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Abstract

Background: Identifying protein-protein interactions (PPIs) is essential for elucidating protein functions and
understanding the molecular mechanisms inside the cell. However, the experimental methods for detecting PPIs
are both time-consuming and expensive. Therefore, computational prediction of protein interactions are becoming
increasingly popular, which can provide an inexpensive way of predicting the most likely set of interactions at the
entire proteome scale, and can be used to complement experimental approaches. Although much progress has
already been achieved in this direction, the problem is still far from being solved and new approaches are still
required to overcome the limitations of the current prediction models.

Results: In this work, a sequence-based approach is developed by combining a novel Multi-scale Continuous and
Discontinuous (MCD) feature representation and Support Vector Machine (SVM). The MCD representation gives
adequate consideration to the interactions between sequentially distant but spatially close amino acid residues,
thus it can sufficiently capture multiple overlapping continuous and discontinuous binding patterns within a
protein sequence. An effective feature selection method mRMR was employed to construct an optimized and
more discriminative feature set by excluding redundant features. Finally, a prediction model is trained and tested
based on SVM algorithm to predict the interaction probability of protein pairs.

Conclusions: When performed on the yeast PPIs data set, the proposed approach achieved 91.36% prediction
accuracy with 91.94% precision at the sensitivity of 90.67%. Extensive experiments are conducted to compare our
method with the existing sequence-based method. Experimental results show that the performance of our
predictor is better than several other state-of-the-art predictors, whose average prediction accuracy is 84.91%,
sensitivity is 83.24%, and precision is 86.12%. Achieved results show that the proposed approach is very promising
for predicting PPI, so it can be a useful supplementary tool for future proteomics studies. The source code and the
datasets are freely available at http://csse.szu.edu.cn/staff/youzh/MCDPPI.zip for academic use.

Background
Protein-protein interactions (PPIs) play key roles in
various cellular processes, including metabolic cycles, DNA
transcription and replication, and signalling cascades. Cor-
rectly identifying and characterizing protein interactions
are critical for understanding the molecular mechanisms

inside the cell [1]. In recent years, the researchers devel-
oped a couple of innovative techniques for identifying the
interactions among proteins [1-3]. Due to the progress in
high-throughput biological techniques such as Mass Spec-
trometric (MS), Tandem Affinity Purification (TAP)
[1,2,4,3] and other large-scale experimental approaches for
PPIs identification, an immense amount of PPIs data for
different organisms has been accumulated [1-5].
However, the high-throughput experimental approaches

are time consuming and expensive. Thus, current PPIs
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data generated with experimental methods only cover a
small fraction of the complete PPI networks [6]. In addi-
tion, high-throughput biological techniques suffer from
high false negative and false positive rates [6-10]. There-
fore it is very important and urgent to develop the efficient
and reliable computational approaches to facilitate the
detection of protein interactions [11-13].
A number of computational techniques have been

developed to provide either complementary information
or supporting evidence to experimental methods [14-17].
Existing approaches typically use binary classification
frameworks that differ in the features used to represent
protein pairs. Different protein attributes or feature
sources, such as protein domains, gene neighbourhood,
phylogenetic profiles, gene expression, and literature
mining knowledge are employed to infer protein inter-
actions[6-8,11,18-25]. There are also approaches that
integrate the interaction information from a couple of
different biological data sources[26]. However, if the
pre-knowledge about the proteins is not available the
aforementioned approaches cannot be implemented.
Recently, a number of attempts which derive informa-

