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Abstract

Background: Searching for members of characterized ncRNA families containing pseudoknots is an important
component of genome-scale ncRNA annotation. However, the state-of-the-art known ncRNA search is based on
context-free grammar (CFG), which cannot effectively model pseudoknots. Thus, existing CFG-based ncRNA
identification tools usually ignore pseudoknots during search. As a result, dozens of sequences that do not contain
the native pseudoknots are reported by these tools. When pseudoknot structures are vital to the functions of the
ncRNAs, these sequences may not be true members.

Results: In this work, we design a pseudoknot search tool using multiple simple sub-structures, which are derived
from knot-free and bifurcation-free structural motifs in the underlying family. We test our tool on a contiguous
22-Mb region of the Maize Genome. The experimental results show that our work competes favorably with other
pseudoknot search methods.

Conclusions: Our sub-structure based tool can conduct genome-scale pseudoknot-containing ncRNA search
effectively and efficiently. It provides a complementary pseudoknot search tool to Infernal. The source codes are
available at http://www.cse.msu.edu/~chengy/knotsearch.

Background
Noncoding RNAs (ncRNAs), which function directly as
RNAs without translating into proteins, play diverse and
important biological functions [1]. Many types of ncRNAs
function through both their sequences and secondary
structures, which are defined by interactions between
Watson-Crick and wobble base pairs. Pseudoknot is a
functionally important structural motif in ncRNA second-
ary structures. In pseudoknots, bases in loop regions can
form base pairs with bases outside the stem loop. In a gra-
phical representation where arcs connect base pairs, pseu-
doknot-free secondary structures only contain parallel or
nested base pairs while pseudoknot structures allow
“crossing” base pairs, shown by an example in Figure 1.A.
It is already known that pseudoknots play important

functions in telomerase RNA, tmRNA, rRNA, some
riboswitches, some protein-biding RNAs, Viral ribosomal

frameshifting signals, etc [2]. Different research groups
[3,4] have shown that the pseudoknot structure in the
telomerase RNA is essential for telomerase activity. Gilley
and Blackburn [3] experimentally demonstrated that dis-
ruptions of the pseudoknot base pairing within the telo-
merase RNA from Tetrahymena thermophila prevent the
stable assembly in vivo of an active telomerase. They
further concluded that the pseudoknot topology rather
than sequence is critical for an active telomerase. Simi-
larly, biologists reported that the pseudoknots in tmRNA
are highly important for protein biding, tmRNA matura-
tion, and proper folding of the tRNA-like domain [5].
Currently, 26,704 sequences in 71 ncRNA seed families
of Rfam 10.0 [6] contain pseudoknots. With the advances
of sequencing technologies and structure predictions,
more pseudoknot structures are expected to be revealed.
Because the functions of ncRNAs are determined by

both the sequence and structure, successful ncRNA
homology search tools must consider both sequence
and structural conservations. Existing ncRNA search
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tools can be divided into two categories. One is com-
monly referred to “known ncRNA search”, which aims
to detecting homologs of ncRNAs with annotated sec-
ondary structures. The second category includes tools
for identifying novel ncRNA genes. This work belongs
to the first category and focuses on ncRNAs containing
pseudoknots.
For pseudoknot free ncRNAs, the state-of-the-art search

method is based on stochastic context-free grammars
(SCFGs), which can accurately model the evolutionary
changes of both the sequences and structures of a group
of homologous ncRNAs. Commonly used general and spe-
cialized known ncRNA search tools such as Infernal [7],
RSEARCH [8], and tRNAScan-SE [9] are all based on
SCFG. In conjunction with the ncRNA family database
Rfam, Infernal has been successfully applied to classify
query sequences into different types of ncRNA. However,
SCFGs are not able to model pseudoknot. Thus, the
implementations of SCFG by Infernal neglect pseudoknots
in the structures. For example, although RF00023
(tmRNA) has four pseudoknots, its SCFG only models the
knot-free structures, shown in Figure 1.B. As a result,
Infernal could misclassify sequences as members of
families containing pseudoknots. In addition, Infernal has
high computational cost, limiting its usage in large-scale
data sets, such as those generated by the next-generation
sequencing technologies.
More complicated grammars such as context-sensitive

