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Abstract

Background: RNA-seq has the potential to discover genes created by chromosomal rearrangements. Fusion genes,
also known as “chimeras”, are formed by the breakage and re-joining of two different chromosomes. It is known
that chimeras have been implicated in the development of cancer. Few publications in the past showed the
presence of fusion events also in normal tissue, but with very limited overlaps between their results. More recently,
two fusion genes in normal tissues were detected using both RNA-seq and protein data.
Due to heterogeneous results in identifying chimeras in normal tissue, we decided to evaluate the efficacy of state
of the art fusion finders in detecting chimeras in RNA-seq data from normal tissues.

Results: We compared the performance of six fusion-finder tools: FusionHunter, FusionMap, FusionFinder,
MapSplice, deFuse and TopHat-fusion. To evaluate the sensitivity we used a synthetic dataset of fusion-products,
called positive dataset; in these experiments FusionMap, FusionFinder, MapSplice, and TopHat-fusion are able to
detect more than 78% of fusion genes. All tools were error prone with high variability among the tools, identifying
some fusion genes not present in the synthetic dataset. To better investigate the false discovery chimera detection
rate, synthetic datasets free of fusion-products, called negative datasets, were used. The negative datasets have
different read lengths and quality scores, which allow detecting dependency of the tools on both these features.
FusionMap, FusionFinder, mapSplice, deFuse and TopHat-fusion were error-prone. Only FusionHunter results were
free of false positive. FusionMap gave the best compromise in terms of specificity in the negative dataset and of
sensitivity in the positive dataset.

Conclusions: We have observed a dependency of the tools on read length, quality score and on the number of
reads supporting each chimera. Thus, it is important to carefully select the software on the basis of the structure of
the RNA-seq data under analysis. Furthermore, the sensitivity of chimera detection tools does not seem to be
sufficient to provide results consistent with those obtained in normal tissues on the basis of fusion events
extracted from published data.
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Background
Sequencing of mRNA transcripts using RNA-seq proto-
col [1] is becoming the reference method for detecting
and quantifying genes expressed in a cell. Although
RNA-seq technology is still in the early phase and it has
not disclosed completely its potential, http://encodepro-
ject.org/ENCODE/protocols/dataStandards/ENCODE_R-
NAseq_Standards_V1.0.pdf, it can be used to discover
genes created by chromosomal rearrangements. Thus,
this technology represents an ideal tool for the discovery
of fusion genes, formed by breakage and re-joining of
two different chromosomes, which are implicated in the
development of cancer [2]. However, normal cells seem to
be also characterized by intergenic splicing and transgenic
splicing, namely chimera [3]. As shown in Figure 1, inter-
genic splicing refers to a splicing event between two adja-
cent genes in the genome, while transgenic splicing is an
event that produces a chimera comprising exons of two
genes located on different chromosomes. Chimeras on the
basis of EST estimations [4,5] and more recently by RNA-
seq [6] were observed in normal tissues. We refer to these
approaches as ab-initio since the authors rely on genomic
data, without additional biological support, to detect
fusions. The experiments reported in [6] indicate that at
least 4-6% of genes in the genome may be involved in chi-
mera formation, although their prevalence was found to
be generally low. Moreover, targeted alignment against
artificial exon-exon junctions [6] of single-end reads RNA-
seq data, allowed the detection of a significant amount of
chimeras in normal colon and brain tissues as well as in
primary colon tumors. No overlap could be observed
between the results obtained with EST and RNA-seq
based approaches [6].
Recently, Frenkel-Morgenstern et al. [7] described a new

approach to assess chimeras. We term this procedure as

the knowledge-based approach since it is based on fusion
events extracted from published data. The authors studied
7,424 putative human chimeric RNAs [8] and detected the
expression of 172 chimeric RNAs in 16 human tissues
(Illumina Body Map 2.0, GSE30611) using high through-
put RNA sequencing, mass spectrometry experimental
data, and functional annotations.

