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Abstract

Background: Protein function is closely intertwined with protein structure. Discovery of meaningful structure-
function relationships is of utmost importance in protein biochemistry and has led to creation of high-quality,
manually curated classification databases, such as the gold-standard SCOP (Structural Classification of Proteins)
database. The SCOP database and its counterparts such as CATH provide a detailed and comprehensive description
of the structural and evolutionary relationships of the proteins of known structure and are widely employed in
structural and computational biology. Since manual classification is both subjective and highly laborious,
automated classification of novel structures is increasingly an active area of research. The design of methods for
automated structure classification has been rendered even more important since the recent past, due to the
explosion in number of solved structures arising out of various structural biology initiatives.
In this paper we propose an approach to the problem of structure classification based on creating and tessellating
low dimensional maps of the protein structure space (MPSS). Given a set of protein structures, an MPSS is a low
dimensional embedding of structural similarity-based distances between the molecules. In an MPSS, a group of
proteins (such as all the proteins in the PDB or sub-samplings thereof) under consideration are represented as
point clouds and structural relatedness maps to spatial adjacency of the points. In this paper we present methods
and results that show that MPSS can be used to create tessellations of the protein space comparable to the clade
systems within SCOP. Though we have used SCOP as the gold standard, the proposed approach is equally
applicable for other structural classifications.

Methods: In the proposed approach, we first construct MPSS using pairwise alignment distances obtained from
four established structure alignment algorithms (CE, Dali, FATCAT and MATT). The low dimensional embeddings are
next computed using an embedding technique called multidimensional scaling (MDS). Next, by using the remotely
homologous Superfamily and Fold levels of the hierarchical SCOP database, a distance threshold is determined to
relate adjacency in the low dimensional map to functional relationships. In our approach, the optimal threshold is
determined as the value that maximizes the total true classification rate vis-a-vis the SCOP classification. We also
show that determining such a threshold is often straightforward, once the structural relationships are represented
using MPSS.

Results and conclusion: We demonstrate that MPSS constitute highly accurate representations of protein fold
space and enable automatic classification of SCOP Superfamily and Fold-level relationships. The results from our
automatic classification approach are remarkably similar to those found in the distantly homologous Superfamily
level and the quite remotely homologous Fold levels of SCOP. The significance of our results are underlined by the
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fact that most automated methods developed thus far have only managed to match the closest-homology Family
level of the SCOP hierarchy and tend to differ considerably at the Superfamily and Fold levels. Furthermore, our
research demonstrates that projection into a low-dimensional space using MDS constitutes a superior noise-
reducing transformation of pairwise distances than do the variety of probability- and alignment-length-based
transformations currently used by structure alignment algorithms.

Background
The discovery of functionally meaningful, structural
relationships between proteins is of utmost importance
in protein biochemistry. Such relationships constitute
the basis for organizational efforts in structural bioinfor-
matics such as the CATH and SCOP databases [1,2].
CATH and SCOP both classify protein structures as
members of specific clades defined by a hierarchy of
specific biological relationships, but differ significantly in
methodology. While both databases use a combination
of automatic and manual analysis, CATH relies much
more on automatic steps while SCOP is primarily based
on expert knowledge. Further differences are apparent
in the definition of the hierarchies. Simplistically, CATH
is more “structural” while SCOP places more emphasis
on evolutionary or functional relationships [3].
The “Superfamily” level of SCOP is especially interest-

ing, because it represents remote homologies implying
shared function or evolutionary origin but which are diffi-
cult or impossible to detect using sequence information
alone. Attempts to automate the functional and evolution-
ary classification of protein structures have thus developed
a natural focus on measures of structural similarity deter-
mined by geometric alignment of pairs of protein struc-
tures. As a corollary, manually curated databases such as
SCOP have frequently been used to provide a ground
truth or gold standard for automated identification of
structurally and functionally related sets of structures.
More recently, the explosion of known, but un-annotated,
structures which has followed the advent of structural
genomics has underlined both the difficulty and the
importance of constructing a holistic description of pro-
tein architecture capable of reliably recognizing even very
remote types of structural homology.
A highly correlated research thrust begun in the early

days of structural biology, when only a few thousand
structures had been solved [4,5], focuses on the develop-
ment of grand views of the “universe” of known protein
structures. In such a formulation, every protein structure
is envisioned as a point in an abstract, high dimensional
fold space or protein structure space (PSS). A number of
different representations of PSS have been put forward.
These have included representations based on graphical
models [6] as well as approximate vector representations
of individual structures (similar to structure keys for
small molecules) [7,8] but have more commonly been

based on pairwise (dis)similarities between proteins, as
measured using algorithms for pairwise structure align-
ment [9-11]. A related approach has been the use of pair-
wise distances to compute explicit spatial representations
of the PSS in terms of coordinates in a reduced Euclidean
space [5,12-14]. In these works explicit representations of
PSS are constructed by embedding intermolecular dis-
tances in a low dimensional space in a manner that is
injective and minimally distorts inter-structure dissimi-
larity information. Such embeddings, referred to as maps
of protein structure space (MPSS), may carry a number
of advantages over PSS representations based solely on
pairwise distances. For example, because MPSS are con-
structed so as to maximize the mutual consistency of
relationships between all pairs of proteins simultaneously,
they exhibit greater sensitivity to remote homology than
can be obtained using pairwise distance distributions
alone. Embedding methods that have been used for
MPSS include correspondence analysis using reciprocal
averaging [5] as well as principle component analysis [8],
but multidimensional scaling (MDS) has been the most
widely used approach and is most conducive to the
notion of MPSS as described above, because MDS
attempts to directly approximate pairwise distances
within an explicit coordinate configuration.

Problem formulation
We seek to investigate the expressive capabilities of MPSS
by clustering inter-molecular similarity information pre-
sented through such representations and comparing the
results with known classification schemes. The observation
that MDS may confer an advantage over pairwise alignment
distances for annotation inference was made previously in
the context of Gene Ontology [12] and was recently corro-
borated by us in experiments in automatic classification of
remotely homologous relationships from CATH and SCOP
[13]. In that work we examined the influence of certain
critical meta-parameters on construction of MPSS using
MDS, including choice of the underlying protein alignment
method and particular implementation of MDS. We also
demonstrated that one of the major advantages of MPSS
lies in representing groups of related proteins which are
highly structurally diverse. However, we did not investigate
the effects of probability- or length-adjustment of align-
ment scores, something which is done by different align-
ment algorithms in a unique manner. The behavior of
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MPSS with respect to the dimensionality of the representa-
tion was also not explored, as the MPSS were restricted to
three dimensions to permit visual interpretation. The expli-
cit coordinate representation embodied by MPSS lends
itself to addressing fundamental questions relating to the
dominant folding pathways, evolutionary processes, and
physical constraints that define the structure-function rela-
tionship. We can investigate if functional characteristics
map to specific regions of the PSS and vice-versa, as well as
the distribution of molecules in this space. Such questions
are worthy, and MPSS offer a unique approach in the
search for their answers, but prior to further work in
answering such general questions, it would be prudent to
probe the response of MPSS to the parameters named
above. Additionally, the usefulness of MPSS for automatic
or partially automatic partitioning of PSS, as opposed to
recognition of structure-function relationships has not
been studied. Both of these tasks are undertaken in this
work.
By design, all of the analysis techniques applied below