Grammars (CSGs) [10] exist to faithfully model pseudo-
knots. However, the computational cost of the parsing
algorithms of a CSG is even higher than using a CFG.
Besides CSGs, other grammars such as parallel communi-
cating grammar systems [11], RNA pseudoknot grammars
[12], tree adjoining grammars (TAGs) [13,14], and multi-
ple context-free grammars [15] have been proposed to
model pseudoknot structures. These work described the
grammars and associated parsing algorithms. However,
they have not been widely used in pseudoknot search in
large-scale databases. First, although the parsing algo-
rithms are polynomial, their cubic or even higher time or
memory complexity [15] limits their large-scale applica-
tions. Second, these methods were designed for and tested
on secondary structure derivation rather than homology

search. In order to conduct large-scale homology search,
local parsing algorithms are needed. As there are no
source codes or executable implementations of these
grammars, it is not clear whether they can be automati-
cally applied to known ncRNA search including
pseudoknots.
In this work, we design an efficient pseudoknot search

algorithm for all types of pseudoknots. Our method is
based on a set of carefully chosen simple sub-structures (or
sub-structures for short), which do not contain pseudo-
knots or bifurcations. The time complexity of the parsing
and probability computation algorithms for an SCFG
including the CYK, the inside, and the outside algorithm
will be significantly reduced when the secondary structure
does not contain any bifurcation [10,16]. Thus, these sim-
ple sub-structures can be searched efficiently using exist-
ing implementations of SCFGs. For multiple sub-
structures extracted from one ncRNA family, we choose a
set of sub-structures according to their sizes and false
positive (FP) rates in order to maximize the search perfor-
mance. These chosen sub-structures will be used in a pro-
gressive search. Our experimental results show that our
tool competes favorably with other pseudoknot search
methods.

Related work
Brown and Wilson [17] proposed an RNA pseudoknot
search method using intersections of SCFGs. Both
Brown’s method and our approach try to decompose
pseudoknot into knot-free structures for SCFG modeling.
There are two major differences. First, our sub-structures
are not only knot-free, but also bifurcation free, which
enables faster search. Second, while Brown and Wilson’s
method focused on the model construction and parsing
algorithm, we focus on choosing an optimal set of sub-
structures to optimize the search performance. The
model construction and the parsing algorithms can be
conveniently implemented using Infernal, which has
gone through extensive testing.
Structural motifs similar to sub-structures have been

used as filters to speed up Infernal. FastR [18] relies on
stem-loops ((k, w)-stack) that do not contain bulge or
interior loops to search for ncRNAs. Weinberg et al. [19]

Figure 1 Consensus secondary structure of tmRNA and the secondary structure described by SCFG (pseudoknots missing). A.
Consensus secondary structure of RF00023 (tmRNA) in Rfam. Stacking base pairs in 1 are parallel to base pairs in 2 and 3. 1, 2, and 3 are nested
in 4. 2 and 3 form a pseudoknot. B. Secondary structure described by SCFG (pseudoknots missing).
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use more flexible structural motifs based on sub-CMs
and profile HMMs for ncRNA classification. Smith [16]
used a decision tree to organize partial SCFG models for
fast ncRNA search. Currently, these filters are only
designed and tested for speeding up SCFG search.
Available pseudoknot search tools include RNAv [20]

and RNATOPS [21]. RNATOPS designs a graph model
for RNA pseudoknots and solves the structure sequence
alignment by graph optimization. RNAv is a profile based
RNA secondary structure variation search program that
detects distant ncRNA structural homologs, which might
be missed by RNATOPS.
The chain filter designed by Zhang et al. [22] consists of

a collection of short conserved words in an ncRNA family.
In our work, we use a collection of simple sub-structures
for pseudoknot search. Similar to Zhang et al.’s work, we
find that using a collection of simple structures can
achieve a good tradeoff between sensitivity and false posi-
tive rate during search.

Approach
There are two components in the method. The first com-
ponent is the design of a set of sub-structures to repre-
sent an ncRNA family. The second component is a
progressive search strategy using the designed sub-struc-
tures. Different regions of an ncRNA sequence have dif-
ferent sequence and structural conservations. Well-
conserved structural and sequence motifs tend to yield
better search performance than poorly conserved motifs.
Our approach sorts sub-structures extracted from differ-
ent regions according to their lengths and predicted FP
rates in order to choose a set of sub-structures with the
optimal search performance.
For a chosen set of sub-structures, we conduct a pro-

gressive search according to a pre-determined order.
During the progressive search, one sub-structure is only
applied to regions containing matches to all previous sub-
structures. A sequence is classified into the pseudoknot
family if and only if 1) it passes the score thresholds of all
the chosen sub-structures; 2) the position relationship
between matched substrings is consistent with the rela-
tionship between the sub-structures. Thus the false posi-
tive rate of the chosen set of sub-structures is bounded by
the product of the false positive rates of all component
sub-structures. The pipeline of the approach is illustrated
in Figure 2.