Fusion finder algorithms
In the last two years many chimera-detection tools have
been developed and published. To the best of our knowl-
edge, ChimeraScan [9], deFuse [10], FusionFinder [11],
FusionHunter [12], FusionMap [13], MapSplice [14],
ShortFuse [15], TopHat-Fusion [16] are the most com-
monly used tools for chimera detection. ChimeraScan and
ShortFuse were not considered here since their run did
not terminate properly during the preliminary testing
phase. Before describing fusion finder algorithms, we
introduce the terms used in the rest of the paper.
RNA-seq experiments provide a set of short reads that

can be in two forms: single-end or paired-end. In the latter
case both the forward and reverse template strands of
DNA fragment are sequenced. According to the identifica-
tion of fusion boundary (the nucleotide coordinates defin-
ing the breakpoint of both genes involved in the fusion) it
is possible to observe two contexts: read spanning or read
encompassing. Encompassing reads harbor a fusion bound-
ary and each read maps on a different gene of the fused
gene couple, while in spanning reads one mate overlaps
with a fusion event, while the corresponding paired-end
mate matches with one of the two genes involved in the
chimera.
We have categorized the fusion detection algorithms

into two classes: the fragment-based approach and the
pseudo-reference based approach.
In the fragment based approach input reads are split

into fragments, which are aligned with respect to refer-
ence (whole genome or transcriptome). The mapped
fragments are then used to build a list of putative chi-
meras that undergo through a further selection by means
of various types of filters. This category includes the
following tools: FusionFinder, FusionMap, MapSlice,
deFuse. Pseudo-reference based approaches use candidate
chimeras, obtained from the previous mapping phase, to
generate a new pseudo reference for chimeras detection.
The fusion events resulting from the latter step are
further filtered to reduce false positive. TopHat-Fusion
and FusionHunter are the tools included in this category.
In this paper, we focus on fusion finder algorithms for

ab-initio processes. Between those algorithms, FusionMap
has shown the best compromise between sensitivity and
sensibility. Its results have been also compared with results
obtained by the knowledge-based approach presented in
Frenkel-Morgenstern’s paper.

Figure 1 Events involved in chimeras formation. Chimeras, not
due to a genomic pathological-associated rearrangement, may
originate from two separate events: intergenic splicing and transgenic
splicing. An intergenic splicing event combines exons from two
adjacent genes of the same chromosome, while a transgenic splicing
event combines exons from two gene locate on different
chromosomes.
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Results
Evaluating the sensitivity of fusion-finder algorithms
To compare the sensitivity of fusion-finder algorithms
we used a synthetic dataset provided as part of the
release of the FusionMap software, and we used it as
positive dataset.
This dataset encompasses a total of 50 chimeras, sup-

ported by a different coverage. In particular, the chimeras
are characterized by a number of supporting paired-end
reads ranging from 9 to 8852. The analysis of the positive
dataset revealed that FusionFinder is the most sensitive
tools. Based on the sensitivity, the tools can be ordered as
FusionFinder > TopHat-Fusion = FusionMap > MapS-
plice > deFuse > FusionHunter as reported in Table 1.
The table also reports the number of false chimeras
detected by each tool, i.e. identification of fusion genes
not present in the positive synthetic set. When ranked by
the false discovery rate the order changes as follows:
deFuse = FusionHunter < FusionMap < FusionFinder <
MapSplice < < TopHat-Fusion. FusionMap thus appears
to provide the best compromise between sensitivity and
false discovery rate.
We have also evaluated the number of supporting reads

detected by the six fusion finders on the positive dataset
(Figure 2). All six tools detect a number of reads that are
lower than the number present in the dataset (expected
reads). It is notable that deFuse detects a number of reads
near to expectation for fusions supported by more than 18
reads. Also the other tools lose sensitivity in case of a low
number of supporting reads, but they are also character-
ized by a lack of detection for fusion events supported by
a high number of reads.

