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Abstract

Background: Protein structure prediction is an important but unsolved problem in biological science. Predicted
structures vary much with energy functions and structure-mapping spaces. In our simplified ab initio protein
structure prediction methods, we use hydrophobic-polar (HP) energy model for structure evaluation, and 3-
dimensional face-centred-cubic lattice for structure mapping. For HP energy model, developing a compact
hydrophobic-core (H-core) is essential for the progress of the search. The H-core helps find a stable structure with
the lowest possible free energy.

Results: In order to build H-cores, we present a new Spiral Search algorithm based on tabu-guided local search.
Our algorithm uses a novel H-core directed guidance heuristic that squeezes the structure around a dynamic
hydrophobic-core centre. We applied random walks to break premature H-cores and thus to avoid early
convergence. We also used a novel relay-restart technique to handle stagnation.

Conclusions: We have tested our algorithms on a set of benchmark protein sequences. The experimental results
show that our spiral search algorithm outperforms the state-of-the-art local search algorithms for simplified protein
structure prediction. We also experimentally show the effectiveness of the relay-restart.

Introduction
Proteins are essentially sequences of amino acids. They
adopt specific folded three-dimensional structures to per-
form specific tasks. The function of a given protein is
determined by its native structure, which has the lowest
possible free energy level. Nevertheless, misfolded proteins
cause many critical diseases such as Alzheimer’s disease,
Parkinson’s disease, and Cancer [1,2]. Protein structures
are important in drug design and biotechnology.

PSP problem
Protein structure prediction (PSP) is computationally a
very hard problem [3]. Given a protein’s amino acid
sequence, the problem is to find a three dimensional
structure of the protein such that the total interaction

energy amongst the amino acids in the sequence is mini-
mised. The protein folding process that leads to such
structures involves very complex molecular dynamics [4]
and unknown energy factors. To deal with the complexity
in a hierarchical way, researchers have used discretised
lattice-based structures and simplified energy models
[5-7] for PSP. However, the complexity of the simplified
problem still remains challenging.

The state-of-the-art approaches
There are a large number of existing search algorithms
that attempt to solve the PSP problem by exploring feasi-
ble structures called conformations. A memory based
local search (LS-Mem) [8] method reportedly produced
the best results on face-centred-cubic (FCC) lattice for
hydrophobic-polar (HP) energy model. Before LS-Mem,
the state-of-the-art results were achieved for similar
model by tabu-based local search (LS-Tabu) methods
[9,10]. Besides these, genetic algorithms (GA) [11], and
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tabu search [12] found promising results on 2D and 3D
hexagonal lattice based HP models.

Research issues
In general, the success of single-point and/or population-
based search algorithms crucially depends on the balance
of diversification and intensification of the exploration.
However, these algorithms often get stuck in local
minima. As a result, they perform poorly on large sized
(> 100 amino acids) proteins. Any further progress to
these algorithms requires addressing the above issues
appropriately.

Our contributions
In this paper, we present a novel spiral search algorithm
for ab initio protein structure prediction using HP energy
model on three-dimensional (3D) FCC lattice. By using
tabu heuristic, the search approaches towards the opti-
mum solution by spinning around a dynamic hydropho-
bic-core centre (HCC) like a coil. We call our tabu-based
spiral search algorithm SS-Tabu. In SS-Tabu, we consider
the diagonal move (corner-flip) (as shown in Figure 1) to
build the hydrophobic-core (H-core). We apply random-
walk [13] to break the premature H-core. We use a novel
relay-restart when the search is trapped in local minima
and the random-walk fails to overcome the stagnation. On
a set of benchmark proteins, SS-Tabu significantly outper-
forms the state-of-the-art local search algorithms [8,9] on
similar models.

Background
Computational methods for PSP
Homology modeling, protein threading and ab initio are
three computational approaches used in protein structure
prediction. Prediction quality of homology modeling and
protein threading depends on the sequential similarity of
previously known protein structures. However, our work

is based on the ab initio approach that only depends on
the amino acid sequence of the target protein. Levinthal’s
paradox [14] and Anfensen’s hypothesis [15] are the basis
of ab initio method for protein structure prediction. The
idea was originated in 1970 when it was demonstrated
that all information needed to fold a protein resides in its
amino acid sequence. In our simplified protein structure
prediction model, we use 3D FCC lattice for conforma-
tion mapping, HP energy model for conformation evalua-
tion, and a hydrophobic-core centric local search
algorithm (SS-Tabu) for conformation search. Local
search approach, 3D FCC lattice, and HP energy model
are described below.

