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Abstract

Motivation: Previous studies have demonstrated that machine learning based molecular cancer classification using
gene expression profiling (GEP) data is promising for the clinic diagnosis and treatment of cancer. Novel
classification methods with high efficiency and prediction accuracy are still needed to deal with high
dimensionality and small sample size of typical GEP data. Recently the sparse representation (SR) method has been
successfully applied to the cancer classification. Nevertheless, its efficiency needs to be improved when analyzing
large-scale GEP data.

Results: In this paper we present the meta-sample-based regularized robust coding classification (MRRCC), a novel
effective cancer classification technique that combines the idea of meta-sample-based cluster method with
regularized robust coding (RRC) method. It assumes that the coding residual and the coding coefficient are
respectively independent and identically distributed. Similar to meta-sample-based SR classification (MSRC), MRRCC
extracts a set of meta-samples from the training samples, and then encodes a testing sample as the sparse linear
combination of these meta-samples. The representation fidelity is measured by the l2-norm or l1-norm of the
coding residual.

Conclusions: Extensive experiments on publicly available GEP datasets demonstrate that the proposed method is
more efficient while its prediction accuracy is equivalent to existing MSRC-based methods and better than other
state-of-the-art dimension reduction based methods.

Introduction
With the advance of DNA microarray and next-generation
sequencing (NGS) technology [1], a large amount of gene
expression profiles (GEP) data has been rapidly accumu-
lated, which requires novel analysis method to deeply
mine these big data to interpret such data to gain insight
into the mechanism of tumor development. Since Golub
et al. made use of gene expression profiling data, obtained
using the DNA microarray technology, to classify acute
myeloid leukemia (AML) and acute lymphocytic leukemia
(ALL) [2], a great number of GEP-based cancer classifica-
tion methods have been proposed for classifying cancer

types or subtypes [3-6]. It has increasingly become clear
that common machine learning methods such as support
vector machine (SVM) [7,8] and artificial neural networks
(ANN) [5,9] may not perform very well because of the
curse of dimensionality, as the number of features (genes)
is usually much higher than the number of samples
in most GEP experiments. Therefore, the key task of
GEP-based cancer classification should be the design of
dimension reduction method to dramatically decrease the
number of features in GEP data before constructing classi-
fication models.
Dimension reduction methods can be grouped into

two categories: feature selection and feature reduction
approaches. Feature selection methods [10], such as the
heuristic breadth-first search algorithm, find as many
optimal gene subsets as possible and further rank these
genes to discover important cancer-related genes [11].
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Feature extraction methods instead employ independent
component analysis to model the gene expression data
[12,13]. Gene selection methods do not alter the original
representation of each gene, while feature extraction
methods, which are based on projection, yield new vari-
ables that may reflect the intrinsic characteristics of ori-
ginal features. Other feature extraction methods such as
principal component analysis (PCA)[14], linear discrimi-
nant analysis (LDA) [15], locally linear discriminant
embedding (LLDE) [16], and partial least squares (PLS)
[17] are also extensively applied to the dimensionality
reduction of GEP. These methods can generally achieve
satisfactory classification performance with the mini-
mum dimension reduction. Both feature selection and
feature extraction methods have their own advantages and
disadvantages. For gene selection methods, their main
advantage is that the selected genes may be related to the
underlying mechanisms of cancer development. However,
different gene selection methods may result in significantly
different selected genes and therefore the interpretation of
the results can be difficult. For the feature extraction
methods, small dimension can be obtained by integrating
original features. However, it is difficult to precisely inter-
pret the biomedical meanings of derived features.
Machine learning based methods are also often called

model-based methods because a predictive model is built
for predicting the label of test sample. The model selection
is a complex training procedure, which easily leads to
over-fitting and decreased prediction performance.
Recently, sparse representation (SR), a powerful data pro-
cessing method that does not require model selection, has
been extensively applied to face recognition [18,19] and
further extended to cancer classification recently [20-22].
For example, Hang, et al. proposed a SR-based classifica-
tion (SRC) method using l1-norm minimization to classify
cancer test sample. The approach models a classification
problem as to find a sparse representations of test samples
with respect to training samples [22]. They applied the
proposed method to six cancer gene expression datasets
and their experimental results demonstrated that the per-
formance of the proposed method was comparable to or
better than those of SVMs. Especially, the proposed
method does not involve model selection and is robust to
noise, outliers and even incomplete measurements. Zheng,
et al. further presented a new SR-based method for GEP-
based cancer classification, termed meta-sample-based SR
classification (MSRC), where a set of meta-samples are
extracted from training samples, and then a testing sample
is represented as the linear combination of these meta-
samples by l1-regularized least square method [20]. Their
experiments on publicly available GEP datasets have
shown that MSRC is efficient for cancer classification and
can achieve higher accuracy than many existing represen-
tative schemes such as SVM, SRC and least absolute