Evaluating the false discovery rate of fusion finder tools
To better understand the detection of false fusion events
we constructed a semi-synthetic paired-end dataset com-
posed by 70 million 100 bps reads. The dataset was built
using BEERS [17]. BEERS does not simulate quality scores,
required by many fusion finder tools, thus we added scores

obtained by experiments conducted in our laboratory, giv-
ing rise to two paired-end fastq datasets: lib100_1, and
lib100_2, associated with two similar sets of quality scores
(Figure 3). Different quality score sets led to the evaluation
of the effect of quality score on chimera detection.
Furthermore, four other datasets, two of 75 bp reads
(lib75_1, lib75_2) and two of 50 bp reads (lib50_1, lib50_2),
were generated from lib100_1, lib100_2 (Figure 3), to eval-
uate the effect of read size on the detection of chimera
false discovery. FusionFinder, FusionHunter, FusionMap,
MapSplice, deFuse, TopHat-Fusion were used to analyze
the negative datasets. Table 2 lists the number of false chi-
meras detected, while Figure 4 shows read length and qual-
ity score dependency for genes involved in false fusions.
FusionHunter was the only tool that did not detect false
chimeras in any of the negative datasets (Table 2). Fusion-
Map and deFuse showed a direct dependency of the num-
ber of false chimeras from the read length (Table 2).
FusionMap also showed a limited dependency of false chi-
mera detection on the basis of quality scores associated
with the reads (Figure 4-FM). In comparison, FusionFinder
showed an inverse dependency of false chimera detection
from the read length (Table 2) and a strong dependency
of false chimera detection on the basis of the read quality
scores (Figure 4-FF). TopHat-Fusion detected the highest
number of false chimeras, although its dependency
with respect to read length and quality score was limited
(Figure 2-THF). The results of MapSplice appear to be
correlated to the quality scores (Figure 2-MS). According
to the false discovery rate, tools can be ranked as: Fusion-
Hunter < < FusionMap < FusionFinder < deFuse < <
MapSplice < TopHat-Fusion. We also counted the num-
ber of reads associated to the false chimeras detected by
only five out of six tools, since FusionHunter did not
detect any false positive chimera. In the case of TopHat-
fusion and MapSplice the median of the supporting reads
for false positive was one read for all negative datasets
(Additional file 1, THF2 and MS2), but some false fusions
were supported by a dozen to hundreds of reads (Addi-
tional file 1, THF1 and MS1). A Similar scenario was
found for deFuse, with a median of the supporting reads
for false positive in the order of 10 reads for all negative
datasets analyzed (Additional file 1, DF2). FusionMap and
FusionFinder were also characterized by a median of 1 for
false positive supporting reads (Additional file 1, FM2,
FF2), but in the worst situation false fusions were sup-
ported by less than 20 reads for FusionMap, in the lib50
negative dataset (Additional file 1, FM2), and by less than
100 reads for FusionFinder (Additional file 1, FF2).

Searching for chimeras on real dataset with FusionMap
Since FusionMap provided the best compromise between
false and true fusions detection, we checked its perfor-
mance on a real dataset: the Body Map 2.0. We used the

Table 1 Chimera detection performances on positive
dataset encompassing 50 synthetic fusion events

Tool Sensitivity (%) False discovery rate

FusionFinder 82 (41/50) 10

FusionMap 80 (40/50) 6

TopHat-fusion 80 (40/50) 73

MapSplice 78 (39/50) 23

deFuse 64 (32/50) 4

FusionHunter 40 (20/50) 4

In parenthesis are given the number of fusions

The sensitivity of each tool is given by the number of chimeras detected by
each tool divided for the total number of chimeras in the positive dataset.
False discovery rate is given as the total number of chimeras detected that do
not match any of the positive 50 chimeras.
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50 bp paired-end dataset and we checked FusionMap
results against those presented by Frenkel-Morgenstern
[7] on the Body Map 2.0 75 bp single-end dataset. As
positive controls we used a subset of the 172 fusion
events reported by the authors. We checked these 172
fusion by blasting them with respect to the genome and
we ensured that each chimera encompasses genomic
regions with the following characteristics: i) genomic
regions should not belong to the same gene, ii) each
genomic region should not match on multiple chromo-
somes, iii) each region involved in the fusion should not
match on more than two different chromosomal loci.
Unexpectedly, only 22 fusion genes, reported in Table 3,
exhibit all three characteristics; these events represent
the minimal set of positive chimeras, which are expected
to be detected in real dataset obtained from normal
tissues.
The analysis performed with FusionMap detected