Local search
Starting from an initial solution, local search algorithms
move from one solution to another to find a better solu-
tion. Local search algorithms are well known for effi-
ciently producing high quality solutions, which are
difficult for systematic search approaches. However, they
are incomplete [16], and suffer from revisitation and stag-
nation. Restarting the whole or parts of a solution
remains the typical approach to deal with such situations.
In PSP, Cebrian et al. [9] used a local search algorithm
combined with tabu heuristic. They implemented their
method on 3D FCC lattice configuration for HP model,
and tested its effectiveness on Harvard instances [17].
Later, Dotu et al. [10] extended the work in [9] by using
a hybrid method that combines local search and con-
straint programming together. Prior to LS-Mem, these
two methods [9,10] produced the state-of-the-art results
for PSP on FCC lattice and HP energy model.

Tabu meta-heuristic
Tabu meta-heuristic [18,19] enhances the performance of
local search algorithms. It maintains a memory structure
to remember the local changes of a solution. Then any

Figure 1 Diagonal move. Depiction of a diagonal move, for easy comprehension, shown in 2D space.
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local changes for those stored positions are forbidden for
certain number of subsequent iterations (known as tabu
tenure).

3D FCC lattice
The FCC lattice has the highest packing density com-
pared to the other existing lattices [20]. In FCC, each
lattice point (the origin in Figure 2) has 12 neighbours
with 12 basis vectors (1, 1, 0), (-1, -1, 0), (-1, 1, 0), (1, -1,
0), (0, 1, 1), (0, 1, -1), (1, 0, 1), (1, 0, -1), (0, -1, 1), (-1, 0,
1), (0, -1, -1), and (-1, 0, -1). The hexagonal closed pack
(HCP) lattice, also known as cuboctahedron, was used
in [11]. In HCP, each lattice point has 12 neighours that
correspond to 12 basis vertices with real-numbered
coordinates, which causes the loss of structural precision
for PSP. In simplified PSP, conformations are mapped
on the lattice by a sequence of basis vectors, or by the
relative vectors that are relative to the previous basis
vectors in the sequence.

HP energy model
The 20 constituent amino acids of proteins are broadly
divided into two categories based on the hydrophobicity
of the amino acids: (a) hydrophobic amino acids denoted
as H (Gly, Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp); and

(b) hydrophilic or polar amino acids denoted as P (Ser,
Thr, Cys, Asn, Gln, Lys, His, Arg, Asp, Glu). In the HP
model [21,22], when two non-consecutive hydrophobic
amino acids become topologically neighbours, they con-
tribute a certain amount of negative energy, which for
simplicity is shown as -1 in Figure 3. The total energy (E)
of a conformation based on the HP model becomes the
sum of the contributions of all pairs of non-consecutive
hydrophobic amino acids as shown in Equation 1.

E =
∑
i<j−1

cij · eij (1)

where cij = 1 if amino acids i and j are non-consecutive
neighbours on the lattice, otherwise 0; and eij = -1 if ith
and jth amino acids are hydrophobic, otherwise 0.

Related work
Different types of metaheuristic have been used in solving
the simplified PSP problem. These include Monte Carlo
Simulation [23], Simulated Annealing [24], Genetic Algo-
rithms (GA) [25,26], Tabu Search with GA [12], Tabu
Search with Hill Climbing [27], Ant Colony Optimisation
[28], Immune Algorithms [29], Tabu-based Stochastic
Local Search [8,9], and Constraint Programming [10].

Figure 2 3D FCC lattice. A unit 3D FCC lattice; the 12 basis vectors are shown on the Cartesian coordinates; the vectors represent the 12
topological neighbours of the origin on the FCC lattice.
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Cebrian et al. [9] used tabu-based local search, and Sha-
tabda et al. [8] used memory-based local search with tabu
heuristic and achieved the state-of-the-art results. How-
ever, Dotu et al. [10] used constraint programming and
found promising results but only for small sized (< 100
amino acids) proteins. Besides local search, Unger and
Moult [25] applied genetic algorithms to PSP and found
their method to be more promising than the Monte Carlo
based methods [23]. They used absolute encodings on the
square and cubic lattices for HP energy model. Later, Pat-
ton [30] used relative encodings to represent conforma-
tions and a penalty method to enforce the self-avoiding
walk constraint.
The GA has been used by Hoque et al. [11] for cubic,

and 3D HCP lattices. They used Depth First Search (DFS)
to generate pathways [31] in GA crossover for PSP. They
also introduced a twin-removal operator [32] to remove
duplicates from the population and thus to prevent the
search from stalling.