treat distance matrices rather than point configurations.
This approach allows both coordinate and distance based
PSS representations to be evaluated within the same fra-
mework; combining low-dimensional projection with
computation of pairwise distances permits MPSS con-
struction to be thought of as a distance transformation
method analogous to those used to calculate alignment
probability scores. In addition to the CE, Dali and FAT-
CAT algorithms used previously, we also consider both
pairwise and MPSS distances derived using MATT, a
recent flexible aligner which has been shown to effectively
capture remote homologies in SCOP [11]. The parameters
of alignment method (4 alternatives), score transformation
(2 alternatives) and variation of MDS algorithm (2 alterna-
tives) yield 24 unique PSS representations including 8 sets
of pairwise distances as well as 16 sets of MPSS, each of
which is computed using eight discrete dimensionalities
ranging from 3 to 120. All of these PSS representations
are validated against Superfamily and Fold level homolo-
gies by using them as predictors of shared annotation for
protein pairs, allowing the questions of parameterization
and relative classification performance to be answered
directly. For a few highly accurate representations, we
directly compare the entire SCOP Superfamily and Fold
clade systems to the tessellation of the PSS produced by a
“SCOP independent” clustering method. Such methods
have been defined in the literature as those not using the
existing SCOP hierarchy, although they may have a
threshold or cluster number parameter which is tuned
against SCOP [10,11]. We use an agglomerative, hierarchi-
cal method first used in conjunction with pairwise MATT
probability scores [11], which uses a distance threshold
obtained during measurement of classification accuracy to
perform a maximum-linkage clustering of a dendrogram

constructed by neighbor-joining. The primary contribu-
tions of this work include:

• The first analysis known to us of clustering within
MPSS. Specifically, we show that clustering of MPSS
distances leads to results more similar to existing
SCOP clade systems than do pairwise distances,
using a parameterized clustering algorithm which
tries to account for varying diversity between clades
using a hierarchical approach.
• Investigation of parameters critical to the construc-
tion of MPSS. Importantly, we show that there is a
range of dimensionalities for which MPSS outper-
form any of the pairwise distances considered here.
We also find that alignment score transformations
proposed in the literature provide no consistent ben-
efit to performance.
• A systematic approach to the probability and length
adjustment of alignment scores. Currently, an ad hoc
collection of transformations unique to each aligner
are used, relying on 1 to 3 free parameters. MPSS
represent a new score transformation which 1) outper-
forms those used by the aligners themselves and 2) has
only a single free parameter (dimensionality) which is
insensitive enough that a single value can be used
effectively for all alignment algorithms.

Data set
Due both to the large number of known protein struc-
tures - more than 93,000 at the time of this writing, as
well as the computational expense of pairwise structure
alignment, it is not possible to exhaustively explore PSS.
Furthermore, some of these structures are highly homo-
logous. As such, it is necessary to subsample the known
proteins, to obtain representative data set(s) for which
all-pairs alignments may be completed with a reasonable
amount of time and resources. The manner of this sam-
pling constitutes an essential parameter when analyzing
PSS. Previous large-scale investigations of PSS have
employed either sequence clustering of the PDB targeting
predetermined levels of sequence identity, ranging from
25% to 80% [12,11,15,10], a combination of sequence-
and structure-based clustering designed to result in
unique fold structures [9], or the complete set of SCOP
domains [8]. The sizes of all these sets range from around
500 to around 30,000. Given that our aim is to globally
characterize PSS, with a focus on large structure families,
we choose the Nov. 2008 release of PDBSelect25, a list of
some 4,000 non-redundant protein structures obtained
by clustering the PDB at a 25% identity level [16]. The set
contains a sufficient number of sufficiently disparate
structures to represent the extents of the protein uni-
verse, while remaining small enough that exhaustive
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pairwise alignment using multiple structure alignment
algorithms remains feasible. The low redundancy of the
data set is crucial given that remote homologies which
are difficult to detect are the subject of such heightened
interest. If relatively greater redundancy is included in
the data set “easy” homologies are likely to dominate,
which may lead to overestimation of classification accu-
racy in general. In the chosen data set there are 1,180 dis-
tinct Superfamilies represented by 3,967 chains, 3,744 of
which map to a single SCOP domain. The extent of
structure space covered by these structures is comparable
to that which was covered by the set of 10,018 domains
clustered at 80% sequence identity which was used in
[11]. Those domains contained 1,656 Superfamilies, 953
of which also occur in our data.

Methods
Protein distances
The distance in structure space between individual pairs
of proteins can be determined via pairwise alignment of
protein structures. Inasmuch as different algorithms for
approximate solution of this NP-Complete problem dis-
agree about the relative similarity of various proteins,
they can be expected to lead to divergent representa-
tions of PSS. Similarly, agreement between multiple
methods would suggest that results are biologically
accurate. Of the large number of such algorithms which
have been described in the literature, we select four
well-known examples: CE [17], Dali [18], FATCAT [19]
and MATT [20]. These methods represent radically
divergent approaches to the structure alignment pro-
blem. Dali is unique in that it searches for similar sub-
sets of protein interatomic distances. CE, FATCAT and
MATT align structures directly, producing gapped align-
ments by optimally chaining aligned fragment pairs
(AFP) with dynamic programming, but under different
assumptions about protein structure itself. While CE mod-
els proteins as rigid bodies, FATCAT and MATT both
permit a degree of flexibility within aligned structures. The
type of flexibilities modeled by the two algorithms, how-
ever, are quite different. FATCAT permits twists between
pairs of rigidly aligned fragments, while simultaneously
minimizing the total number of flexible adjustments to the
aligned structures. In contrast, MATT allows flexible
adjustments to be made across the entirety of the aligned
structures, even if such changes require structurally
impossible bond angles or chain breaks, which are
resolved at the end of the alignment procedure.
Different alignment methods use different measures of

overall structural similarity and alignment significance.
All four methods considered here produce a “raw” simi-
larity score as well as a transformed “probability” score
which attempts to account for the statistical significance
of an alignment, given the length of the compared

structures as well as that of alignment itself. Though in
general both raw and probability scores are unique to
the alignment method, there are some commonalities.
CE, FATCAT and MATT all produce raw scores by
summing a measure of AFP compatibility across the
alignment path. In each of these three cases, the score
function for individual AFP is a non-linear function of
root-mean-square deviation (RMSD) of selected Ca-Ca

associations between aligned structures. FATCAT and
MATT also incorporate the number and degree of
necessary flexible adjustments. Dali makes alignments
using interatomic distance matrices rather than atomic
coordinates directly. It thus uses a completely different
similarity function, which is a parameterized, non-linear
function of component submatrices selected by Monte
Carlo search. As with raw scores, the probability scores
used by these aligners share certain sets of traits. CE and
FATCAT both compute probabilities using the empirical
fit of a large set of scores to specific probability distribu-
tions, the Gaussian and Gumbel-type extreme-value distri-
butions respectively. Dali computes a so-called Z-score by
dividing raw scores by the output of a polynomial of
degree four fit to the dependence of scores on alignment
length. Finally, MATT transforms alignment scores using
a non-linear function of the Ca-Ca RMSD of the align-
ment, the length of the alignment and the lengths of the
aligned pair. The scoring functions of the four alignment
methods are summarized in Table 1.
Except for the MATT probability score, all of the

score functions in Table 1 produce similarity scores
which must be converted to dissimilarity scores in order
to be treated as distances. The transformation from
similarity score to distance value is performed by sub-
tracting the similarity scores from a maximum value. To
prevent outlier distances from dominating, Equation (1)
is used to select the maximum score sn as the value
with the pth percentile rank, by finding the index n of
the pth percentile of the N(N − 1)/2 sorted similarity
scores obtained between N structures. Throughout the
following we set p = 99.95%.
Given pairwise similarity scores si, j, for all pairs

of structures i and j, the distances δi, j are given by
Equation (2).