shrinkage and selection operator (LASSO) algorithm. In
addition, Gan et al. proposed a new classifier, meta-sam-
ple-based robust sparse representation classifier (MRSRC)
based on the MSRC method, for cancer classification [21].
Their experiments show that these methods are efficient
and robust.
Previous SR-based model assumes that the coding resi-

dual follows Gaussian or Laplacian distribution, which
may not be effective for describing the coding residual in
practical GEP datasets, and another problem is that the
sparsity constraint on coding coefficients leads to the high
computational cost of SRC method. To deal with the pro-
blem, Yang et al. proposed a new coding model, namely
regularized robust coding (RRC) for face recognition [23].
Here, we present a meta-sample-based regularized robust
coding classification (MRRCC) method, a novel and effec-
tive cancer classification technique combining the ideas of
meta-sample-based and RRC methods. A meta-sample
can be represented as a linear combination of a set of
training samples, which may capture the intrinsic struc-
tures of these data. The coefficient vector of a meta-
sample may have only a few nonzero elements. The
expression patterns over the meta-samples can reflect
the gene expression patterns. Test samples belonging to
the same subclass will have similar sparse representation,
while different subclass would result in different sparse
representations [22]. Our extensive experiments on cancer
datasets show that MRRCC can achieve higher classifica-
tion accuracy but with lower time complexity, compared
with other SR-based methods and dimension reduction-
based methods.

Methods
Description of SR-based problem
Let G = {g1, · · · , gn} be a set of genes and S = {s1, · · · , sm}
be a set of samples. |G| = n denotes the number of genes,
and |S| = m denotes the number of samples. The corre-
sponding GEP data can be represented as a matrix
X = (xi,j)nm, 1 ≤ i ≤ n, 1 ≤ j ≤ m , wherexi,j is the expres-
sion level of gene gi in sample sj. Usually n is much big-
ger than m for a typical GEP dataset. Each vector si in
the gene expression matrix can be regarded as a point in
n-dimensional space. Each of the m columns consists of
an n-element expression vector for a single sample. Let
L = {c1, · · · , ck} denote the label set and |L| = k denote
the number of subclasses. Because the subclass of each
sample is known, S × L = {(si, li)|si ∈ Rn, li ∈ Rn, li ∈ L, i = 1, 2, · · · , m}
denotes the labeled sample space. The whole sample set
X is randomly split into two disjoint parts: training set A
and test set B . Generally, the SR-based problem could be
represented as

min
α

||α||1, s.t.||y − Aα||22 ≤ ε (1)
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where y is a given test sample, A represents all train-
ing samples, α is the coding vector of y with respect to
A , and ε is a small positive constant. By coding the test
sample y as a sparse linear combination of the training
samples via Eq. (1), SR-based classifier assigns the label
to the test sample y based on the predictions which
subclass can produce the least reconstruction error.

Analysis flowchart of cancer GEP data
The analysis flowchart of the meta-sample-based SR
method is different from those of traditional model-
based and template-based methods (Figure 1). The classi-
fication models of model-based methods use the training
set to predict the labels of test samples, while template-
based methods create a template for each subclass using
training set and then compare a test sample to the tem-
plates in order to determine the label of the test sample
[3]. Although there is similarity between the analysis
flowcharts of meta-sample-based SR method and tem-
plate-based one, there is a major difference (Figure 1).
The reconstructed test samples of the meta-sample-
based SR method are relevant to not only the training set
but also the original test sample, while the templates of
template-based methods are only relevant to the training
set. The flowchart of analysis of the meta-sample-based
SR method includes five steps:
1) The whole sample set is randomly split into two

disjoint parts: training set and test set, and then the
meta-samples are extracted only from the training set
using singular value composition (SVD).