tion directly from amino acid sequence have been made
to develop computational model to help in discovering
new PPIs [7,8,11,13,27-30]. The experimental results in
previous works showed that the information of protein
primary sequences alone is sufficient to detect protein
interactions [7,11,13]. Shen et al. developed an automatic
and excellent identification system for predicting PPIs
based on protein amino acids sequence information [13].
In their study, the twenty protein amino acids were firstly
clustered into seven clustering according to their dipoles
and volumes of the side chains, and then we use the con-
joint triad feature to represent of the given protein
sequence based on the classification of amino acids. This
approach achieves a high prediction accuracy of 83.9% on
human PPIs data set. However, Shen’s work cannot takes
neighbouring effect into account and it is generally
agreed that the interactions among proteins occur in the
discontinuous amino acids segments of the protein
sequence. Lately, Guo et al. employed auto covariance
(AC) transformation method to consider the discontinu-
ous amino acids segments in the sequence [11]. When
applied to predict saccharomyces cerevisiae PPIs, their
approach achieved a high prediction accuracy of 86.55%.
In our previous studies, our methods which used auto-
correlation descriptors and correlation coefficient also
yielded good prediction performance [8,31,32].
In this study, a novel feature representation method

for prediction of PPIs is proposed. We hypothesize that
the continuous and discontinuous amino acids segments
play an important role in determining the interactions
between proteins. For example, discontinuous regions
consist of amino acid residues remote from each other

in primary protein sequence, yet spatially proximate in
protein three-dimensional structure, which determines
the interaction of proteins. In other words, the proposed
protein representation method account for the interac-
tions between sequentially distant but spatially close
amino acid residues, thus it be able to adequately cap-
ture multiple overlapping continuous and discontinuous
binding patterns within protein sequence.
To sum up, in this paper we propose a sequence-based

approach for the prediction of protein-protein interac-
tions using support vector machine (SVM) combined
with a novel multi-scale continuous and discontinuous
protein feature representation. In order to reduce the
dimensionality of data and improve the accuracy of the
predictor, an effective feature selection method minimum
redundancy maximum relevance (mRMR) is employed to
select a compact and discriminative new feature subset
[33]. The Saccharomyces cerevisiae PPI dataset was
employed to evaluate the performance of the proposed
method. The experiment results demonstrate that our
approach yielded 91.36% prediction accuracy with 91.94%
precision at the sensitivity of90.67%. Our proposed
method was also evaluated using the independent dataset
of the Helicobacter pylori PPIs and achieved a high over-
all accuracy of 84.91%, which further demonstrates the
effectiveness of the proposed method.

Results
In this section, we first briefly introduce the PPIs datasets
which is employed to evaluate the proposed method. Then
we discuss the evaluation strategies used in performance
comparisons. Finally, we analyse the experimental results
and compare our results with the related research.

Benchmark PPI datasets
To evaluate the performance of the proposed method, the
PPIs dataset collected from yeast core subset of Database
of Interacting Proteins (DIP) has been employed. This
dataset is originally derived by Guo et al. and consists of
11,188 protein pairs, where half are from the positive data-
set and half are from the negative dataset [11]. It should
be noticed that the protein pairs which contain a protein
with fewer than fifty residues or have ≥40% sequence iden-
tity were removed in our PPIs dataset; the remaining 5,594
protein pairs comprise the final positive dataset. Choosing
negative examples is a very important for training a pre-
dictor of PPIs. The common method is based on annota-
tions of cellular localization. In this study, the 5,594
protein pairs occurring in two different subcellular locali-
zations were chosen as negative PPIs dataset.

Evaluation measures
In the experiment, the five-fold cross-validation was
employed to evaluate the prediction performance of the
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proposed method. More specifically, the PPIs dataset is
randomly divided into five equally sized subsets, and
then each subset is used as a testing set in turn, while
the other four subsets are used for training set.
Four evaluation metrics, sensitivity (SN), precision

(PE), overall accuracy (ACC) and Matthews Correlation
Coefficient (MCC) are used to measure the prediction
performance of our method. They are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(1)

SN =
TP

TP + FN
(2)

PE =
TP

TP + FP
(3)

MCC =
TP × TN − FP × FN√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
(4)

where TP, FP, TN and FN refer to number of true
positive, number of false positive, number of true nega-
tive and number of false negative PPIs, respectively. MCC
is considered to be the most robust metric of any class
prediction method. An MCC equal to 0 is regarded as a
completely random prediction, whereas 1 is regarded as a
perfect prediction.