Sub-structure derivation
In order to use SCFG-based models for pseudoknot
search, we decompose a pseudoknot structure into simple
sub-structures. Each sub-structure contains at least one
stem, which includes a set of stacking base pairs allowing
short bulge and interior loops. A full secondary structure

of an ncRNA family can be decomposed into multiple
stems. Combinations of stems define different sub-struc-
tures. Figure 3 shows all five simple sub-structures derived
from the given pseudoknot.
We describe a method to systematically extract all sim-

ple sub-structures from a pseudoknot. In the first step,
all stems are extracted and sorted in increasing order of
their starting positions (i.e. 5’ end of the outmost base
pair in the stem). Second, we build a bit table R of size N
by N for N stems extracted from the first step. For each
cell R[i, j], if stem i and stem j are nested, R[i, j] = 1;
otherwise, R[i, j] = 0. Table R provides us information
about whether given stems can form one sub-structure.
Given the stem set and their relationship table R, we use
pseudocode in Algorithm 1 to extract all simple sub-
structures. In the pseudocode, Hx is the set of sub-struc-
tures containing x stems. Thus, the union of Hx for x = 1
to N consists of all simple sub-structures for a given sec-
ondary structure. The number of sub-structures depends
on the number of nested stems. Suppose the average
number of nested stems inside a stem is n. The total
number of sub-structures is O(N + N2n).
Algorithm 1 ExtractSubstructures Input: a secondary

structure containing pseudoknots Output: all simple
sub-structures
1: for each stem i = 1 to N do
2: /* h: a sub-structure containing a set of stems */
3: h = {i}
4: H1 = H1 ∪{h}
5: end for
6: for L = 2 to N do
7: HL = Ø
8: for each sub-structure h Î HL-1 do
9: for each stem i ∉ h do
10: /* h[i] is the ith stem in a sub-structure h */
11: if R[h[1], i] and R[h[2], i] ... and R[h[L-1], i]

then
12: /* construct a new sub-structure h’ */
13: h’ = h∪{i}
14: HL = HL ∪{h’}
15: end if
16: end for
17: end for
18: end for
19: output all sub-structures H = H1 ∪H2 ∪ ... ∪HN

Algorithm 1 only outputs the combination of stems.
For each stem (or stem set) in a sub-structure, we add
loop and flanking regions using the following three
rules. Let the 5’ and 3’ ends of the outmost base pair in
a sub-structure be I5 and I3, respectively. Thus, I5 <I3.

• Rule 1: Add all single-stranded regions including
bulge and internal loops between I5 and I3.
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• Rule 2: Except the base pairs inside the chosen
stems in a sub-structure, all other base pairs will be
treated as single-stranded regions.
• Rule 3: Extend the flanking single-stranded regions
to the left of I5 and to the right of I3 until the first
base pair in other sub-structures.

Search performance of different sub-structures
Each sub-structure can be conveniently modeled by an
SCFG. As different sub-structures are derived from
regions with different sequence and structural conserva-
tions, their corresponding SCFGs have different perfor-
mance in database search. In this section, we use an
example to illustrate this. We built SCFGs for eight sub-
structures derived from RF00373 (Ribonuclease P) and
evaluated the sensitivity, FP rates, and running time of the
eight SCFGs when applying them to a to a 22.5 M Maize
genome (data is described in “Experimental results”). The
sensitivity and FP rates of different sub-structures from
the same family can be compared using true positive (TP)

hits and FP hits respectively, because the condition posi-
tive and condition negative sets are the same for all sub-
structures derived from the same family. For any SCFG
Mi , let the set of matched sequences be Hit(Mi) . Let
the set of true pseudoknot sequences be S, which are the
sequences in seed families containing pseudoknots in
Rfam. The number of true positive and FP matches of a
sub-SCFG is |Hit(Mi) ∩ S| and |Hit(Mi)\S| , respec-
tively. We summarized the TP hits and FP matches of
eight SCFGs under different score thresholds in Figure 4.
In addition, the search times are included for the score
thresholds corresponding to the highest sensitivity. It is
clear that different SCFGs have highly search performance.
During a progressive search using a series of sub-struc-
tures, the number of matches of the preceding sub-struc-
ture determines the search space of the current sub-
structure. Thus, the total search time depends on both the
FP hits and the model running time, which is heavily
affected by the model length. In order to maximize the
search efficiency, it is important to sort all candidate sub-
structures according to their FP rates. When the FP rates