2) The weight of each gene is calculated according to
a weight function, and the genes with lower weight are
removed in a test sample To and all meta-samples.
3) The test sample To is represented as a linear com-

bination of all meta-samples, and the coding coefficient
of the test sample To can be obtained by using RRC.
4) We can reconstruct the test sample for each subclass

by using the meta-samples and the coding coefficient of
the original test sample To , and the reconstructed test
samples (the test sample 1, test sample 2,..., test sample k )
are denoted by T1, T2, . . . , Tk , where k denotes the num-
ber of subclasses in original dataset.
5) The distance between the processed test sample

and each reconstructed test sample Ti, 1 ≤ i ≤ k is cal-
culated, and the original test sample To is assigned to
the subclass with minimal distance.

Construct meta-samples
The meta-sample extracted from GEP data is commonly
defined as a linear combination of all training samples.
In this paper, a set of meta-sample is extracted from all
training samples of one cancer type. We find that meta-
sample can capture the structures to the data and offer
biological insight. on the other hand, the linear combi-
nation of the meta-samples can roughly estimate genetic
expression pattern of gene data [24]. Alter, et al. used
singular value decomposition (SVD) to transform GEP
data from a space of genes × arrays to the diagonal
‘’eigengenes × eigenarrays’’ space [25], where the eigen-
arrays (or eigengenes) are the unique orthonormal

Figure 1 The analysis flowchart of cancer GEP data using SR-based methods for predicting cancer types.
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superpositions of the arrays (or genes). In our approach,
we can decompose the gene expression data set matrix
A into two matrices:

Ai = Mi × Vi, 1 ≤ i ≤ k

where matrix Ai is of size n × mi , the matrix Mi is
of size n × qi and the matrix Vi is of size qi × mi .
Each of qi columns in matrix Mi is defined as a meta-
sample of the i -th subclass. Each of mi columns in matrix
Vi represents the meta-sample expression pattern of the
corresponding samples. D = [M1, . . . Mi, ..Mk] denotes the
constructed meta-sample set.

Calculating coding coefficient using RRC
The meta-sample set D = [M1, . . . Mi, ..Mk] can be
rewritten as D = [r1; . . . ri; ..rn], where ri denotes the
expression level of the i -th gene in all meta-samples.
Let y = [y1; . . . yi; . . . yn] denote a test sample, where yi

is the expression level of the i -th gene. We can con-
sider the cancer classification from the view point of
Bayesian estimation, especially the maximum a posterior
(MAP) estimation. By using the Bayesian formulation,
we can calculate the coding coefficient by the following
formula [23]

α̂ = argminα{∑n
i=1 ρθ (yi − riα) +

∑m
j=1 ρo(αj)} (2)

where ρθ (e) = −lnfθ (e) and ρo (α) = −lnfo(α) . The
coding residual e = y − Dα = [e1; e2; . . . ; en] are with the
probability density function (PDF) fθ (ei) and the coding

vector α = [α1; α2; . . . ; αm] are with PDF fo(αj) . Gener-

ally, we assume that the unknown PDF fθ (e) are sym-
metric, differentiable and monotonic. Therefore, ρθ (e)
has following properties: (1) ρθ (0) is the global minimal
of ρθ (z) ; (2) ρθ (z) = ρθ(−z) ; (3) if |z1| < |z2| , we can
get ρθ (z1) < ρθ (z2) . Without loss of generality, we can
let ρθ (0) = 0 .
There are two key issues in solving the RRC model.

The first one is how to determine the distribution ρθ .
The second one is how to minimize the energy function.
The RRC model in Eq. (2) can be approximated as fol-
lows.

α̂ = argminα{1
2

||W1/2
(
y − Dα

) ||22 +
∑m

j=1 ρo(αj)} (3)

where W is a diagonal matrix.

Wi,i = ωθ

(
e0,i

)
= ρ ′

θ (e0,i)/e0,i (4)

where Wi,i is the weight value of each gene. Thus
the minimization problem of the RRC model can be
transformed into calculating the diagonal weight
matrix W .

The logistic function has the same properties as the
hinge loss function in SVM [26], so we choose it as the
weight function.