Experimental setting
In this paper, the proposed sequence-based PPI predictor
was implemented using MATLAB platform. For SVM
algorithm, the implementation of LIBSVM available from
http://www.csie.ntu.edu.tw/~cjlin/libsvm was utilized,
which was originally developed by Chang and Lin [34].
The Radial Basis Function was chosen as the kernel func-
tion and the optimized parameters (C, γ ) were obtained
with a grid search approach. Regarding mRMR, the
implementation by Peng and Ding available from http://
penglab.janelia.org/proj/mRMR/ was used. All the simula-
tions were carried out on a computer with 3.1 GHz 2-core
CPU, 6 GB memory and Windows operating system.

Prediction performance of proposed model
The DIP PPIs data which investigated in Guo et al. was
adopted to evaluate the performance of the proposed
model [11]. Proper parameters setting can improve the
SVM classification accuracy; therefore the corresponding
parameters for SVM were firstly optimized. Here, two
parameters, C and gamma (g), were determined using the
grid search approach within a limited range. To guaran-
tee that the experimental results are valid and can be
generalized for making predictions regarding new data,
the dataset is randomly partitioned into training and

independent testing sets via a 5-fold cross validation.
Each of the five subsets acts as an independent holdout
testing dataset for the model trained with the rest of four
subsets. Thus five models were generated for the five sets
of data. The advantages of cross validation are that the
impact of data dependency is minimized and the reliabil-
ity of the results can be improved.
The prediction performance of SVM predictor with

MCD representation of protein sequence across five runs
are shown in Table 1, compared with several published
results for the same dataset. From Table 1 we observed
that high overall accuracy in the range of 91.01%-92.00% is
obtained for the proposed model. To better evaluate the
prediction performance of the proposed method, other
four evaluation metrics including Sensitivity, Precision,
MCC, and AUC are calculated in the study. It can be
observed from Table 1 that the proposed method yielded
good prediction performance with an average Sensitivity
value of 90.67%, Precision value of 91.94%, ,AUC value of
97.07%and MCC value of 84.21%. In addition, we can
observed from Table 1 that the standard deviation of over-
all accuracy, precision, sensitivity, MCC and AUC are as
low as 0.36, 0.62, 0.69, 0.59 and 0.12, respectively.
We further compared our method with Guo et al.[11],

Zhou et al.[35] and Yang et al.[36], where the SVM,
SVM and KNN was performed with the conventional
Auto Covariance, Local Descriptor, and Local Descriptor
representation as the input feature vectors, respectively.
From Table 1, we can see that the performance of all of
these methods with different machine learning model
and sequence based feature representation are lower
than ours, which indicates that our improvements are
resulted from adopting the proposed MCD descriptor to
represent the protein sequences. In a word, we may
safely draw the conclusion that the proposed method
generally outperforms the previous approaches with
higher discrimination power for detecting PPIs based the
information of protein amino acids sequences. Therefore,
we can see clearly that our model is a much more effi-
cient method for predicting PPIs compared with existing
approaches methods. Therefore, it makes us be more
convinced that our new method will be a useful tool for
protein interaction prediction community.

Comparing the prediction performance with other
methods
We performed the PPIs dataset for Helicobacter pylori to
highlight the advantage of the proposed model. The
H. pylori PPIs dataset is originally derived by Martin et al.
and composed of 1,458 interacting pair and 1,458 non-
interacting pairs for a total of 2,916 protein pairs, [37].
This dataset is adopted to performs a comparison of
proposed method with several existing works including
phylogenetic bootstrap[38], HKNN [39], ensemble of
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HKNN [40], signature products [37] and boosting [31]. The
methods of phylogenetic bootstrap, signature products and
HKNN are based on individual classifier system to infer
PPIs, while the methods of HKNN and boosting belong to
ensemble-based classifiers. The average prediction results
of ten-fold cross-validation over six different approaches
are given in Table 2. From Table 2, we can see that the
average prediction performance, i.e. accuracy, sensitivity,
precision and MCC achieved by proposed predictor, are
84.91%, 83.24%, 86.12% and 74.4%, respectively. It demon-
strates that our method outperforms all other individual
classifier-based methods such as Phylogenetic bootstrap. It
can be also observed that the proposed method clearly
yields a comparable performance with the other ensemble
classifier systems (i.e. Boosting and ensemble of HKNN).
All these results demonstrate that our model substantially
improves the performance in the prediction of PPIs.