HLA-E (liver tissue) and SSP1 (ovary tissue) as genes
involved in fusions, also identified by Frenkel-Morgenstern
[7]. However, the authors detected HLA-E:GSTP1 and
RAMP2:SPP1 fusions, whereas in our analysis we detected
HLA-E:BCKDHB and SPP1:ABCA10 fusions. We also
found other fusions (Table 4), that are not part of the
Frenkel-Morgenstern dataset.
Table 4 also reports, for each gene involved in the

detected chimeras of Body Map, the number of genes that
have been falsely detected by FusionMap in the experi-
ment of the negative datasets.

Discussion
The main goal of this paper was to understand if the
main fusion detection software tools, available in the lit-
erature, are able to detect chimeras in normal tissue
RNA-seq data. To reach our aim, it was essential to
understand the behavior of fusion detection software
tools. Thus, we evaluated the sensitivity and false discov-
ery rate for six state-of-the-art fusion-finders: Fusion-
Hunter, FusionMap, FusionFinder, MapSplice, deFuse
and TopHat-fusion.
In our experiments, FusionHunter performed better

than all the other tools on the basis of false discovery
rate, but had the lowest sensitivity with respect to the
others. The behavior of FusionHunter is consistent with
two other observations: i) FusionHunter looses all the
fusions, in the positive dataset, supported by less than 18
reads, and ii) the median value for false positive chimeras
for all tools, excluded FusionHunter, is between 1 to 10
reads. Thus, to reduce the risk of false positive detection,
weighting negatively fusions supported by a low number
of reads, FusionHunter clearly suffers of a reduced sensi-
tivity. At the same time FusionHunter implements some
specific features that make it less sensitive to the discov-
ery of false fusions supported by a high number of reads
that are frequently observable in the other fusion detec-
tion tools.
Quality scores associated with the datasets affected

MapSplice and FusionFinder results. On the other hand,
FusionFinder was more sensitive to read length, with a

Figure 2 Chimeras detection in the positive dataset. The expected number of reads (open circle) associated to each chimera in the positive
dataset is shown together with the reads detected by the six different fusion finders. THF: TopHat-fusion, FM: FusionMap, FH: FusionHunter, MS:
MapSplice, DF: deFuse, FF: FusionFinder.
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reduction in the false fusion detection rate dependent on a
corresponding increase in the read length. Conversely,
FusionMap and deFuse performed much better with short
reads: the larger the read the higher the number of false

positive fusion genes. TopHat-fusion was insensitive to
quality score, but it showed the highest false positive dis-
covery rate of the tools tested. With respect to sensitivity,
deFuse and FusionHunter, were found to be the least sen-
sitive. The best compromise between sensitivity and speci-
ficity was given by FusionMap, which seemed particularly
suitable for the analysis of the Illumina normal tissue Body
Map 2.0 RNA-seq dataset, since its false fusion detection
rate was particularly low in the analysis of negative data-
sets. Despite the good sensitivity of FusionMap in the test
dataset, the analysis of the Body Map 2.0 paired-end reads
revealed a low correlation between FusionMap fusions
detected in this dataset and fusions detected in the single-
end dataset by Frenkel-Morgenstern. An important point
to be considered, when comparing the results obtained
with the 75 bp reads single-end and the 50 bp reads
paired-end Body Map 2.0 datasets, is tissue source origin.
The two datasets are generated starting, for each tissue,
from the same donor, therefore we expect the results to be

Figure 3 Distribution of the quality scores associated with lib100_1 and lib100_2. The same reads generated with BEERS software were
associated with two different sets of quality scores. Upper panel: quality scores associated with lib100_1. Lower panel: quality scores associated
with lib100_2. The lines in the bottom of the figure indicate the subset of quality scores used for generating the 2 × 50 and 2 × 75 nts fastq files.