n =
p

100 × ((N(N − 1))/2 + 1)
(1)

δi,j =

⎧⎨
⎩
sn − si,j, sn > si,j|, i �= j

0 , i = j
sn , sn ≤ si,j

(2)

The impact on PSS representations of each alignment
method, as well as the various probability score transfor-
mations are described in the Results section.
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Obtaining low-dimensional maps of the structure space
MPSS of dimensionality r are created from a pairwise
distance matrix δ using two algorithms for MDS. Classi-
cal MDS (CMDS) [23] produces a configuration of coor-
dinates X which corresponds to a rank-r approximation
of the experimental distance matrix, which is optimal in
a linear least-squares sense. The classical MDS solution
is obtained by converting δ to an inner product matrix
A and recovering X via eigendecomposition. The rela-
tionship between the distances dij(X) between points i
and j in a putative configuration X and their inner pro-
duct Aij is given by Equations (3) and (4). Note that A
may be obtained directly from distance values because
the diagonal summation terms found in both equations
are equivalent to the combined row, column and grand
means of the distance matrix.

d2ij (X) =
∑r

k=1 X
2
ik +

∑r
k=1 X

2
jk − 2

∑r
k=1 XikXjk (3)

Aij =
(
XXT

)
ij =

∑r
k=1 XikXjk = −1

2

(
d2ij (X) − ∑r

k=1 X
2
ik − ∑r

k=1 X
2
jk

)
(4)

Equations (5) and (6) demonstrate the equivalence
between some X generating A and the eigendecomposi-
tion of A (recall that the transpose of an orthogonal
matrix is equal to its inverse).

A = XXT =
(
λ1/2v

) (
λ1/2v

)T
= vλvT = vλv−1 (5)

Av = λv (6)

Thus the kth coordinate of the ith point is found by
multiplying the eigenvector νik of A by the square root
of the corresponding eigenvalue lk, as per Equation (7).
Inner products of these coordinates form a rank-r
approximation of A.

Xik =
√

λkvik, k ∈ [1, r] (7)

Although the point configuration found by CMDS is
optimal in a linear least-squares sense, CMDS does not

explicitly minimize the stress induced between the
MPSS distances and original pairwise distances, defined
by Equation (8).

σ (X) =
∑

i<j≤N

(
dij (X) − δij

)2
(8)

As a consequence, the correspondence between pairwise
and MPSS distances can be improved by perturbing an
initial set of coordinates X. Non-linear minimization of
Equation (8) with respect to X is performed using a tech-
nique of convex analysis known as iterative majorization.
In the context of MDS, this approach leads to an algo-
rithm called scaling by majorizing a complex function
(SMACOF) [24]. Briefly, SMACOF relies on the fact that
stress can be monotonically decreased by iteratively per-
turbing X so as to minimize a quadratic ansatz represent-
ing a convex relaxation of Equation (8), proven in [24].
The solution to these successive convex relaxations
reduces to the simple update function of Equation (9).
Optimization of initial coordinates obtained using CMDS
is achieved by repeated application of Equation (9) until
the relative change in stress for an additional iteration falls
below 10-5.

xi′ =
1
N

N∑
j
(xj +

δij
(
xi − xj

)
∥∥xi − xj

∥∥ ) (9)

Through the process described in Equation (9), the
updated value xi

′ of the r-dimensional ith point xi is based
on the values of the data points xj. Conceptually, SMA-
COF minimizes stress by attempting to “fold” the unac-
counted for higher dimensional separations into the r
dimensions of the point cloud. During this process, the
position of each point is influenced by all of the others,
leading eventually to a configuration of coordinates which
is maximally consistent with the pairwise distances given
the constraints of the chosen dimensionality. Even though
SMACOF computations are initialized with the results of
classical scaling, SMACOF should not be seen as merely
refining the CMDS coordinates. SMACOF will converge

Table 1 Alignment scoring methods.

Method Raw score Probability score Accounts for Number of free
parameters

CE Sum of non-linear AFP
scores

Fits scores to Gaussian distribution Statistical significance 1 (μ = 0)

Dali Non-linear matrix similarity
function

Division by polynomial fit to length dependence of
alignment score [21]

Length 4

FATCAT Sum of non-linear AFP
scores

Fits scores to extreme-value distribution [22] Statistical significance 2 (ζ = 0)

MATT Sum of non-linear AFP
scores

Non-linear function of RMSD, chain and alignment
lengths [11]

Statistical significance,
length

3

Summary of key factors associated with the scoring strategies of CE, DALI, FATCAT and MATT. The rightmost column gives the number of free parameters in the
probability scoring function or assumed probability distribution, not including raw score or alignment length. Parameters are considered “free” if they have to be
estimated empirically or evaluated using a large set of structure alignment scores as a reference.
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eventually given any particular starting condition. How-
ever, the CMDS configuration provides a high quality
initial guess which contributes to rapid convergence. This
is demonstrated by Figure 1, which shows the absolute
stress of a configuration versus the number of completed
SMACOF iterations for both uniformly random and
CMDS initializations. The figure also plots the Procrustes
statistic describing the fit between the two sets of coordi-
nates after an optimal linear transformation including
translation, rotation and scaling has been applied. As seen
in the figure, the match between the initialization condi-
tions improves as the number of complete SMACOF itera-
tions increases, both in terms of the stress induced by the
configurations and the difference between them. While
many repeated iterations are required in order for the two
MPSS to converge, the initialization with CMDS allows
minimum stress to be reached extremely rapidly.
Figures 2 and 3 present examples of three dimensional

MPSS, which have been proposed and used by us as
tools for holistic and interactive visualization, explora-
tion, and sensemaking of the structure space [14]. These
figures depict the first MPSS to be created using raw
MATT distances with both CMDS (Figure 2) and SMA-
COF (Figure 3). The proteins in the MPSS are colored
by their SCOP Class, in order to convey the high inter-
pretability of the maps.

Classification prediction and receiver operating
characteristics
A PSS representation can be used to predict the functional
relationships described by a set of annotations which are
taken as a gold standard. In this work, such a standard is
provided by the remotely homologous Superfamily and
Fold levels of the hierarchical SCOP database. A binary
classifier which separates distances that indicate a func-
tional relationship from those that do not can be con-
structed by selecting a threshold distance representing the

size of a neighborhood in structure space. For a particular
neighborhood size, the number of true and false negatives
and positives can be calculated by comparing the adja-
cency matrix of the standard to PSS adjacencies obtained
by thresholding the PSS distances. That is, a binary matrix
is computed by thresholding each element of a distance
matrix, and each element is checked against the corre-
sponding element of a distinct binary matrix derived from
the known relationships in SCOP. Varying the neighbor-
hood size parameter between a minimum of zero and the
maximum distance in the data allows construction of a
complete receiver operating characteristic (ROC) curve,
which represents the overall accuracy of annotation infer-
ence in terms of the tradeoff between the false positive
rate (FPR) and true positive rate (TPR). This accuracy can
be expressed as the area under the ROC curve (AUC),
which takes values in the interval [0, 1]. We calculate the
AUC by numerical integration of the ROC curve using the
trapezoidal rule. The best single threshold for binary clas-
sification of the intermolecular distances can be found by
selecting the threshold which maximizes the total true
classification rate (TCR), or sum of TPR and true negative
rate (TNR) [25]. Example TCR and ROC curves, com-
puted for a 24D SMACOF MPSS based on raw MATT
distances, is shown in Figure 4. This TCR curve exempli-
fies the ease of locating such maxima. Note that unlike
[11] we compute classification statistics exhaustively rather
than using the approximate sampling algorithm proposed
in [25].