Incremental Feature Selection (IFS) and optimal feature
subset
The incremental feature selection (IFS) procedure was
used to find an optimal subset from the mRMR feature

list generated above [41]. Suppose the total number of
the features is N. We can obtain N feature subsets which
are initiated from a subset containing one feature and
generated by adding them one by one from the mRMR
feature list. Then SVM predictors were constructed with
5-fold cross-validation based on the feature subsets.
Finally the IFS curve of MCC to the different feature sub-
set was plotted. An optimal feature subset was obtained
with which the corresponding predictor yields the best
MCC. The detailed analysis of the experimental results in
this section and the IFS curve are available at the website:
http://csse.szu.edu.cn/staff/youzh/MCDPPI.zip.

Conclusions
In this study, we have proposed an efficient technique
for predicting protein interactions from protein primary
sequences by combining a novel multi-scale continuous
and discontinuous (MCD) feature representation with
SVM model. The MCD representation takes into
account the factors that the PPIs usually occur in dis-
continuous segments in the protein sequence, where
distant amino acid residues are brought into spatial
proximity by protein folding. A protein sequence was
characterized by a number of regions using MCD repre-
sentation, which is capable of capturing multiple over-
lapping continuous and discontinuous binding patterns
within a protein sequence. In order to reduce the noise
and irrelevant features which affect the protein predic-
tion performance, the mRMR method was adopted for
feature selection. Experimental results show that our
method performed significantly well in predicting pro-
tein interactions. Achieved results demonstrate that the
proposed approach is very promising for predicting PPI

Table 1 Comparison of the prediction performance by the proposed method and some state-of-the-art works on the
yeast dataset.

Model Test set SN(%) PE(%) ACC(%) MCC(%) AUC(%)

Our
method

1 91.66 92.40 92.00 85.28 97.15

2 90.49 92.01 91.11 83.79 96.91

3 91.13 91.05 91.19 83.94 96.97

4 90.41 91.48 91.01 83.64 97.07

5 89.64 92.76 91.47 84.38 97.23

Average 90.67 ± 0.69 91.94 ± 0.62 91.36 ± 0.36 84.21 ± 0.59 97.07 ± 0.12

Guos’ work ACC 89.93 ± 3.68 88.87 ± 6.16 89.33 ± 2.67 N/A N/A

AC 87.30 ± 4.68 87.82 ± 4.33 87.36 ± 1.38 N/A N/A

Zhous’
work

SVM+LD 87.37 ± 0.22 89.50 ± 0.60 88.56 ± 0.33 77.15 ± 0.68 95.07 ± 0.39

Yangs’
work

Cod1 75.81 ± 1.20 74.75 ± 1.23 75.08 ± 1.13 N/A N/A

Cod2 76.77 ± 0.69 82.17 ± 1.35 80.04 ± 1.06 N/A N/A

Cod3 78.14 ± 0.90 81.86 ± 0.99 80.41 ± 0.47 N/A N/A

Cod4 81.03 ± 1.74 90.24 ± 1.34 86.15 ± 1.17 N/A N/A

Here, N/A means not available.

Table 2 Performance comparison of different methods on
the H .pylori dataset. Here, N/A means not available.

Methods SN (%) PE (%) ACC (%) MCC (%)

Phylogenetic bootstrap 69.8 80.2 75.8 N/A

Ensemble of HKNN 86.7 85 86.6 N/A

Signature products 79.9 85.7 83.4 N/A

Boosting 80.37 81.69 79.52 70.64

HKNN 86 84 84 N/A

Proposed method 83.24 86.12 84.91 74.40
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and can be a useful supplementary tool to traditional
experimental method.