Figure 2 The pipeline of the SCFG construction and the progressive search.
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of two or more sub-structures are similar (same order), we
prefer shorter models because they incur less search times.
Sort sub-structures according to their E-values
There are two methods to calculate the FP rates of sub-
structures. Theoretically, by assuming a background
model for random sequences and applying the CYK algo-
rithm [10], we can directly calculate the probability that a
random sequence matches an SCFG model. Empirically,
we can apply the SCFGs to a large annotated sequence
database and record the number of FP matches. However,
as it is more important to compare the FP rates of differ-
ent sub-structures than knowing their exact values, it is
not necessary to directly calculate FP rates. By assuming
that the SCFG alignment scores for random sequences fol-
low an exponential distribution, as implemented by Infer-
nal, we can use E-values of the designed score cutoffs to
sort all sub-structures.
For an alignment score and a database size, an E-value

indicates how many random hits a user can expect to see
with the same or better score in a random sequence data-
base of similar size. Thus, E-value indicates FP hits when
it can be computed accurately. Currently, we are using the
E-value calculation method provided by Infernal. Although
the assumed score distribution is not accurate, we found

that the estimated E-values allow us to compare FP rates
of different sub-structures with high accuracy. In order to
estimate E-value, Infernal generates a set of N random
sequences whose GC content depends on the covariance
model. These N random sequences then are aligned
against the model. In this process, all searching result with
score > 0 will be considered as hits. Scores of the top X
hits are assumed to follow an exponential distribution
with two parameters, μ and l. The maximum likelihood
approach is then taken to fit scores of hits into an expo-
nential distribution.

E = db ∗ e−λ(score−μ)

where db is adjusted database size and is defined as

db =
dbtarget

dbsizerandom
(randhit + 0.5).

In the E-value computation, μ and l are parameters
trained in Infernal. sc is the score for which one needs to
calculate E-value. dbtarget is the size of target database.
dbrandom is the number of random sequences generated
for curve fitting. At last, randhit is the number of ran-
dom sequences found by the covariance model. We can

Figure 3 Five candidate sub-structures can be constructed from three stems in a pseudoknot structure. Each arc represents a stem
containing nested base pairs and possible internal/bulge loops. Single-stranded regions are represented using solid lines.
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directly obtain μ and l from each calibrated covariance
model, which is built for a sub-structure. With these two
parameters available, we can use the above equation to
compute E-values for given scores.
Our experiments show that although the change of E-

values does not scale with the change of the FP rates,
the order of E-values is highly consistent to the order of
FP rates for all 71 families we tested. Only for SCFGs
with similarly small FP rates, their E-values cannot accu-
rately reflect their order. Table 1 presents an example. It
is worth noting that we also considered to use the aver-
age entropy to sort the sub-structures. However, our
experiments show that there is no systematic relation-
ship between entropy-based measurements and the FP
rates of sub-structures.

Choose sub-structures for progressive search
During a progressive search based on multiple sub-
structures, the final sensitivity is bounded by the lowest
sensitivity of all sub-structures. The final search time
and FP rates heavily depend on the order of applying
these sub-structures. Let the final array of sub-structures
be SUB = (H1, ...,Hi, ...,Hn), where Hi will be applied

before Hj if i <j. Let the size of the original database
be L. For a sub-structure Hi , let ti and fpi be its search
time per hit and FP rate, respectively. The final FP rate

is bounded by
n∏

i=1
f pi . The final search time is roughly

T = L
n∑

i=1
ti(

i−1∏

j=1
f pj) , where L

i−1∏

j=1
f pj is roughly the search

space for the sub-structure Hi . Minimizing T requires
the accurate computation of ti or quantification of the
relationship between ti and fpi, which is not known as a
priori. Although Infernal provides estimated running
time, it can be quite different from the true running
time. According to the equations, it is clear that we
should apply short sub-structures with small FP rates
before long sub-structures with high FP rates. Thus
we develop a greedy algorithm to generate a set of

Figure 4 Number of TP hits and FP matches of each sub-structure under different score thresholds. For each sub-structure, the length
and the search time corresponding to the highest sensitivity is listed. Time format is hr:min:sec. Due to highly different number of FP hits, two
sub-structures are plotted in the embedded figure.