Hierarchical distance clustering
We use the hierarchical clustering method first pre-
sented in [11] for clustering data in MPSS. This method
seeks to reproduce a given level of SCOP with no para-
meterization or supervision except for specification of
the optimal thresholds learned during ROC analysis.
Similar to other methods for hierarchical clustering,

Figure 1 Convergence of SMACOF with random and CMDS initializations. Left: initial stress is much greater with the random initialization
and takes many more iterations of SMACOF to converge. Right: The Procrustes statistic between the random and CMDS initializations shows
that their SMACOF coordinates become very similar as the number of iterations increase.
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data points are first linked to form a dendrogram. The
tree is built using strict neighbor joining (NJ) as imple-
mented in the ClearCut program [26]. Next, the input
space is tessellated based on 1) the topology of the clus-
ter tree and 2) a criterion for separation or merging of
the data points (leaf nodes) into individual clusters.
Specifically, clusters are formed by recursively descend-
ing the tree, forming a cluster whenever the distances
between all descendent leaves of a particular subtree fall
within the threshold (maximum-linkage clustering). The
topology of the dendrogram restricts potential cluster
members, which allows the single threshold to accu-
rately recreate clusters of different densities, so long as
the density of a cluster is not so low that the points do
not fall within the threshold distance (and inasmuch as
the hierarchy is correct).
Figure 5 shows an example NJ cluster tree, computed

using distances from the 12D Dali MPSS computed with
SMACOF. The relationship between the empirical cluster
tree and SCOP hierarchy is visualized by coloring nodes

belonging to the 200 most populated superfamilies. Due
to the difficulty in distinguishing a large number of simi-
lar colors, we periodically reuse colors while drawing the
tree, but in such a way that all color labels are locally
unique. The layout of the colored tree is generated using
ColorTree [27] and drawn with Dendroscope [28]. This
figure allows several conclusions regarding the hierarchi-
cal clustering procedure to be drawn. First, while most
superfamilies are found at broadly similar tree depths,
there are a significant number of superfamilies which
branch at relatively shallow levels of the tree (Figure 5A).
As alluded to above, these structurally diverse superfami-
lies are unlikely to be well represented when using a sin-
gle threshold. Second, it is clear that many superfamilies
correspond closely (if not exactly) with a single subtree,
such as the PH domain-like superfamily isolated in
Figure 5B. However, there are also many superfamilies
which are not captured successfully by the NJ cluster
tree, such as the Immonoglobin and Fibronectin III
superfamilies depicted in Figure 5C. Such groups are not

Figure 2 MPSS MATT(C3). A 3D MPSS, constructed using CMDS in conjuction with raw MATT distances. Points in the MPSS are colored by
SCOP Class. The reader may note the strong separation of the major protein classes. In particular, small proteins (‘g,’ green) cluster densely near
the origin, while the all alpha (‘a,’ brown) and all beta (‘b,’ blue) classes form two roughly orthogonal axial structures. Between these lies the a+b
class (‘d,’ magenta), with the a/b class (‘c,’ cyan) rising high above the a,b plane.
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Figure 3 MPSS MATT(S3). A 3D MPSS constructed using SMACOF and raw MATT distances. As in Figure 2, the protein classes are well
separated. However, the qualitative appearance of the MPSS is very different and points in the MPSS appear to lie near a spherical manifold.
Compared with Figure 2, the a/b class (’c,’ cyan) is very tightly clustered, while the small proteins (’g,’ green) are spread farther apart.

Figure 4 Example ROC and threshold-accuracy curves. A) Plot of true classification rate vs. threshold distance for a 24D MPSS based on Dali
and SMACOF. The maximum, corresponding to the intersection of the ROC curve and the iso-performance tangent, is marked in red. B) ROC
curve for the same set of MPSS distances. The point associated with the best threshold from A) is indicated by the red circle.
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likely to be accurately reproduced by hierarchical cluster-
ing, even though the distances between member nodes
may be within the threshold. Despite the limitations of
maximum-linkage hierarchical clustering (with a single
threshold), most clades are well captured, and it provides
a highly useful method for comparative analysis of PSS
representations as explored further in the Results section.

Results and discussion
Experimental approach
We aim to exhaustively compare all PSS representations
that can be constructed based on the collection of align-
ment, score transformation and low-dimensional projec-
tion methods described above. A straightforward way to
evaluate the power of a PSS representation for classifica-
tion of protein structures is to compare distances
between neighboring points against gold standard anno-
tations of functionally and structurally similar proteins.
Here we use two sets of annotations, the remotely
homologous Superfamily and Fold levels of the SCOP
classification hierarchy, as standards. The ROC frame-
work is then used to analyze prediction of shared anno-
tation for protein pairs. The results demonstrate the
efficacy of MPSS distances for automatic structure clas-
sification, and are corroborated by examples showing
the mapping of selected SCOP Superfamilies. ROC ana-
lysis is also used to study in detail the impact of align-
ment score transformations on the representation of
PSS, as well as the dimensionality dependence of MPSS-
based classification. Finally, we use maximum-linkage

hierarchical clustering to tessellate PSS representations
and analyze the similarity of the result to the clusters
specified by SCOP.
Due to the large number of PSS representations

studied, we refer to them using a simple code. The code
contains the alignment algorithm name, and in parenth-
esis the score type, MDS method and dimensionality.
A capital “Z” denotes probability scores (raw scores are
considered the default, so no letter is used), while a capi-
tal “C” denotes the use of classical scaling and “S”
denotes SMACOF. Finally, if a specific MPSS dimension-
ality is intended, the dimensionality is given as a number.
Following these conventions, “Dali” refers to raw Dali
alignment distances, while “Dali(Z)” refers to the prob-
ability scores. “Dali(C)” and “Dali(ZC)” refer to MPSS (of
all dimensionalities) using classical scaling and Dali raw
or probability scores, respectively. As a final example,
“Dali(S12)” refers specifically to the Dali raw score/SMA-
COF MPSS of dimension 12.