Methods
In this section, we introduce the proposed MCD-SVM
approach for predicting protein interactions from protein
primary sequences. The proposed approach to predict the
PPIs is consisted of three steps: (1) Represent protein
sequences as a vector by using the proposed multi-scale
continuous and discontinuous (MCD) feature representa-
tion; (2) Minimum redundancy maximum relevance
(mRMR) is utilized to do the feature selection; (3) SVM
predictor is used to perform the protein interaction pre-
diction tasks.

Feature vector extraction
To successfully use the machine learning methods to
predict PPIs from protein sequences, one of the most
important computational challenges is how to effectively
represent a protein sequence by a fixed length feature
vector in which the important information content of
proteins is fully encoded. Although researchers have
proposed various sequence-based methods to predict
new PPIs, one flaw of them is that the interactions
information cannot be drawn from both continuous and
discontinuous amino acids segments at the same time.
To overcome this problem, in this study we propose a
novel Multi-scale Continuous and Discontinuous (MCD)
sequence representation approach to transform the pro-
tein sequences into feature vectors by using binary coding
scheme. A multi-scale decomposition technique is used
to divide protein sequence into multiple sequence seg-
ments of varying length to describe both continuous and
discontinuous regions. Here, the continuous sequence
segments are composed of residues which are local in the
polypeptide sequence, while discontinuous regions consist
of residues from different parts of the sequence, brought
into spatial proximity by the folding of the protein to its
native structure.
In order to extract the interaction information, we first

divided the entire protein sequence into a number of
equal length segments. Then a novel binary coding
scheme was adopted to construct a couple of continuous
and discontinuous regions on the basis of above partition.
For example, consider a protein sequence “GGYCCCYY-
GYYYGCCGGYYGCG” containing 22 residues. To repre-
sent the sequence by a feature vector, let us first divide
each protein sequence into multiple regions. Refer to
Figure 1, the protein sequence is divided into four equal
length segments (denoted by S1, S2, S3and S4). Then it is
encoded as a sequence of 1’s and 0’s of 4-bit binary form.
In binary, these combinations are written as 0000, 0001,
0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,
1011, 1100, 1101, 1110, 1111. The number of states of a

group of bits can be found by the expression 2n, where n
is the number of bits. It should be noticed that here 0 or 1
denote one of the four equal length region S1 - S4 is
excluded or included in constructing the continuous or
discontinuous regions respectively. For example, 0011
denotes a continuous region constructed by S3 and S4 (the
final 50% of the sequence). Similarly, 1011 represents a
discontinuous region constructed by S1, S3 and S4 (the
first 25% and the final 50% of the sequence). These regions
are illustrated in Figure 1.
It should be noticed that the proposed representation

can be simply and conveniently edited at multiple scales,
which offers a promising new approach for addressing
these difficulties in a simple, unified, and theoretically
sound way when present a protein sequence. For a given
number of bits, each protein sequence may take on only a
finite number of continuous or discontinuous regions.
This limits the resolution of the sequence. If more bits are
used for each protein sequence, then a higher degree of
resolution is obtained. For example, if the protein
sequence is encoded by 5-bit binary form, each protein
sequence may take on 30 (25-2) different regions. Higher
bit encoding requires more storage for data and requires
more computing resource to process.
For each continuous or discontinuous region, three

types of descriptors, composition (C), transition (T) and
distribution (D), are used to represent its characteristics.
C is the number of amino acids of a particular property
(e.g., hydrophobicity) divided by the total number of
amino acids in a local region. T characterizes the percen-
tage frequency with which amino acids of a particular
property is followed by amino acids of another property.
D measures the chain length within which the first, 25%,
50%, 75%, and 100% of the amino acids of a particular
property are located, respectively [42].
The three descriptors can be calculated in the following

ways. Firstly, in order to reduce the complexity inherent in
the representation of the 20 standard amino acids, we
firstly clustered them into seven groups based on the
dipoles and volumes of the side chains. Amino acids within
the same groups likely involve synonymous mutations
because of their similar characteristics [13].The amino
acids belonging to each group are shown in Table 3.
Then, every amino acid in each protein sequence is