Table 1 The order of E-values is highly consistent to the
order of number of the FP hits.

sub-structure E-value FP hits sub-structure E-value FP hits

RF00373_part2 1.71e+03 4894 RF00373_part1 7.33e+02 2606

RF00373_part5 7.30e-02 41 RF00373_part3 3.58e-02 39

RF00373_part4 3.18e-06 39 RF00373_part6 5.29e-09 37

RF00373_part8 4.52e-09 39 RF00373_part7 3.40e-15 34
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sub-structures for progressive search based on our
empirical observations.
We split sub-structures into short group and long

group, which contain short and long sub-structures
respectively. For each group of sub-structures, we sort
the sub-structures according to their E-values and apply
a greedy algorithm to choose a set of sub-structures for
search. The main steps of the greedy algorithm are out-
lined below, starting from the short group:
1. In each iteration, choose the sub-structure with the

smallest E-value. Remove it and append it to the final
sub-structure list SUB .
2. Remove any remaining sub-structure in both groups

that only contains stems in this sub-structure.
3. Repeat the first step until all stems are covered by

one chosen sub-structure or the E-values of all remain-
ing sub-structures are bigger than a pre-determined cut-
off (default is 1).
If SUB has not included all stems, we apply the same

process to the long group and append the chosen sub-
structures to SUB . We require all stems covered by
the chosen sub-structures in order to ensure the repre-
sentation of the annotated pseudoknot structure. It is
possible that this constraint will exclude homologous
ncRNAs that lack annotated stem loop structures. Cur-
rently, we use size 150 as the threshold to divide sub-
structures into the short and the long group.

Implementation
For each sub-structure, we train an SCFG-based model
based on the corresponding alignment in the training data
using Infernal. Let the SCFGs trained from n sub-struc-
tures of an ncRNA family SUB = (H1, ...,Hi, ...,Hn) be
� = (M1, ...,Mi, ...,Mn), where Mi represents a single
SCFG. A sequence can be classified into the corresponding
family if the following conditions are satisfied. First, the
sequence contains matches to all designed SCFGs in Π.
SCFG match will be defined in the following text. Second,
for every pair of strings that match two SCFGs, their posi-
tion relationship must be consistent with the annotated
relationship between two SCFGs in the underlying ncRNA
family. There are three types of position relationship
between two sub-structures: parallel, nested, and cross-
over. Cross-over indicates existence of pseudoknots.
We determine SCFG match using score thresholds. For

all sequences in the training set, its alignment score with
a given SCFG is computed. The minimum score of all
the seed sequences is used as the score threshold. This
score cutoff is similar to the NC (trusted cutoff) bit score
thresholds used in HMMER [23] or Infernal. When the
training data contains a good representation of the family
member sequences, the computed score threshold can
ensure a high sensitivity during homology search. If the
training set only contains close homologs of this ncRNA

family, the designed cutoff may be too high for remotely
related homologs.

Experimental results
In order to test the performance of our tool for pseudo-
knot search in sequence databases, we conducted two
experiments. First, we examined the automatically classi-
fied pseudoknot sequences in Rfam. Second, we applied it
to part of the Maize genome. On the same data set, we
compared our tool with RNAv, RNATOPS, and Infernal.

Pseudoknot sequences in Rfam
Because CFG cannot model pseudoknots, the implementa-
tions of Stochastic CFG (SCFG), covariance models (CMs)
in Rfam neglect pseudoknots in the structures. As a result,
tools that use SCFG for ncRNA search such as Infernal
could misclassify sequences as members of pseudoknot
families. Each Rfam family contains a seed sequence set
and a full sequence set. While the seed sequence set con-
tains manually validated homologous sequences, the full
sets are automatically produced using SCFG-based search
against RFAMSEQ database [6]. Thus, some of the
sequences in the full set may not contain pseudoknot
structures that are annotated in the seed sequences. We
examined the full member set of the 71 ncRNA families
containing pseudoknots in Rfam using our tool. Many
families contain dozens of sequences that lack the anno-
tated pseudoknot structures. For all those sequences that
cannot be matched by our tool, we also utilized the Infer-
nal alignments and a RNA stem finding tool RNAmotif
[24] to double check whether the base pairs in pseudoknot
structures are missing. The SCFG alignments output by
Infernal contains annotations of all base pairs that do not
form pseudoknots. By comparing the annotated base pairs
and the consensus secondary structure of the seed align-
ments, we can extract the regions that should form pseu-
doknots. Then, we applied RNAmotif to output all stems
of size at least two in the chosen regions. Failing to output
any stems validated our findings that these sequences do
not have the annotated pseudoknots. The results are sum-
marized in Table 2. Although homologous ncRNAs may
not share the same set of stems, simply ignoring pseudo-
knots without knowing their impacts on the function can
introduce a large number of false members. In particular, it
was already experimentally shown that pseudoknot struc-
tures are vital to the functions of some types of ncRNAs
[3-5]. For these well-studied pseudoknot structures, it is
important to include them during homology search.