Classification performance
We computed ROC curves for prediction of SCOP
Superfamily and Fold membership using all 8 sets of
alignment distances and all 16 types of MPSS distances.
For each MPSS distance, ROC curves were generated
using MPSS of several dimensionalities ranging from 3
to 120. The overall accuracy of annotation prediction is
expressed using the ROC AUC, which equally values
maximization of true positives and minimization of false
ones (sensitivity and specificity). Table 2 and Table 3

Figure 5 Neighbor-joining tree for Dali(S12). A) The complete cluster tree for distances from the 12D SMACOF MPSS based on Dali. Colors
indicate membership in the 200 most populated SCOP Superfamilies. Because it is difficult to distinguish highly similar colors, a smaller number
of distinct colors are reused periodically across the tree, while guaranteeing that color labels are locally unique. The reader may note that
different superfamilies are found at different depths within the tree, so that the use of a single threshold for all clusters is only approximate.
B) The part of the tree that corresponds to the PH domain-like superfamily. This superfamily is entirely and exclusively contained within a single
subtree. C) The region of the tree containing the Immunoglobin and Fibronectin Type III superfamilies. These superfamilies do not correspond
either to a single subtree or to a single depth within the tree.
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give the AUC, for Superfamily and Fold prediction
respectively, of the best-performing score type and
MPSS drawn from all four alignment methods. The best
overall performance - considering both Fold and Super-
family levels - is obtained with the 12D MPSS con-
structed from raw Dali distances using SMACOF, with
Superfamily and Fold AUC of 93.85% and 90.42%,
respectively (average 92.14%).

Study of selected SCOP superfamilies using MPSS
The ability of MPSS distances to predict the classifica-
tions of remotely homologous protein structures can be
clearly illustrated by visualizing maps of suitably low
dimensionality and examining the distributions of points
corresponding to individual superfamilies. Due to the
large size of the space as well as the presence of more
than 1,000 superfamilies, we have focused on a region of
the PSS containing several of the most highly populated
SCOP Superfamilies present in our data. Figure 6 depicts
this region in a three-dimensional MPSS, specifically
FATCAT(C3). Proteins belonging to each of these super-
families are highlighted in color, while the other points in
the space have been hidden. Based on Figure 6, it is
apparent that there are variations in the shape, density
and average positions of the different superfamily distri-
butions. The Ubiquitin-like and Immunoglobin superfa-
milies, for example, are relatively cohesive and apart
from other groups, while the dense NTF2-like and PH
domain-like clades are immediately adjacent to one
another. The “Winged helix” DNA binding domains are
relatively less dense when compared to the other groups

shown. This observation is indicative of a higher level of
structural diversity within this clade.
Despite the marked, qualitative variations between the

superfamilies, they are all well captured by the optimal dis-
tance threshold determined using the ROC analysis. The
results of classification prediction within these specific
superfamilies, using the optimal threshold, can be sum-
marized using precision, recall and their harmonic mean
(F1-measure). These statistics are given for each of the
selected superfamilies in Table 4. All of these superfamilies
are accurately captured using the ROC distance threshold,
and the lowest F1 score is 0.866. However, the reader may
note that the widely dispersed “Winged helix” superfamily
is predicted with a somewhat lower recall than are the
other superfamilies. This is a consequence of the use of a
single threshold for all groups; a threshold which performs
admirably for relatively homogenous groups such as the
NTF2-like superfamily may be too restrictive to capture all
of the members of a diverse group such as “Winged helix”
domains.

Score transformations and performance
In order to succinctly present the impact of score transfor-
mation on classification using raw and MPSS distances
alike, we compute the ratios between the AUC obtained
by the top-performing MPSS, and the transformed and
untransformed alignment distances. These are shown in
Table 5, for SCOP Superfamily, and in Table 6 for SCOP
Fold.
For prediction of membership in SCOP Superfamilies

and Folds alike, all of the score transformations provide
an improvement over raw pairwise distances. This
improvement ranges from over 50% for CE to nearly
nothing for Dali. MPSS likewise improve performance
over pairwise distances, but do not consistently improve
the performance after score transformations are already
applied. For Superfamilies, the MPSS computed using
SMACOF tend to outperform those based on CMDS, but
the opposite holds at the Fold level. The specific results
for particular structure aligners, score transformations
and MDS algorithm are discussed in detail below.
The results presented in Table 5 and Table 6 lead to

certain conclusions about the different score transforma-
tions. CE uses the simplest transformation, which con-
verts scores to probabilities by assuming a Gaussian
distribution. Although the Gaussian assumption may be
questionable, the central limit theorem provides that
many distributions approximate a Gaussian for suffi-
ciently large sample sizes. Furthermore, while a Gaussian
fit technically requires two free parameters, subtraction
of the sample mean renders the population mean basi-
cally irrelevant and overfitting rather unlikely. This trans-
formation is the only one which provides an unequivocal
benefit for both pairwise distances and MPSS.

Table 2 Top performing PSS representations for SCOP
Superfamilies.

Best alignment score AUC Best MPSS AUC

CE(Z) 91.25% CE(ZS24) 91.96%

Dali(Z) 87.43% Dali(ZS30) 94.15%

FATCAT(Z) 91.16% FATCAT(C60) 90.54%

MATT(Z) 92.02% MATT(S24) 93.85%

The AUC of the best score type of each aligner, as well as of the best MPSS,
are shown. The best AUC in the table (for the Dali MPSS) is highlighted in
bold italics. Note that a particular MPSS always improves upon the underlying
alignment algorithm and score transformation.

Table 3 Top performing PSS representations for SCOP
Folds.

Best alignment score AUC Best MPSS AUC

CE(Z) 86.89% CE(ZS12) 89.23%

Dali(Z) 78.67% Dali(S12) 90.42%

FATCAT(Z) 85.51% FATCAT(C6) 87.80%

MATT(Z) 85.29% MATT(ZC24) 89.78%

The AUCs for SCOP Folds. The reader may note that in this case also, the
MPSS improves upon the underlying alignment algorithm and score
transformation.
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In contrast, the transformation used by Dali accounts
only for the relationship between alignment score and
length of the aligned structures, as opposed to statistical
significance. Based on Table 5 and Table 6, it appears
this model has little impact on classification of remotely
homologous structures of shared function. It has been
argued previously that the down-weighting of align-
ments between large structures impairs the ability of
Dali Z-scores to capture functional relationships implied
by local similarity between such structures [12]. How-
ever, we find only that these Z-scores offer little
improvement. With regard to MPSS, the transformation
has essentially no effect at the Superfamily level and a
somewhat negative effect at the Fold level.
FATCAT takes an approach to probability transforma-

tion which is akin to that of CE - probabilities are calcu-
lated by fitting scores to a chosen distribution. Rather than
a simple Gaussian, FATCAT employs the extreme value
distribution, which is fit numerically via a simplex search
across three free parameters. Use of this method leads to a
significant improvement over raw FATCAT alignment dis-
tances, but impairs the efficacy of MPSS.

The probability transformation used by MATT is dis-
tinct from the other pairwise score types in that it already
represents a dissimilarity or distance rather than a similar-
ity score. The transformation itself is a non-linear function
of the final Ca-Ca RMSD of the aligned residues, the
lengths of the aligned structures, the length of the align-
ment and three empirically determined parameters. These
parameters were set by finding the slope of a line which
best discriminates between real and decoy alignments on a
graph of RMSD versus alignment length. While this trans-
formation has a large, positive effect for pairwise distances,
it too impairs the efficacy of MPSS.
We find that FATCAT and MATT Z-score transfor-

mations reduce the performance of MPSS by introdu-
cing and/or exacerbating violations of the triangle
inequality in the pairwise distances, detectable as nega-
tive eigenvalues in the inner product matrix A (data not
shown). Such violations of course preclude accurate
representation by points in Euclidean space. In contrast,
the Dali transformation does not have such an effect
and the CE transformation actually reduces degree of
triangle inequality violations (fewer/smaller negative

Figure 6 MPSS with selected SCOP superfamilies highlighted. The figure shows a view of FATCAT(C3), with several selected SCOP
superfamilies highlighted. Points representing members of other superfamilies are transparent and dimmed, but present in the map. It can be
seen that the superfamilies are well separated in the mapping space.