Table 2 False chimera detection

Tool Lib50_1 lib50_2 Lib75_1 Lib100_1

FusionHunter 0 0 0 0

FusionMap 342 359 1521 2225

FusionFinder 3517 5417 750 666

deFuse -* 1532 2380 2976

MapSplice 30022 18540 -* -

TopHat-fusion 60839 60854 122885 112779

*The analysis did not produce the results due to a software error occurring in
the handling of an intermediate file.

Number of chimeras detected in datasets free of fusion events (negative
datasets). Analysis is performed using different read lengths for the same
negative dataset (lib100_1, lib75_1, lib50_1). In case of the 50 nts paired-end
reads negative dataset reads were also analyzed considering two different
sets of experimental quality scores (lib50_1, lib50_2).
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comparable. The lack of correspondence between true
positive fusions, namely the 22 fusion events validated in
the Body Map 2.0 in Frenkel-Morgenstern paper and
results obtained with FusionMap on the same dataset in
this paper, suggests that ab-initio chimera detection
approaches are not sensitive enough to detect fusion genes
in normal tissues. However, since chimeras detected by
Frenkel-Morgenstern have a quite low representation in
normal tissues, it is also possible that they were not
sampled in the paired-end dataset for stochastic reasons.

Conclusions
This paper highlights that specificity of state of the art
tools for the identification of chimeras is affected at differ-
ent degrees by read length and read quality scores of the

RNA-seq dataset under analysis. Thus, it is important to
carefully select the software on the basis of RNA-seq data
features. In the specific case of detection of chimeras in
normal tissues these fusion finder tools do not seem
to provide results consistent with those obtained with
a knowledge-based approach such as those reported by
Frenkel-Morgenstern [7].

Methods
Fusion detection software
MapSplice [14] splits each read in a set of consecutive ele-
ments, then exon alignment is performed. MapSplice
aligns any element not mapped in the previous step, using
the knowledge resulting by other aligned elements. Splice
junction quality is then assessed with two statistical

Figure 4 Venn diagrams of genes detected as part of false chimera in negative datasets. FM) FusionMap shows a direct dependency of
false chimeras with respect to the read length and a limited dependency of false chimera detection on the basis of the quality scores
associated with the reads. FF) FusionFinder shows an inverse dependency of false chimeras on the basis of the read length and a strong
dependency of false chimera detection on the basis of the quality scores associated with the reads. THF) TopHat-Fusion detects the highest
number of false chimeras. Its dependency with respect to read length is quite limited. DF) deFuse shows a direct dependency of false chimeras
on the basis of the read length. MS) MapSplice shows a significant dependency of false chimera detection on the basis of the quality scores
associated with the reads. FusionHunter is not shown, since it is the only tool that does not detect false chimeras in the negative datasets.

Carrara et al. BMC Bioinformatics 2013, 14(Suppl 7):S2
http://www.biomedcentral.com/1471-2105/14/S7/S2

Page 6 of 11



Table 3 Genomic locations of genes involved in chimeras detected in Body Map 2.0 in [7]

Fusion EST EST source geneA chrA startA endA geneB chrB startB endB

BE835085 Li paper [21] MPHOSPH10 chr2 71,357,444 71,377,232 AES ch19 3,052,908 3,062,964

AF103493 Li paper [21] IGKJ1 chr2 89,161,398 89,161,435 IGKV1OR22-1 chr22 17,413,617 17,415,543

ENA|AI400677|AI400677.1 chimerDB_ESTs ZMYM6NB chr1 35,447,127 35,450,948 ALB chr4 74,269,972 74,287,129

ENA|AI805048|AI805048.1 chimerDB_ESTs FXYD3 chr19 35,606,732 35,615,228 ZFYVE19 chr15 41,099,274 41,106,767

ENA|AV722190|AV722190.1 chimerDB_ESTs PICALM chr11 85,668,214 85,780,923 SPP1 chr4 88,896,802 88,904,563

ENA|AW206715|AW206715.1 chimerDB_ESTs RAMP2 chr17 40,913,212 40,915,059 ZNF3 chr7 99,661,653 99,679,371

ENA|AW316925|AW316925.1 chimerDB_ESTs GNB2 chr7 100,271,363 100,276,792 QSOX1 chr1 180,123,968 180,167,169