ωθ (ei) = exp
(
μδ − μe2

i

)
/(1 + exp(μδ − μe2

i )) (5)

where μ and δ are two positive constants. Parameter
μ controls the decreasing rate from 1 to 0, and δ con-
trols the location of demarcation point. To make ωθ (0)
close to 1, let the value of μδ be big enough. According
to Eq. (4), Eq. (5) and ρθ (0) = 0 , we can get

ρθ (ei) =
−1
2μ

(ln
(
1 + exp

(
μδ − μe2

i

)) − ln(1 + exp μδ)) (6)

For cancer classification, the coding coefficients asso-
ciated with the dictionary atoms from the same subclass
would have big absolute values. However, we do not
know which subclass the testing sample will belong to.
Therefore, we actually assume that the coding coefficient
αj follows generalized Gaussian distribution (GGD). So
we can obtain the following formula.

fo
(
αj

)
= β exp

{
−(|αj|/σα)β

}
/(2σα
(1/β)) (7)

where 
 is the gamma function.
The RRC model has two vital cases when β is set as

two specific values [23].
When β = 1 , GGD degenerates to Laplacian distribu-

tion, and the RRC model will become

α̂ = arg minα

{
||W1/2

(
y − Dα

) ||22 + λ||α||1
}

(8)

When β = 2 , GGD degenerates to Gaussian distribu-
ton, and the RRC model will become

α̂ = arg minα{||W1/2
(
y − Dα

) ||22 + λ||α||22} (9)

Iteratively reweighted regularized robust coding
algorithm
Iteratively reweighted regularized robust coding (IR3C)
algorithm was designed by Yang, et al. to solve the RRC
model efficiently [23]. The overall procedure of the algo-
rithm is as follows.
Input: Normalized test sample y with unit l2-norm;

meta-sample set Dextracted from original training sam-
ples; α(1).
Output: α

t = 1; // t denotes the iterative times.
1. Compute the gene residual e(t) = y − Dα(t)

where α(1) =
[

1
m

;
1
m

; . . . ;
1
m

]
, and Dα(1) is the mean

of all meta-samples.
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2. Estimate weight value of each gene as

ωθ

(
e(t)

i

)
= 1/1 + exp

(
μ

(
e(t)

i

)2
− μδ

)

where μ and δ would be estimated in each iteration
and δ is associated with residual.

3. Weighted regularized robust coding coefficient:

α* = argminα

{
1
2

||(W(t)
)0.5 (

y − Dα
) ||22 +

∑m
j=1 ρo(αj)

}
;

//Assume the αj follows generalized Gaussian
distribution.

4. Update the robust coding coefficients.

If t = 1, α(t) = α∗;
If t > 1, α(t) = α(t−1) + v(t)(α∗ − α(t−1)); //where
0 < v(t) ≤ 1 is a suitable step size. v(t)could be
searched from 1 to 0 by the standard line-search
process [27].

5. Reconstruct the test sample by coding coefficient
and all meta-samples

y(t)
rec = Dα(t) , and let t = t + 1.

6. Return to the step 1 until the condition of conver-
gence ||W(t) − W(t−1)||2/||W(t−1)||2 < ϕ (ϕ is a small
positive scalar) is met, or reached the maximal number
of iteration.
Algorithm end.
When the algorithm converges, we can use the same

classification method as SRC to classify test sample.

identity
(
y
)

= arg mind{ld} (10)

where
ld = ||W

1
2
final(y − Ddα̂d)||2 , Dd is the meta-sample

set associated with d-th subclass, α̂d is the final coding
vector associated with d-th subclass, and Wfinal is the
final weight matrix.
When β = 1, the time complexity of IR3C is O(tm2n),

where n is the number of genes, m is the number of
meta-samples, and t is the iteration times. When β = 2,
the time complexity of IR3C is O(tk1mn), where k1 is
the iteration number in conjugate gradient solution. The
time complexity of IR3C with β = 1 or β = 2 is much
lower complexity than SRC whose time complexity is
O(m2n1.5) [23].
In literature [23] the RRC model with β = 1 is called

as RRC_L1 and the RRC model with β = 2 is called as
RRC_L2. However, in our method the input D of IR3C

is actually a set of meta-samples which are extracted by
SVD from the original training set, so we call our meth-
ods as MRRCC1 (the meta-sample-based regularized
robust coding classification 1) and MRRCC2 (the meta-
sample-based regularized robust coding classification 2)
corresponding to the two cases RRC_L1 and RRC_L2,
respectively.