Table 4 Classification performance within selected SCOP superfamilies.

Superfamily “Winged-helix” PH domain-like NTF2-like Ubiquitin-like Immunoglobin

Precision 0.997 1 1 1 0.987

Recall 0.766 0.818 0.982 0.909 0.811

F1-measure 0.866 0.900 0.991 0.953 0.890

Classification performance statistics are given for each of the five superfamilies shown in Figure 6. Prediction of SCOP superfamily membership is made by
thresholding MPSS distances from FATCAT(C3) with the (single) optimum threshold obtained from ROC analysis. Statistics presented in the table include:
precision or positive predictive value, recall or true positive rate, and the F1-measure, which is the harmonic mean of precision and recall.
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eigenvalues). Nevertheless, MPSS computed using raw
scores provide the best overall performance.
Projection into an explicit coordinate representation

provides a score transformation method which simulta-
neously outperforms extant probability transformations
and alignment length adjustment functions but relies on
only a single free parameter (MPSS dimensionality) and
makes no assumptions about any underlying distribution
of scores. Instead, individual proteins are localized in an
explicit spatial representation which is mutually consis-
tent with all pairwise distances simultaneously. In a
MPSS, sets of proteins with many highly significant pair-
wise distances are found in distinct, potentially overlap-
ping, regions far from those inhabited by proteins with
which they bear no structural relationships. MPSS are
not highly sensitive to the dimensionality parameter; the
results presented here indicate that MPSS represent the
protein space in a highly accurately with dimensionalities
ranging from 12 to 30, and in many cases perform admir-
ably with as few as three dimensions. Such MPSS are sui-
table for visual inspection and interpretation, a topic we
have addressed elsewhere [14].

Dimensionality and performance
The AUC values for prediction of SCOP Superfamily and
Fold memberships are plotted versus MPSS dimensionality
in Figure 7 and 8, respectively. As mentioned previously,
the tested dimensionalities range from 3 to 120. The
AUCs obtained using the pairwise PSS representations are
displayed as flat lines, so they may be referenced easily
across each figure.
Several interesting trends are revealed by the depen-

dence of MPSS distances on dimensionality. At the Super-
family level, Dali MPSS with only three dimensions
already surpass pairwise distances in AUC, while for CE

and MATT MPSS do not do so for dimensionalities less
than 12. SMACOF outperforms CMDS at the Superfamily
level, in general obtaining higher classification accuracies
with lower dimensionalities. Two key differences are seen
in the context of Fold prediction. First, MPSS distances
generally perform better than pairwise distances even at
the lowest dimensionalities considered in Figure 7 and 8.
Second, MPSS at the Superfamily level maintain a plateau
of performance for dimensionalities of 12 to 30, but at the
Fold level the decline in performance with increasingly
dimension is more rapid in general. The drop off in classi-
fication accuracy at a particular dimensionality for each
aligner is to be expected because insomuch as MPSS per-
form better than pairwise distances, higher dimensional-
ities which permit precise replication the original distances
will lead to worse performance. Although inflection points
occur at the same dimensionalities, the AUC rises and
falls more steeply than for SMACOF than for CMDS.
The dimensionality dependence of MPSS representations

in general, as well as their superiority to pairwise distances
can be understood based on the nature of the underlying
algorithms used for low-dimensional projection. CMDS
employs a linear (eigen-) decomposition into a set of
mutually orthogonal axes (eigenvectors) which have the
property of accounting for increasingly smaller proportions
of the total dispersion between points (eigenvalues). The
combination of these two restrictions forces random noise
present in the distances to be distributed across many small
linear components (eigenvectors with small eigenvalues).
With respect to distances, the dimensionality reduction of
CMDS thus acts as a noise-reducing filter. However, any
non-linear correlation structure is may also be distributed
amongst a large number of linear components and subse-
quently filtered out in the resulting MPSS distances, as may
any highly local relations involving only a small number of

Table 5 Relative performance of MPSS and PW distances for SCOP Superfamilies.

CE CE(Z) Dali Dali(Z) FATCAT FATCAT(Z) MATT MATT(Z)

Z : Raw 1.500 1.003 1.083 1.037

CMDS : PW 1.415 1.000 0.893 0.894 1.075 0.963 1.041 0.998

SMACOF : PW 1.359 1.008 1.079 1.077 1.037 0.912 1.057 0.998

SMACOF : CMDS 0.960 1.008 1.207 1.204 0.965 0.948 1.015 1.000

The relative performance for Superfamily prediction of both raw and probability (Z) scores are given for each aligner, as are the relative performances of MPSS of
both types (CMDS and SMACOF) versus pairwise distances (PW) as well as each other. Relative performance is expressed as ratios of AUC values, with ratios
greater than one presented in bold. In each case, the MPSS with the highest AUC is used.

Table 6 Relative performance of MPSS and PW distances for SCOP Folds.

CE CE(Z) Dali Dali(Z) FATCAT FATCAT(Z) MATT MATT(Z)

Z : Raw 1.588 1.002 1.137 1.063

CMDS : PW 1.525 0.993 0.964 0.918 1.167 0.993 1.114 1.053

SMACOF : PW 1.418 1.027 1.152 1.137 1.088 0.937 1.106 1.043

SMACOF : CMDS 0.929 1.034 1.195 1.240 0.932 0.943 0.993 0.991

Fold classification performance. The convention used for presenting the data is the same as in Table 5.
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Figure 7 AUC for SCOP Superfamily prediction vs. MPSS dimensionality. The Superfamily classification AUC are shown for all 24 PSS
representations. The AUC is plotted against MPSS dimensionality; pairwise distances are depicted as a flat line for reference. The legend gives
the curves using the PSS name code containing the aligner name, Z for probability scores, C for classical scaling and S for SMACOF. Detailed
descriptions of the trends found in this figure are given in the text. The figure shows that the MPSS Dali(S12-30) and MATT(S12-30) are most
accurate.

Figure 8 AUC for SCOP Fold prediction vs. MPSS dimensionality. Fold classification AUC are shown for all 24 PSS representations. The AUC
is plotted against the MPSS dimensionality; pairwise distances are depicted as a flat line for reference. Detailed descriptions of the trends found
in this figure are given in the text. The figure shows that the MPSS Dali(S12) is the most accurate at this SCOP level.
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structures. In contrast to CMDS, SMACOF non-linearly
minimizes the deviation between pairwise and MPSS dis-
tances. The restricted dimensionality of the map acts as a
smoothness constraint which prevents noise - which is
assumed to be non-smooth - from influencing the MPSS.
However, SMACOF may overfit large noise terms which
would otherwise be ignored by CMDS for a given dimen-
sionality. The right choice depends on the non-linearity of
the relations under study (i.e. SCOP Fold and Superfamily
relationships) as well as the noise magnitude of the pairwise
distances. The steeper slopes seen for SMACOF in both
Figure 7 and 8 occur because SMACOF effectively transfers
higher dimensional information contained in pairwise dis-
tance data into the low-dimensional projections created by
CMDS. At lower dimensions this translates into higher per-
formance, as valuable information discarded by CMDS is
introduced into the MPSS. The converse is observed at
higher dimensionalities, because CMDS adds new dimen-
sions in order of decreasing eigenvalue. When such MPSS
are refined, the SMACOF algorithm is left to fit only the
intermolecular separations explained by the smaller, unused
eigenvalues. When these eigenvalues correspond primarily
to noise, stress majorization leads to overfitting. These
observations also help to explain the trends seen for the
various aligners with respect to Z-score transformations,
which carry explicit restrictions on higher-order statistical
moments (e.g. CE, FATCAT), down-weight particular
alignment lengths (Dali), or both (MATT). In contrast,
MPSS generated with CMDS may represent structures
which decompose into a linear basis, while SMACOF is
limited only in terms of the geometries possible in Eucli-
dean spaces of finite dimension.