ENA|AW627635|AW627635.1 chimerDB_ESTs LOC100294406 chr2 89,148,206 89,231,927 RBM10 chrX 47,004,617 47,046,214

ENA|BE903629|BE903629.1 chimerDB_ESTs CSNK2B chr6 31,633,657 31,637,843 RPL8 chr8 146,015,154 146,017,805

ENA|BG564612|BG564612.1 chimerDB_ESTs GSTK1 chr7 142,960,522 142,966,222 HP chr16 72,088,508 72,094,955

ENA|BG978110|BG978110.1 chimerDB_ESTs PSMB1 chr6 170,844,204 170,862,417 GSTP1 chr11 67,351,066 67,354,124

ENA|BM559993|BM559993.1 chimerDB_ESTs HLA-E chr6 30457183 30,461,982 PPFIBP1 chr12 27,677,045 27,848,497

ENA|BM827569|BM827569.1 chimerDB_ESTs ELOVL5 chr6 53,132,196 53,213,977 CYBA chr16 88,709,697 88,717,457

ENA|BP419192|BP419192.1 chimerDB_ESTs FBLIM1 chr1 16,085,255 16,113,084 AKIP1 chr11 8,932,701 8,941,626

ENA|BQ004985|BQ004985.1 chimerDB_ESTs F2RL1 chr5 76,114,833 76,131,140 COL1A2 chr7 94,023,873 94,060,544

ENA|BQ010435|BQ010435.1 chimerDB_ESTs CLSTN1 chr1 9,789,079 9,884,550 LAPTM4A chr2 20,232,411 20,251,789

ENA|BU684515|BU684515.1 chimerDB_ESTs NDUFA13 chr19 19,627,019 19,639,013 FLNA chrX 153,576,900 153,603,006

ENA|CD742870|CD742870.1 chimerDB_ESTs HLA-G chr6 29,794,756 29,798,899 PPP1R15A chr19 49,375,649 49,379,319

ENA|CF125182|CF125182.1 chimerDB_ESTs PICALM chr11 85,668,214 85,780,923 CPQ chr8 97,657,499 98,155,722

ENA|DA932721|DA932721.1 chimerDB_ESTs CD74 chr5 149,781,200 149,792,332 SCARF1 chr17 1,537,152 1,549,041

ENA|T05374|T05374.1 chimerDB_ESTs SRPRB chr3 133,502,877 133,540,336 SLC22A23 chr6 3,269,207 3,456,793

EF051633 chimerDB_ESTmRNAs PICALM chr11 85,668,214 85,780,923 MLLT10 chr10 21,823,101 22,032,559

The subset of 22 chimeras encompassing only two genes on different chromosomes, extracted from the 172 events validated by Frenkel-Morgenstern, using the 75 nts single-end reads RNA-seq Body Map 2.0
dataset, was used as positive control of the ability of FusionMap to detect chimers in normal tissues RNA-seq data.
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Table 4 Chimeras detection in Body map 2.0 by FusionMap

Tissue # of genes involved in chimeras in
Body Map 2.0

# of genes also detected in the
negative dataset

# of genes also detected as
chimeras in [7]

Genes in
chimeras [7]

Chimeras detected by
FusionMap

Chimeras
in [7]

Adipose 74 7 0 -

Adrenal 60 6 0 -

Brain 56 10 0 -

Breast 32 2 0 -

Colon 15 3 0 -

Kidney 37 4 0 -

Heart 18 0 0 -

Liver 31 2 1 HLA-E HLA-E:BCKDHB HLA-E:
GSTP1

Lung 46 5 0 -

Lymph node 37 1 0 -

Prostate 68 12 0 -

Skeletal
muscle

34 3 0 -

White blood
cells

29 4 0 -

Ovary 30 3 1 SPP1 SPP1:ABCA10 RAMP2:SPP1

Number of genes detected as part of chimera in Body Map 2.0 50 nts paired-end dataset. Body Map 2.0 50 nts paired-end was generated from the same donors used for the 75 nts single-end dataset used in
Frenkel-Morgenstern’s paper to validate putative fusion by means of a knowledge-based approach. Thus, the two datasets are technical replication of the same mRNA universe.
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measures: i) “anchor significance”, given by an alignment
that maximizes significance as a result of long anchors on
the two sides of the splice junction, and ii) “entropy” cal-
culated by the multiplicity of splice junction locations.
FusionMap [13] splits reads into smaller portions and it