Experiments
Cancer datasets
GEP data can be obtained by two technologies, DNA
microarray and next-generation sequencing (NGS) tech-
nologies. In our experiments five microarray and four
NGS cancer datasets are used to evaluate the proposed
method (Table 1). The five microarray datasets include
Diffuse Large B-cell Lymphomas (DLBCL) [28], Acute
Lymphoblastic Leukemia (ALL) [29], GCM [30], Lung
cancer (Lung) [31], and MLL [32]. The DLBCL dataset
contains two subclasses, i.e., DLBCL and Follicular Lym-
phoma (FL). The ALL dataset totally contains 248 samples
that belong to six cancer subtypes: BCR-ABL, E2A-PBX1,
Hyperdip>50, MLL, T-ALL and TEL-AML1. The GCM
dataset consists of fourteen different cancer types. The
Lung cancer dataset contains four lung cancer types and
one normal tissue type (i.e., five subclasses in total). The
MLL dataset contains 72 samples from three subtypes or
subclasses, i.e., MLL, AML and ALL.
The four NGS datasets are downloaded from the web

site: The Cancer Genome Atlas (TCGA) (http://cancer-
genome.nih.gov/). They include Breast invasive carcinoma
(called as BRCACancer), Kidney renal clear cell carcinoma
(KIRCCancer), Lung adenocarcinoma (LUADCancer), and
Thyroid carcinoma (THCACancer). All samples are
matched cancer and normal tissue samples.

Parameter selection
There are two parameters, namely μ andδ, in weight
function Eq. (5). We calculate the δ value as follows. Let
l=⌊τm⌋, where τ ∈ (0, 1). Parameter δ can be obtained
by the following formula.

Table 1 The summary of the eight cancer datasets.

Types Datasets #Samples #Genes #Subclasses(K)

Microarray DLBCL 77 7,129 2

ALL 248 12,626 6

GCM 190 16,063 14

Lung 203 12,601 5

MLL 72 7,129 3

NGS BRCACancer 216 20531 2

KIRCCancer 130 20531 2

LUADCancer 110 20531 2

THCACancer 112 20531 2
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δ = γ1(e)l (11)

where the vector e ∈ Rn, γ1(e)q is the q-th largest ele-

ment of the set {e2
j , j = 1, . . . , n} . Parameter μ is used to

control the decreasing rate of the weight Wi,i. We can
simply set μ = s/δ, where s = 8 is defined as a constant.
So the δ value, estimated by τaccording to Eq. (11), is a
very important parameter to distinguish outlier genes.
The selection of parameter τ will be further determined
by our experiments.
Figure 2 shows the 10-fold cross validation prediction

accuracy varying with τ value increasing from 0.1 to 0.9
by 0.1 on four cancer datasets (two microarray datasets
and two NGS datasets), from which we can see that the
optimal prediction accuracy can be achieved on the four
datasets when τis set to 0.9. So it is appropriate that τis
fixed to 0.9 in our experiments. Furthermore, we find
that the prediction accuracy on two microarray datasets
is greatly affected by τ values, while the prediction accu-
racy on two NGS datasets is less affected by τ values,
suggesting that the two microarray datasets are noisier
than the two NGS datasets.

Comparison with other SR-based methods
The prediction accuracy of the meta-sample-based
methods is greatly affected by the number of meta-sam-
ples extracted using SVD. Figure 3 shows the prediction
accuracy of the four SR-based methods (MSRC,
MRSRC, MRRCC1 and MRCC2) varying with the num-
ber of meta-samples on four datasets, respectively. And

Figure 3 shows that no fixed number of meta-samples
can consistently achieve the optimal performance of
meta-sample-based methods. Therefore, the meta-sam-
ple-based methods require the process of optimizing the
number of meta-samples. Here two-layer 10-fold cross-
validation is used to evaluate the performance of the
SR-based methods. The inner layer 10-fold cross-valida-
tion is used to determine the optimal number of meta-
samples for training in outer layer 10-fold cross-valida-
tion, and the outer layer 10-fold cross-validation is used
to evaluate the classification performance of SR-based
methods. The classification accuracy obtained by five
SR-based methods on the nine cancer datasets are
shown in Table 2. It is clear that our methods MRRCC1
and MRRCC2 are equivalent to other three SR-based
methods in optimal prediction accuracy on eight data-
sets except on GCM dataset.