replaced by the index depending on its grouping. For
example, protein sequence “GGYCCCYYGYYYGC-
CGGYYGCG” is replaced by 1132223313331221133121
based on this classification of amino acids. There are eight
‘1’, six ‘2’ and eight ‘3’ in this protein sequence. The com-
position for these three symbols is 8 × 100%/(8+6+8) =
36.36%, 6 × 100%/(8+6+8) = 27.27% and 8 × 100%/(8+6+8)
= 36.36%, respectively. There are 4 transitions from ‘1’ to
‘2’ or from ‘2’ to ‘1’ in this sequence, and the percentage
frequency of these transitions is (4/21) ×100% = 19%. The
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transitions from ‘1’ to ‘3’ or from ‘3’ to ‘1’ in this sequence
can similarly be calculated as (6/21) ×100% = 28.57%. The
transitions from ‘2’ to ‘3’ or from ‘3’ to ‘2’ in this sequence
can also similarly be calculated as (2/21) ×100% = 9.52%.
For distribution D, there are 8 residues encoded as “1” in

the example of Figure 2, the positions for the first residue
‘1’, the 2nd residue ‘1’ (25% × 8 = 2), the 4th ‘1’ residue
(50% × 8 = 4), the 6th ‘1’ (75% × 8 = 6) and the 8th residue
‘1’ (100% × 8) in the encoded sequence are 1, 2, 13, 17, 22
respectively, so the D descriptors for ‘1’ are: (1/22) ×100% =
4.55%, (2/22) ×100% = 9.09%, (13/22) ×100% = 59.09%,
(17/22) ×100% = 77.27%, (22/22)×100% = 100%,

respectively. Similarly, the D descriptor for ‘2’ and ‘3’ is
(18.18%, 18.18%, 27.27%, 63.64%, 95.45%) and (13.64%,
31.82%, 45.45%, 54.55%, 86.36%), respectively.
For each continuous or discontinuous region, the three

descriptors (C, T and D) were calculated and concate-
nated, and a total of 63 descriptors are generated: 7 for C,
21 ((7 × 6)/2) for T and 35 (7 × 5) for D. Then, all descrip-
tors from 14 regions were concatenated and a total
882 dimensional vector has been built to represent each
protein sequence. Finally, the protein pair is represented
by concatenating the two vectors of two individual
proteins. Thus, a 1764-dimentional vector has been
constructed to character each protein pair and used as a
feature vector for input into SVM classifier.

Minimum redundancy maximum relevance (mRMR)
After the feature extraction procedure, all protein
interaction and non-interaction pairs in benchmark

Figure 1 The Schematic diagram for constructing continuous and discontinuous descriptor regions for a hypothetical protein
sequence using 4-bit binary form. Each protein sequence is divided into 14 (2^4-2) sub-sequences (regions S1 - S14) of varying length to
represent multiple overlapping continuous or discontinuous segments.

Table 3 Division of amino acids into seven groups based
on the dipoles and volumes of the side chains.

Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

Group
7

A,G,V C M,S,T,Y F,I,L,P H,N,Q,W K,R C
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datasets are converted into numerical feature vectors
with the same dimension. In order to reduce feature
abundance and computation complexity, the Minimum
Redundancy Maximum Relevancy (mRMR) criterion
was used in this study to select an optimal feature sub-
set [33].
The mRMR was originally proposed by Peng et al. to

deal with the microarray gene expression data processing
[33]. It ranked features based on the trade-off between
their relevance to the target concerned and the redun-
dancy among the features themselves. Feature with the
better trade-off between the maximum relevance to target
and the minimum redundancy between features were con-
sidered as better features and would be selected in the
final ordered list. The mRMR algorithm is described
briefly below.
Mutual information (MI), which estimates how much a

vector is related to another, was used to quantify both
relevance and redundancy. The mutual information of two
vectors x andy, denoted as I(x, y), could be calculated as
below:

I(x, y) =
∫∫

p(x, y) log
p(x, y)
p(x)p(y)

