterodimeric protein complexes in our previous
study [14]. NWE predicted 54 protein complexes with
size three from the WI-PHI protein-protein interaction
network, and 19 of them were actual heterotrimeric pro-
tein complexes in the CYC2008 protein complex catalo-
gue. We can see from the table that the F-measure by
SVM+SVM, SVM+RVM, SVM for both a = 0, and 0.5
were higher than those by NWE, respectively. Further-
more, the accuracy and F-measure by the two-phase
method SVM+SVM were higher than those by usual
SVM with f (1), respectively. The accuracy and F-mea-
sure by SVM+RVM, however, were lower than those by
SVM, respectively. It implies that RVMs may be less
useful than SVMs for these problems that SVMs can be

applied. Thus, the results suggest that our proposed
methods SVM+SVM, SVM+RVM, and SVM outperform
the existing method NWE. The results also suggest the
usefulness of the second phase.

Conclusions
We proposed prediction methods by two-phase learning
for heterotrimeric protein complexes. In the methods,
we extended the feature space mappings in our previous
study for prediction of heterodimeric protein com-
plexes, and made use of the discriminant function for
neighboring sets of three proteins. To validate our pro-
posed methods, we performed 10-fold cross-validation
computational experiments. The results suggest that
our two-phase prediction methods and SVM with the
extended features outperform the existing method
NWE, which was reported to outperform many other
existing methods such as MCL, MCODE, DPClus,
CMC, COACH, RRW, and PPSampler, although our
methods are limited to prediction of heterotrimeric pro-
tein complexes. For further evaluation, we would like to
perform computational experiments for other datasets if
such data become available.
We have some possibility to further improve the pre-

diction accuracy. For instance, we can use sequence
information for designing feature space mappings as well
as domains contained in proteins. In addition, we can
introduce some probabilistic model such as conditional
and Markov random fields to neighboring sets of three
proteins although in this paper we considered kernels
between neighboring sets.
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Table 2 Results on the average of accuracy, precision,
recall, and F-measure by our proposed methods and
NWE.

SVM+SVM SVM+RVM SVM NWE

a 0 0.5 0 0.5 0 0.5

accuracy 0.885 0.907 0.810 0.853 0.861 0.876 -

precision 0.936 0.869 0.847 0.899 0.909 0.873 0.352

recall 0.840 0.926 0.770 0.766 0.819 0.862 0.218

F-measure 0.880 0.891 0.767 0.810 0.854 0.862 0.270

’SVM+SVM’ and ‘SVM+RVM’ denote two-phase methods using SVM and RVM
as the second classifier, respectively. ‘SVM’ denotes usual SVM using only
features f(1). a denotes the coefficient of the domain composition kernel Kc.
Note that the accuracy is not defined for NWE because it is unsupervised, and
predict protein complexes of various sizes. The precision and recall for NWE
were calculated as TP divided by the numbers of predicted and known
heterotrimers, respectively.
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