Data set preparation
We created a simulated data set based on a contiguous
22-Mb region of the Maize Genome [25]. The annota-
tion of the 22-Mb region does not contain any hit to
the 71 pseudoknot families in Rfam. In order to evaluate
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the sensitivity of pseudoknot search tools, we randomly
chose 1,586 out of 26,704 seed sequences from 71 pseu-
doknot families and inserted them in the 22-Mb region.
The remaining seed sequences are used as the training
data. In order to examine the FP rate of SCFG-based
tools, we also created 1,586 sequences without pseudo-
knots. Specifically, for each of the 1,586 seed sequences,
we altered the bases to disrupt the base pairs that can
form pseudoknots. Similarly RNAmotif is applied again
to ensure these sequences lose the annotated pseudo-
knot structure. These modified 1,586 sequences and the
original 22-Mb region of the Maize Genome constitute
the negative training data. Any hit to them is an FP hit.
Note that by changing the bases, the modified sequences
might share lower sequence similarity to the trained
model and thus pose an easier case for all tools. Even
so, our experimental results still show that different
tools exhibit highly difference performance on this data
set. Thus, we feel this data set is a reasonable test set.
There are two major advantages of using this simulated

data set for testing pseudoknot search tools. First, as the
22-Mb region of the Maize genome does not harbor any
reported ncRNA that contains pseudoknots, we can mea-
sure the empirical FP rates of pseudoknot search tools
with higher reliability than using simulated sequences,
which are usually generated using a simple i.i.d. model or
low-order Markov model. In particular, the Maize genome
contains a high percentage of repeats and low-complexity
regions, which could not be simply simulated and can
pose a challenge for ncRNA search as warned by the Rfam
website (http://rfam.sanger.ac.uk/). Second, using thou-
sands of seed members of the pseudoknot families pro-
vides us adequate test data for evaluating the sensitivity.
Besides using the seed sequences of Rfam, we also con-

sidered another pseudoknot sequence database Pseudo-
base [26]. This database contains 304 RNA sequences with
pseudoknot structures. A majority of them are sub-strings
of Rfam seed sequences. Thus, we choose to use Rfam
seed sequences as the true label.

Results and comparisons
In order to separate the training set and the test set, we
removed the sequences that were inserted in the Maize

genome from the seed alignments. For the alignments
composed of the remaining sequences, we trained the
full covariance model and the models for the sub-struc-
tures. We used the designed sub-structure sets for pseu-
doknot search. We evaluated the performance of
pseudoknot search tools using three metrics: the sensi-
tivity, FP hits, and running time. For each ncRNA family
represented by an SCFG M , let Hit(M) be the set of
output sequences by a search tool. Let S be the set of
true pseudoknot sequences, which, in this data set,
includes seed sequences of each pseudoknot family. The
sensitivity is thus defined as:

sensitivity =
|Hit(M) ∩ S|

|S|
Any output that does not overlap with true pseudo-

knot sequences is a false positive hit. The number of FP
hits of a search tool on one family is computed as:

FP hits = |Hit(M)\S|
We report the FP hits instead of the FP rates for two

reasons. First, the condition negative set is family speci-
fic and thus is the same for all search tools for a given
family. Second, the size of the condition negative set is
mainly determined by the size of the genome minus the
size of all true pseudoknot sequences. For a large geno-
mic sequence, the FP rate becomes very small and can-
not reflect the difference between different tools.
On the same dataset, we run RNAv, RNATOPS, and

Infernal 1.0.2. Of the three, RNAv and RNATOPS are
designed for pseudoknot search. For Infernal and sub-
structure, no hidden Markov model-based filtration was
used in order to maximize the sensitivity. Other para-
meters were set as default for Infernal. We used the
default parameters to run RNAv and RNATOPS. All
experiments were run on the main cluster of the High Per-
formance Computing Center on campus (http://www.icer.
msu.edu/?q=hpcc). Each experiment was allocated four
CPU days at most. There are 65 families and 31 families
that failed RNAv and RNATOPS, respectively. The search
jobs for those families were killed by the cluster after four
CPU days. No results were produced. Thus we could not

Table 2 Sequences that do not contain annotated pseudoknots and thus may not be real members.