Alignment algorithms and sparsity
In light of the results presented in the preceding sections,
it is possible to make some statements regarding the indi-
vidual alignment methods. The rigid alignments of CE
appear to be characterized by a significant amount of
noise, which can be filtered probabilistically or via
CMDS. CMDS performs less well at the Fold level, but
SMACOF maps using CE Z-scores are able to recover
useful information discarded by CMDS without overfit-
ting of noise. Dali makes for an interesting case because
it limits the alignment search space by filtering out pairs
deemed unlikely to align and is alone among the four
aligners in frequently failing to perform particular align-
ments. Indeed, while CE, FATCAT and MATT aligned
all possible pairs in our data set, Dali was able to calcu-
late an alignment score for just 2% of approximately
8 million pairs. As a consequence of this extreme spar-
sity, Dali scores do not predict Superfamily or Fold mem-
bership particularly well. In a seeming paradox however,
Dali-based MPSS constructed with SMACOF obtain bet-
ter observed performance than all other representations

studied. Most likely, the pre-alignment filter results in a
low-noise data set but the high level of sparsity prevents
pairwise comparisons from being informative for remo-
tely homologous structures. SMACOF works well in this
case because the algorithm is able to infer the correct
relative distances of un-aligned pairs based on transitive
relationships between the alignment distances which do
exist. Specifically, these transitive relationships are
mediated by a small number of frequently aligned struc-
tures in a scale-free fashion. This conclusion is strongly
supported by the fact that a histogram of the number of
partners aligned per structure is closely fit by a power
law (R2 = 0.988), as shown in Figure 9.
FATCAT is significantly aided by probability scoring

using the extreme-value distribution and performs fairly
well at the Superfamily level, but has middling perfor-
mance for prediction of Fold. CMDS improves perfor-
mance of FATCAT raw scores for Fold prediction, but
SMACOF MPSS distances perform worse than pairwise
distances, and at the Superfamily level FATCAT MPSS
perform worse in general. These data suggest that FAT-
CAT distances contain less noise than the other align-
ment distances, especially for alignments approximating
Superfamily-type relationships, but that FATCAT is not
as sensitive as the other algorithms to more distant
homologies. Finally, MATT is the most recently pub-
lished of the aligners and achieves the best Superfamily
performance for pairwise distances. At this level, MATT
SMACOF MPSS perform nearly as well as the top per-
forming Dali MPSS. Like FATCAT, MATT is highly
sensitive to the homologies found within Superfamilies,

Figure 9 Histogram of completed Dali alignments. A 100-point
histogram of the number of successful Dali alignments for each
structure. The histogram counts fit tightly to a power law, R2 =
0.988. This corroborates the hypothesis that high-degree nodes
mediate the relationships between most other pairs of proteins in a
scale-free manner.
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but is not as sensitive to the more distant relationships
found at the Fold level. That the 24D MPSS created
with CMDS and MATT raw scores is second only to
the robust combination of Dali and SMACOF for pre-
diction of Fold membership suggests that CMDS effec-
tively discards Fold-level noise present in the MATT
distances.

Hierarchical clustering
ROC AUC values evaluate representations of PSS in
terms of their ability for colocalization of related pairs
of protein structures, but do not say whether or not a
tessellation of PSS can naturally reproduce an arrange-
ment of mutually exclusive clusters such as that given
by the SCOP classifications of a given level. To investi-
gate how closely clusters within different PSS represen-
tations are able to replicate the clades found at a given
level of the SCOP hierarchy, we use maximum-linkage
hierarchical clustering, following the approach taken in
[11]. First, the classification given by SCOP and the
results of automatic clustering are compared by finding
the SCOP group most similar to each cluster. Then, the
relative similarities of these sets of protein structures are
investigated, as well as the degree to which members of
a single group in one tessellation may be divided
amongst several groups in the other. The results of clus-
ter analysis for SCOP Superfamiles are listed in Table 7
and those for the Fold-level classification in Table 8.
The analysis is bidirectional; thus each table separately
describes the mapping from hierarchical clusters to
SCOP clades as well as the inverse mapping from SCOP
clades to particular hierarchical clusters.
The comparison between a cluster and its most simi-

lar SCOP group (and vice-versa) is made in terms of
descriptive statistics detailing the closeness of the map,

and descriptive statistics are compiled across all such
pairings. These statistics include the mean, standard
deviation and maximum degrees to which a SCOP clade
is divided across multiple clusters (or vice-versa), as well
as the mean and standard deviation of the Jaccard coef-
ficient between them. The Jaccard coefficient is an index
of the similarity of two sets which takes values on the
interval [0, 1] and has all the properties associated with
a true metric. It is defined as the cardinality of the inter-
section of the two sets divided by the cardinality of their
union.

JAB =
|A ∩ B|
|A ∩ B| (10)

In addition, to the above, Table 7 and Table 8 also
include the number of SCOP groups or clusters found
at a given level, the number of the unique, most similar
groups to which these are mapped as well as the ratio
between these numbers minus one, which provides a
readable expression of the closeness of the match.
We selected several PSS representations to subject to

this cluster analysis. These include pairwise MATT
probability scores as well as the top-performing MPSS
constructed using SMACOF on the Dali and MATT
raw scores. In order investigate the impact of varying
MPSS dimensionality on structure space clustering we
include the minimum and maximum dimensionalities
found on the AUC performance plateau observed in
Figure 7 and 8. This corresponds to dimensionalities of
12 and 30 for Dali and 12 and 24 for MATT.
The results of Table 7 and Table 8 reveal that MATT

cleaves SCOP Superfamilies into many more clusters
than do the MPSS distances. This leads both to a very
high maximum and standard deviation of splitting
degree. The closest correspondence between individual

Table 7 Comparison of SCOP superfamilies and hierarchical clusters.