(5)

where p(x, y) is the joint probabilistic density function
of x and y. p(x) and p(x) are the margin probabilistic
density function of x andy, respectively.
Suppose SF, SS and ST denote the whole feature set con-

taining all the features, the already selected feature set
containing m features, and the to-be-selected feature set
containing n features, respectively. The relevance D of the
feature f in SF with the target c can be calculated by

D = I(f , c) (6)

The redundancy R of the feature f in ST with all the fea-
tures in SS can be calculated by

R =
1
m

∑
fi∈SS

I(f , fi) (7)

In order to let the feature fj in ST with the maximum
relevance to target c and minimum redundancy among
features, The mRMR feature selection framework attempts
to optimize Equations (10) and (11) simultaneously
through aggregating the two criterion functions into a sin-
gle criterion function. MID (mutual information differ-
ence) or MIQ (mutual information quotient) criteria can
be employed to solve the above optimization problem. In
this study, Equations (6) and (7) are combined into the
mRMR function:

max
fj∈ST

⎡
⎣I(fj, c) − 1

m

∑
fi∈SS

I(fj, fi)

⎤
⎦ (j = 1, 2, ...,n) (8)

Given a dataset with N features, the mRMR feature
evaluation will continue N rounds. Finally, an ordered
feature set SS =

{
f1

′, f2′, ..., fN ′} can be obtained in which
each feature has a subscript index indicating at which
round the feature is chosen. The earlier the feature has
been selected in the evaluation, the smaller the index is
and the better the feature is. The mRMR program could
be downloaded from the website at http://penglab.janelia.
org/proj/mRMR/.

Support Vector Machine (SVM)
Support Vector Machine (SVM) is a classification and
regression paradigm first developed by Vapnik [43]. It has
attracted much research attention in these years due its

Figure 2 Sequence of a hypothetic protein indicating the construction of composition, transition and distribution descriptors of a
protein region.
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demonstrated improved generalization performance over
other techniques in many real world applications including
bioinformatics [8]. The SVM originated from the idea of
the structural risk minimization theory. The main differ-
ence between this technique and many other conventional
classification techniques including neural networks is that
it minimizes the structural risk instead of the empirical
risk. The principle is based on the fact that minimizing an
upper bound on the generalization error rather than mini-
mizing the training error is expected to perform better.
SVM training always seeks a global optimized solution
and avoids over-fitting, so it has the ability to deal with a
large number of features. A complete description to the
theory of SVMs for pattern recognition is in Vapnik’s
book [43].
The basic idea of utilizing SVM model for classification

can be stated briefly as follows. Firstly, map the original
data X into a feature space F with high dimensionality
through a linear or non-linear mapping function, which
is relevant with the selection of the kernel function.
Then, within the feature space from the first step, seek
an optimized linear division, i.e. construct a hyper plane
which separates the data into two classes.
Given a training dataset of instance-label pairs

{xi, yi}, i = 1, 2, ...,N with input data xi ∈ Rn and labelled
output data yi ∈ {+1,−1}. The classification decision
function implemented by SVM is represented in the fol-
lowing equation:

y(x) = sign

[
N∑
i=1

yiαi · K(x, xi) + b

]
(9)

where the coefficients αi are obtained by solving the
following convex Quadratic Programming (QP) problem:

Maximize
N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαj · yiyj · K(xi, xj) (10)

Subject to 0 ≤ αi ≤ C (11)

N∑
i=1

αiyi = 0 i = 1, 2, ...,N. (12)

In the equation (11), C is a regularization parameter
which controls the tradeoff between margin and misclassi-
fication error. These xj are called Support Vectors only if
the corresponding αj > 0. In this work, Radial Basis Func-

tions (RBF) kernel, K(xi, xj) = exp(−γ

∥∥∥xi − xj

∥∥∥2), is

applied, which has better boundary response and most
high-dimensional data sets can be approximated by
Gaussian like distributions. In the experiment we use

the well-known software LIBSVM to classify the PPI
dataset [34].
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