ID seqs without knots/
num of seqs

ID seqs without knots/
num of seqs

ID seqs without knots/
num of seqs

ID seqs without knots/
num of seqs

RF00009 37/500 RF00010 3/3864 RF00011 26/460 RF00023 53/2871

RF00024 56/233 RF00028 2587/39045 RF00030 47/470 RF00041 2/151

RF00140 81/524 RF00176 37/64 RF00216 25/126 RF00233 22/76

RF00259 78/124 RF00261 43/78 RF00499 1/16 RF00523 2/5177

RF00622 1/94 RF01050 3/60 RF01072 21/271 RF01073 1/7006

RF01086 15/1093 RF01087 1/31 RF01089 4/25 RF01096 2/45
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report the results for those families. RNAPTOPS output
results for 22 families by the end of the allocated time.
The performance of these four tools is recorded in Table

3. The results show that our tool is significantly faster than
RNATOPS and RNAv. For a majority of families, the run-
ning time is smaller than half an hour. A closer examina-
tion reveals that 99% of the running time is attributed to
the first sub-structure, which is expected. Of the six
families for which RNAv successfully generated outputs,
they all have the sensitivity of 1.0, equal to the sensitivity
of sub-structure based search. Of the 40 families for which
RNATOPS reported results, 14 of them have equal sensi-
tivity to ours. 1 family yields slightly better sensitivity than
ours while other 24 families have significantly worse sensi-
tivity. Thus, overall, our search achieves higher sensitivity
than RNAv and RNATOPS. In addition, sub-structure
based search tool incurs lower FP rate than RNATOPS
and RNAv. Table 3 shows that RNATOPS yields low FP
hits. Of the 40 families, RNATOPS has the same number
of FP hits as ours for only one family and significantly

more FP hits for the rest. In particular, RNATOPS outputs
over 1,000 hits for 9 families.
We compared the sensitivity, FP hits, and running time

of Infernal and our tool in Figure 5, Figure 6, and Figure 7
using X-Y scatter plots. As Infernal and our tool generate
the same sensitivity or other metrics for some families, we
use the bubble plot to visualize the number of the same
data points. As expected, Infernal is highly sensitive. How-
ever, it reported dozens of hits on the pseudoknot-free
sequences which we inserted as false positive sequences.
For all families, Infernal reported equal or more FP hits
than our tool. In addition, it is generally slower than sub-
structure-based tool. Out of 71 RNA families, sub-struc-
ture-based tool has shorter running time on 66 families.
For 14 families, it yields 10x speed up over Infernal.
There is no significant difference in the sensitivity

between Infernal and sub-structure-based tool when the
average sequence length in a family is not too long. Infer-
nal has better sensitivity on longer and more complicated
RNA families including RF00010, RF00011, RF00023, and

Table 3 Sensitivity, FP hits, and running time comparison between RNAv, RNATOPS, Infernal, and sub-structure.

RNA fam ID sen FP time RNAv sen FP time RNA-TOPS sen FP time Sub-structure sen FP hits time INFER-NAL

RF00009 1.0 5 01:47:37 1.0 38 26:16:07

RF00010 0.58 95 00:18:47 0.97 318 17:54:31

RF00011 0.84 25 00:06:51 0.97 179 09:09:52

RF00023 0.4 1 00:06:54 1.0 180 13:40:31

RF00024 0.95 24 00:06:33 0.81 86 20:36:42

RF00028 0.83 6 22:30:56 0.72 37 79:05:16

RF00030 0.38 26 02:35:01 0.98 87 83:37:31

RF00041 0.95 0 00:10:37 1.0 64 01:27:52

RF00094 0.88 0 00:09:21 1.0 35 00:54:20

RF00140 0.97 0 01:05:08 1.0 33 01:52:09

RF00165 0.21 4 4 days 1.0 0 00:22:10 1.0 14 00:32:25

RF00176 1.0 58077 19:54:40 1.0 0 00:05:48 1.0 21 00:50:54

RF00216 0.87 0 00:03:03 1.0 30 04:42:29

RF00233 0.26 0 4 days 0.96 0 00:09:06 1.0 29 00:47:38

RF00259 1.0 0 00:05:41 1.0 5 02:09:52

RF00261 1.0 0 00:13:53 1.0 20 02:50:11

RF00373 0.92 27 01:35:35 0.95 363 14:15:43

RF00381 0.38 30 4 days 1.0 0 00:17:10 1.0 15 00:33:42

RF00390 1.0 763 4 days 1.0 0 00:05:21 1.0 6 00:07:35

RF00458 1.0 0 00:09:37 1.0 10 02:18:47

RF00499 1.0 0 00:09:51 1.0 115 01:33:43

RF00505 0.2 2 4 days 1.0 0 00:32:27 1.0 5 00:29:55

RF00507 0.41 7 4 days 0.95 0 00:34:44 1.0 23 00:52:44

RF00523 0.29 160 4 days 0.95 24 00:20:31 1.0 145 00:19:24

RF00622 1.0 0 00:05:15 1.0 14 00:42:40

RF01050 1.0 0 00:41:32 1.0 13 39:22:21

RF01072 0.52 273 4 days 0.96 0 00:08:37 1.0 30 00:10:13

RF01073 1.0 196631 13:13:32 0.11 3 4 days 1.0 0 00:18:36 1.0 13 00:29:04

RF01074 0.5 91 4 days 1.0 0 00:06:59 1.0 10 00:15:00

RF01075 1.0 0 00:07:59 1.0 7 01:00:46
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Table 3 Sensitivity, FP hits, and running time comparison between RNAv, RNATOPS, Infernal, and sub-structure.
(Continued)