Cluster mapping Max deg. Mean deg. Std deg. Mean sim. Std sim. Mapped clusters Ratio-1

SCOP- Matt(Z) 171 1.928 6.927 0.394 0.309 1180 : 612 0.928

SCOP-Matt(S12) 22 2.453 2.324 0.285 0.224 1180 : 481 1.453

SCOP-Dali(S12) 51 2.987 3.920 0.249 0.219 1180 : 395 1.987

SCOP-Matt(S24) 29 2.370 3.121 0.312 0.268 1180 : 498 1.369

SCOP-Dali(S30) 52 2.582 3.613 0.294 0.255 1180 : 457 1.582

Matt(Z)- SCOP 35 1.262 1.597 0.492 0.319 766 : 607 0.262

Matt(S12)-SCOP 22 1.180 1.074 0.400 0.251 564 : 478 0.180

Dali(S12)-SCOP 9 1.082 0.521 0.419 0.247 422 : 390 0.082

Matt(S24)-SCOP 19 1.178 0.942 0.464 0.280 590 : 501 0.178

Dali(S30)-SCOP 20 1.101 0.944 0.467 0.272 502 : 456 0.101

The best results for each mapping direction and column are highlighted in bold italics. Max, mean and std. degree refer to the number of Superfamilies or
clusters corresponding to a given superfamily or group. Mean and std. similarity refer to the Jaccard coefficients obtained between these matching clusters.
Finally, “mapped clusters” indicates the number of clusters or Superfamilies found, and the number of unique groups which to which are mapped. This ratio
minus one is shown in the rightmost column; the closer this number is to zero, the more similar are aggregate sizes of the two tessellations. The values of min
degree and max similarity are both one and the value of min similarity is zero.
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SCOP clades and hierarchical clusters is achieved by
12D MPSS using either Dali or MATT. Although SCOP
clades map more readily to the automatic clusters than
vice-versa, these same trends are nevertheless evident in
the bottom half of Table 7 and Table 8. The situation
appears somewhat different when the actual similarities
(Jaccard indices) are examined in addition to the split-
ting degree. Although MATT is less consistent than the
MPSS (greater standard deviation), it seems to achieve a
slightly greater level of similarity between clusters and
their matching clades in SCOP. Interestingly, the same
observation holds between the relative high- and low-
dimensional MPSS. Why is this given the significantly
worse performance of these PSS representations in
terms of cluster integrity? The answer is given by the
relatively large number of small SCOP groupings,
including many singletons, present in the data set used
in this work. The better mean Jaccard coefficients arise
merely because clustering of these PSS representations
leads to a large number of similarly small clusters
including a large number of singletons with high chance
similarity to the singleton SCOP clades. This interpreta-
tion is supported by the fact that MATT and high-
dimensional MPSS have worse (less consistent) standard
deviations than the low-dimensional MPSS, and by the
very large numbers of singleton and small clusters
observed for MATT in Figure 10 and 11, which display
histograms of cluster size for MATT and the 12D
MPSS. The reader may also note that this relationship
between high- and low-dimensional MPSS is expected
even when the accuracy of pairwise classification (AUC)
is very similar, as is the case for 12D and 30D Dali and
MATT MPSS. The reason for this is the “curse of
dimensionality” commonly lamented in clustering appli-
cations. Because distance between points increases
monotonically with dimensionality, so will the number
of splits in the dendrograms obtained by neighbor-join-
ing. This leads in turn to a greater number of final

clusters and a greater chance of finding singletons. Note
that the higher distance thresholds appropriate for
higher dimensionalities are supplied automatically by
the ROC curve threshold selection procedure, thus the
greater number of clusters is due only to the changes to
the topology of the tree which guides the maximum-
linkage clustering.

Conclusions
We have presented an extensive investigation of structure
space representations. In particular we have analyzed the
biological relevance of 24 such representations in terms of
their capacity for automatic classification of SCOP Super-
families and SCOP Folds, as well as the similarity found
between automatic tessellation of PSS representations and
the clade systems in SCOP. These representations use four
state-of-the-art structure alignment algorithms, CE, Dali,
FATCAT and MATT, which exemplify divergent
approaches to the alignment problem, and separate com-
parisons were made using both raw alignment distances
and the transformed alignment distances which attempt to
account for alignment length and statistical significance.
It was found that all but one of these transformations

were less effective than projection into an explicit spatial
representation using MDS, despite the fact that MDS
makes no use of alignment length or structure size and
requires only a single, insensitive parameter (the target
dimensionality). We also examined the impact of dimen-
sionality on the accuracy of MPSS. This is an important
addition to our previous work investigating parameters
involved in creation of MPSS [13]. The results indicate
that MPSS are highly effective for dimensionalities ran-
ging between approximately 12 and 30, although they
remain competitive with pairwise distances even for the
very low-dimensionalities suitable for visualization. In
particular, a 12D MPSS generated by projection of pair-
wise Dali distances using the SMACOF algorithm for
MDS is able to predict the membership of protein pairs

Table 8 Comparison of SCOP folds and hierarchical clusters.

Cluster mapping Max deg. Mean deg. Std deg. Mean sim. Std sim. Mapped clusters Ratio-1

SCOP- Matt(Z) 98 1.554 4.432 0.419 0.311 757 : 487 0.554

SCOP-Matt(S12) 10 1.966 1.391 0.294 0.222 757 : 385 0.966

SCOP-Dali(S12) 25 2.419 2.245 0.257 0.204 757 : 313 1.419

SCOP-Matt(S24) 17 2.00 1.974 0.309 0.248 757 : 379 0.997

SCOP-Dali(S30) 22 2.132 2.001 0.310 0.249 757 : 355 1.132

Matt(Z)- SCOP 37 1.552 2.323 0.391 0.321 762 : 491 0.552

Matt(S12)-SCOP 15 1.296 1.127 0.346 0.244 495 : 382 0.296

Dali(S12)-SCOP 7 1.150 0.518 0.365 0.231 361 : 314 0.150

Matt(S24)-SCOP 20 1.347 1.448 0.367 0.268 516 : 383 0.347

Dali(S30)-SCOP 10 1.150 0.643 0.426 0.266 413 : 359 0.150

The best results for each mapping direction and column are highlighted in bold italics. Column headings are the same as in Table 7, but for SCOP Folds rather
than for Superfamilies. The values of Min degree and max similarity are both one and the value of min similarity is zero.
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Figure 10 Histogram of cluster sizes for SCOP Superfamily level. Frequency of occurrence is plotted versus the size of clusters obtained by
hierarchical clustering using the Superfamily-level distance threshold. Pairwise MATT distances result in a large number of small clusters,
including many singletons. For MPSS, in comparison, a smaller number of larger clusters which map more directly to the SCOP Superfamily
classification are obtained.

Figure 11 Histogram of cluster sizes for SCOP Fold level. The frequency of occurrence is plotted against the size of clusters obtained by
hierarchical clustering using the Fold-level distance threshold. As for the SCOP Superfamily level, pairwise MATT distances result in a large
number of small clusters, including many singletons. In comparison, for MPSS, a smaller number of larger clusters which map more directly to
the SCOP Fold classification are obtained.
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in SCOP Superfamiles and SCOP Folds with respective
AUC values of 0.942 and 0.904. These values are higher
than those for any of the other 23 types of intermolecular
distances examined here. Finally, we tested how similar
automatic clustering of the best-performing PSS repre-
sentations can be to the tessellation of protein space
defined by the Superfamily and Fold levels of SCOP.
Using a hierarchical clustering algorithm parameterized
by a single distance threshold, MPSS permit a tessellation
of the PSS which is remarkably similar to SCOP at both
of the remotely homologous levels considered here.
We thus conclude that MPSS constructed by multidi-

mensional scaling of pairwise distance data provide a
powerful framework for automated analysis of structure-
function relationships between proteins. It is particularly
noteworthy that MPSS are highly effective even at the very
remotely homologous Superfamily and Fold levels of
SCOP. Future directions of our research will focus on the
usefulness of the explicit coordinate representation of the
protein fold space, in order to address the fundamental
character of the protein fold space, as well as the specific
regions in that space which correspond to particular types
of structures or functional capacities.
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