Comparison with dimension reduction-based
methods
A two-stage method can be used to reduce the dimen-
sionality of dataset before classification. The first stage is
a process of adopting a gene filter method such as
KWRST (Kruskal-Wallis rank sum test) [33] or Relief-F
[34] to initially select a small set of differentially
expressed genes. The second stage is a process of adopt-
ing a feature extraction method to further reduce the
dimensionality of the dataset. Our previous studies have
shown that the predication accuracy of two-stage method
is influenced by many factors such as normalization

Figure 2 The prediction accuracy on the four data sets varying with different τ value.
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method, gene filter method, feature extraction method,
classification method, the number of genes selected and
the number of features extracted as well as different

division of training set and test set, etc. [35]. In our
experiments, training sets and test sets are normalized by
samples using the z-score normalization method.
KWRST is used to filter genes and 300 top-ranked genes
are initially selected. The five feature extraction methods
(PCA, LDA, ICA, LLDE, and PLS) are used to reduce the
dimensionality of dataset. K-nearest neighbor (KNN),
one of simplest classification methods, with correlation
distance is used to classify cancer samples (here 5 nearest
neighbors are used). For LDA method and the datasets
with two subclasses, Euclidean distance is used because
only one feature is extracted. To avoid over-fitting, before
classification we extract only 5 features using these fea-
ture extraction methods except LDA whose number
extracted is K − 1. We call these methods as PCAKNN,
LDAKNN, ICAKNN, LLDEKNN, and PLSKNN,
respectively.

Figure 3 The prediction accuracy of the four methods varying with different number of meta-samples on the four datasets.

Table 2 The classification accuracy obtained by five SR-
based methods on the nine cancer datasets.

Types Datasets SRC MSRC MRSRC MRRCC1 MRRCC2

Microarray DLBCL 94.75 96.10 94.81 97.40 94.81

All 97.70 97.18 97.81 96.77 97.18

GCM 82.93 82.32 78.79 79.80 78.79

Lung 94.53 95.57 96.55 96.55 96.55

MLL 96.31 95.83 98.61 97.22 98.61

NGS BRCACancer 96.76 95.83 99.07 99.07 99.07

KIRCCancer 95.92 95.38 96.92 96.92 96.92

LUADCancer 94.91 99.09 99.09 100 99.09

THCACancer 93.30 87.50 95.54 92.86 95.54
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Experiments indicate that the different divisions of train-
ing sets and test sets can also greatly affect the classifica-
tion performance. In our experiments, the Balance
Division Method (BDM) is used to divide each original
dataset into balanced training sets and test sets [4]. For the
BDM, Q samples from each subclass of the original dataset
are randomly selected and used as a training set, while the
remaining samples are used as test set. Here the limits of
Q value ranges from 5 to |cmin|, where cmin denotes the
subclass set with minimum number of samples in the ori-
ginal dataset, i.e., cmin = argminci

(|ci|), 1 ≤ i ≤ K , where

Q denotes the number of subclass in dataset. We set Q
value to 20 when |cmin| > 20,. For each Q value, the statis-
tical mean of prediction accuracies obtained on 100 ran-
domizations of training set and test set are calculated for
each method. Figure 4 and Figure 5 show the performance
of eight methods varying with different numbers of train-
ing samples per subclasses on four microarray datasets
and four NGS datasets, respectively. The experimental
results indicate that the performance of MRRCC1 and
MRRCC2 are almost the same for all but the GCM data-
set. Generally, our methods are superior to other five

Figure 4 The performance of seven methods varying with the number of genes on the four microarray GEP datasets.
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methods in predication accuracy not only on the four
microarray datasets but also on the four NGS datasets. On
the LUADCancer and THCACancer datasets the perfor-
mance of our methods is slightly worse than PLSKNN in
prediction accuracy when the number of the samples per
subclass in training sets is greater than 10.

Conclusions
With the development of microarray and NGS technolo-
gies, a huge amount of GEP data is rapidly accumulated,
demanding more efficient analysis methods to analyze

these data. In this paper we present a novel meta-sam-
ple-based regularized robust coding for cancer classifica-
tion (MRRCC) that firstly represents each test sample as
a linear combination of all meta-samples which are
extracted from the original training set using SVD. The
coefficient vector is then obtained by l2-regularized least
square that is as powerful as l1-norm regularization but
the former has much lower computational cost [23].
The experimental results have demonstrated that
MRRCC can achieve higher classification accuracy with
lower computational cost than previous state-of-the-art

Figure 5 The performance of seven methods varying with the number of genes on the four NGS GEP datasets.
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solutions such as SRC, MSRC and MRSRC, as well as
many dimension reduction based classification methods.
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