RF01076 1.0 139249 16:20:29 1.0 0 00:20:36 1.0 5 00:35:33

RF01077 1.0 0 00:53:32 1.0 4 00:37:23

RF01078 1.0 0 00:12:38 1.0 3 00:26:04

RF01079 1.0 333 4 days 1.0 0 00:07:37 1.0 3 00:16:01

RF01080 0.5 135 4 days 1.0 0 00:08:04 1.0 110 00:13:41

RF01081 0.67 284 4 days 1.0 0 00:06:47 1.0 3 00:08:44

RF01082 0.5 2934 4 days 1.0 0 00:05:47 1.0 4 00:09:13

RF01083 1.0 3002 4 days 0.67 1 00:04:34 1.0 7 00:07:05

RF01084 1.0 0 00:10:46 1.0 8 01:53:25

RF01086 1.0 11 05:18:38 1.0 13 05:39:23

RF01087 0.5 3 4 days 1.0 0 01:19:41 1.0 12 01:37:01

RF01088 1.0 0 00:39:09 1.0 4 00:37:14

RF01089 0.33 1 4 days 1.0 3 01:03:09 1.0 20 01:21:27

RF01090 0.43 4 4 days 1.0 0 00:23:11 1.0 8 00:36:35

RF01091 1.0 0 00:13:06 1.0 4 00:28:51

RF01092 1.0 165990 10:58:02 1.0 0 4 days 1.0 0 00:17:57 1.0 15 00:30:08

RF01093 0.42 67 4 days 1.0 0 00:13:59 1.0 23 00:29:56

RF01094 1.0 0 00:52:46 1.0 3 01:10:47

RF01095 1.0 0 00:10:56 1.0 2 00:27:12

RF01096 1.0 166314 16:44:20 0.5 1 4 days 1.0 0 00:23:04 1.0 2 00:24:45

RF01097 0.25 1 4 days 1.0 0 00:12:18 1.0 4 00:22:09

Bold font is applied to the highest sensitivity, the lowest FP hit, or the shortest running time for each RNA family. The empty cells indicate that the
corresponding tools did not generate any output within 4 CPU days.

Figure 5 Sensitivity comparison on 71 families.
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Figure 6 Comparison of false positive hits on 71 families.

Figure 7 Running Time comparison. There are 4 families on which Infernal run much longer than on other families. To keep an appropriate
scale, there running times are not displayed on the figure.
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RF00030. The major reason behind our worse sensitivity
on the long families is that we use sub-structure that
cover every stem. Thus, we only classify sequences that
have all characterized stems from the underlying structure.
However, some remote homologs may lose base pairs in
stems during evolution. Thus while we guarantee to find
sequences that have the same structures as the annotated
pseudoknots, we can miss some homologs, leading to
lower sensitivity for some families.

Conclusion
Although Infernal is highly sensitive in known ncRNA
search, caution must be taken when applying Infernal to
ncRNA families containing pseudoknots. In this work, we
designed a pseudoknot search method based on a set of
carefully chosen sub-structures. These sub-structures do
not contain pseudoknots or bifurcations. SCFGs can be
conveniently built on them and searched with high effi-
ciency. In order to minimize the overall FP rate and the
running time, we sorted sub-structures according to their
lengths and their E-values for designed trusted cutoff
(NC) bit score thresholds. We designed a greedy algo-
rithm to choose a set of sub-structures and applied the
progressive search to minimize search time. Our experi-
mental results showed that our tool competes favorably
with RNAv and RNATOPs, both of which have been
used for pseudoknot search in large databases. This work
provides a complementary pseudoknot search tool to
existing SCFG-based knot-free ncRNA search methods.
Currently our tool only reports homologous ncRNAs

with the same number of characterized stems as the train-
ing data. As a result, some true homologs that have lost
one or multiple stems will be ignored. As part of the
future work, we plan to incorporate available RNA-seq
data for remote homology search.
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