finds putative chimeras aligning these elements to genes
annotated on genomic reference. The read alignment is
based on GSPN algorithm [13], that provides a tolerance
to mismatches of at most two bases. Seeds located at
each side of an unmapped read are aligned to the refer-
ence. Chimeras are reported only if both seeds align, all
chimeras having fusion boundaries distant less than 5 bp
are combined and used to refine the position of junction
boundary. Canonical splicing patterns are also used to
refine the site of the fusion boundary, and false positives
are removed using four filters. Reads are removed on the
basis of their break point score; read-through fusions are
discarded; chimera pseudo-reference are created and
fusion without reads aligned to the pseudo-reference are
removed; PCR artifact are also removed.
FusionFinder [11] divides reads into shorter elements

and it detects chimeras aligning these fragments anno-
tated genomic reference. The main differences with
respect to FusionMap are related to alignment and filter
implementation. Bowtie [22] is used to align fragments
with respect to the coding reference transcriptome.
Exons tagged as fusion elements go through some filter-
ing steps to refine the results: (i) seeds mapping on the
same gene are removed; (ii) pairs of reads mapping on
the same chromosome but on opposite strands are dis-
carded; (iii) pairs of reads mapped on genomic coordi-
nates not associated to annotated genes are removed; and
(iv) artifacts caused by sequence similarity are also
discarded.
deFuse [10] uses reads pairs showing discordant align-

ments to detect putative chimeras essentially scoring
putative fusions on the basis of fusion junction coverage
and considering that shift between overlapping spanning
reads must be consistent with the fragment length.
For each putative fusion, chimera boundaries are used to

identify encompassing reads and to define fusion boundary
at the nucleotide level. Paired-end reads aligning at a
length that does not match with the expected distribution
of sequenced fragments distance are discarded.
FusionHunter [12] aligns paired-end reads against a

reference genome using Bowtie. The mapped reads are
used to identify the fusion candidates, which are aggregated
to generate a pseudo reference to detect junction-spanning
reads. Unmapped reads are fragmented and aligned on the
pseudo-reference. If one fragment is correctly aligned,
the nearest canonical splicing junction is searched and
the other part of the original read is aligned to this region.
Chimeras made of two genes sharing significant homology
are removed. Chimeras lacking at least two different

paired-end reads supporting the fusion boundary are dis-
carded. Furthermore reads mapping on the break point
with less than 6 bp are removed as well as PCR artifacts
and read-through events.
TopHat-Fusion [16] detects all reads mapping entirely

within exons using Bowtie, and it creates a set of partial
exons from these alignments. Pseudo-genes structures
are then created, while unmapped reads are split into
shorter elements and mapped on the genome. Chimeras
are detected if reads fragments map in a consistent way
with fusions (using TopHat [18] with relaxed para-
meters). Filtering is subsequently applied to eliminate (i)
chimeras associated to multi-copy genes or repetitive
sequences; (ii) reads mapping with less than 13 bp on
either side of fusion; and read-through events.
TopHat-Fusion also keep track of contradicting reads,

i.e. the reads mapping both on a single part of fusion and
on fusion boundary.

Data analysis
FusionHunter, FusionMap, FusionFinder, MapSplice,
deFuse and TopHat-fusion were downloaded from the
repository indicated in their papers and installed in adher-
ence with the requirements indicated in their manual. All
software tools were run with their default configuration.
The analyses were performed on a 48 cores AMD server
with 512 Gb RAM and 9 Tb HD, running linux SUSE
Enterprise 11. Statistics and data parsing were executed
using R scripting, taking advantage of the gplots-contribu-
ted R package http://cran.r-project.org/web/packages/
gplots/ and Bioconductor [19] packages, i.e. Biostrings,
org.Hs.eg.db, GenomicRanges and oneChannelGUI [20].

Negative dataset
The negative dataset was generated using BEERS [17]
http://www.cbil.upenn.edu/BEERS/, consisting of 70 mil-
lion 100 paired-end reads (parameters: -readlength 100
-tlen 5 -tpercent 0.1). Since BEERS does not simulate Illu-
mina quality scores, we attached to the 70 million reads
the quality scores derived from 100 bp paired-end reads
experiments run in our laboratory, to generate lib100_1
and lib100_2 fastq files. In addition from the 100 paired-
end reads we generated a set of 2 × 75 nts (lib75_1 and
lib75_2) and 2 × 50 nts paired-end reads (lib50_1 and
lib50_2), removing 25 or 50 nts at the beginning of each
read in the lib100_1 and lib100_2 fastq files, respectively.
Negative datasets are available from the authors upon
request.

Positive dataset
FusionMap http://www.omicsoft.com/fusionmap/#Home
developers provide a synthetic dataset of simulated
paired-end RNA-Seq reads (~60,000 pairs of reads, 75 nt,
fragment size = 158 bp). 50 fusions are represented, with
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a number of supporting pairs ranging from 9 to 8852.
The sensitivity of each tool was calculated by dividing the
number of chimeras detected by each tool with respect to
the total number of chimeras in the positive dataset. The
“false positive” behavior is instead reported directly as the
number of chimeras detected that do not match any of
the positive 50 chimeras.

Fusion genes detected in the 75 bp Body map dataset
Frenkel-Morgenstern’s paper [7] provided, as additional
information, the list of chimeras detectable in the Body
Map dataset (75 bp single-end reads) and the tissue in
which they were detected. Furthermore, the paper also
provided the fasta files for all the analyzed 7,424 putative
human chimeric RNAs. Using R http://cran.r-project.org/
script we extracted the subset of 172 fusion events
detected by Frenkel-Morgenstern in the Body Map 2.0.
Each of the Frenkel-Morgenstern’s 172 chimeras was
manually blasted http://blast.ncbi.nlm.nih.gov/Blast.cgi
against the human reference genome and we considered
as a putative chimera only those characterized by a unique
mapping on two different genomic locations. Moreover,
we discarded all fusion events characterized by: i) having
part of the sequence mapping on multiple genomic loca-
tions, ii) having the sequence mapping on the same geno-
mic location, iii) having sequences mapping on more than
two different chromosomal locations. Out of this filtering
22 fusion genes were left as putative chimeras (Table 3).

Body Map 2.0
Illumina http://www.illumina.com has sequenced mRNAs
derived from 16 normal tissues (Body Map 2.0: Adrenal
gland, Adipose tissue, Brain, Breast, Colon, Heart, Kidney,
Liver, Lung, Lymph Node, Ovary, Prostate, Skeletal Muscle,
Testis, Thyroid, white Blood cells). These data are public
available on the GEO database (GSE30611). Approximately
80 million reads for each tissue were provided as 75 bp
single-ends reads (SE) or 50 nts paired-end reads (PE) data-
sets. SE and PE refer to the sequencing of one and both
ends of a DNA fragment, respectively. The libraries used
for sequencing were derived from poly-A selected mRNAs
and generated by random priming. In case of PE, the aver-
age size of the sequenced fragment was approximately
300 bp. These datasets, due to the high number of reads
provided, represent an ideal instrument for the identifica-
tion of chimeras associated with normal tissue and to inves-
tigate chimeras tissue specificity [7].

Additional material

Additional file 1: Chimeras detection in the negative datasets. The
number of reads distribution associated to false positive chimeras is
shown for five fusion finders: THF1,2) TopHat-fusion with two different
thresholds for the number of reads, FM1,2) FusionMap with two different

thresholds for the number of reads, FF1,2) FusionFinder with two
different thresholds for the number of reads, DF1,2) deFuse with two
different thresholds for the number of reads, MS1,2) MapSplice with
two different thresholds for the number of reads. FusionHunter is not
shown since it does not detect false positive chimeras.
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