Methods
In HP model, protein structures have H-cores that hide
the hydrophobic amino acids from water and expose the
polar amino acids to the surface to be in contact with the
surrounding water molecules [33]. H-core formation is the

main objective of HP based PSP. To achieve this, the total
distance of all H-H pairs is minimised in [9]. A predefined
motif based segment replacement strategy is applied in
[11] to replace structure segments by pre-determined sub-
structures based on matching H-P orientations in the tar-
get sequence. In SS-Tabu, we try to reduce the distance of
each H-amino acid from the HCC; which eventually helps
minimise the free energy level of the conformation.

Spiral search framework
In spiral search, only the diagonal move operator is used
repeatedly (as shown in Figure 4) in building H-cores. A
diagonal move displaces ith amino acid from its position to
another position on the lattice without changing the posi-
tion of its succeeding (i + 1)th and preceding (i - 1)th
amino acids in the sequence. The move is just a corner-flip
to an unoccupied lattice point. In SS-Tabu, we repeatedly
use diagonal moves that squeeze the conformation and
quickly form the H-core. The spiral search procedure (see
the pseudocode in Figure 5) is composed of several sub-
procedures mainly, for move selection, for handling local
minima and stagnation, and for initialisation and evaluation.
Move selection
In move selection, the hydrophobic amino acids get
priority in comparison to polar amino acids. The move

Figure 3 HP model. HP energy model [22].
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selection criteria are explained in the following
paragraphs.
H-move selection In H-move selection (see the pseudo-
code in Figure 6), the HCC is calculated by finding arith-
metic means of x, y, and z coordinates of all hydrophobic
amino acids using Equation 2. The selection is guided by
the Cartesian distance di (as shown in Equation 3)
between HCC and the hydrophobic amino acids in the
sequence. For the ith hydrophobic amino acid, the com-
mon topological neighbours of the (i - 1)th and (i + 1)th
amino acids are computed. The topological neighbours
(TN) of a lattice point are the points at unit lattice-dis-
tance apart from it. For 3D FCC lattice, there are four
common TN of the (i - 1)th and (i + 1)th amino acids.
From the common neighbours, the unoccupied points
are identified. The Cartesian distance of all unoccupied
common neighbours are calculated from the HCC using
Equation 3. Then the point with the shortest distance is
picked. This point is listed in the possible H-move list for
ith hydrophobic amino acid if its current distance from
HCC is greater than that of the selected point. When all
hydrophobic amino acids are traversed and the feasible
shortest distances are listed in H-move list, the amino
acid having the shortest distance in H-move list is chosen

to apply diagonal move operator on it. A tabu list is
maintained for each hydrophobic amino acid to control
the selection priority amongst them. For each successful
move, the tabu list is updated for the respective amino
acid. The process stops when no H-move is found. In
this situation, the control is transferred to select and
apply P-moves.

xhcc =
1
nh

nh∑
i=1

xi, yhcc =
1
nh

nh∑
i=1

yi, zhcc =
1
nh

nh∑
i=1

zi (2)

where nh is the number of H amino acids in the protein.

di =
√
(xi − xhcc)

2 + (yi − yhcc)
2 + (zi − zhcc)2 (3)

P-move selection For polar amino acids, the same kind
of diagonal moves are applied as H-move. For each ith
polar amino acid, all free lattice points that are common
neighbours of lattice points occupied by (i - 1)th and (i
+ 1)th amino acids are listed. From the list, a point is
selected randomly to complete a diagonal move for the
respective polar amino acid. No hydrophobic-core cen-
ter is calculated, no Cartesian distance is measured, and
no tabu list is maintained for P-move. After one try for

Figure 4 Spiral search. Spiral search comprising a series of diagonal moves. For simplification and easy understanding, the figures are
presented in 2-dimensional space.
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Figure 5 Spiral search algorithm. Spiral Search framework: pseudocode of Procedure SpiralSearch.

Figure 6 H-move algorithm. Spiral Search framework: pseudocode of Procedure selectMoveForH.
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each polar amino acid the control is returned to select
and apply H-moves.
Stagnation recovery
For hard optimisation problems such as protein struc-
ture prediction, local search algorithms often face stag-
nation. Thus, handling such situation intelligently is
important to proceed further. In our SS-Tabu, we use
random-walk [13] and a new relay-restart technique
with on-demand basis to deal with stagnation.
Random-walk Premature H-cores are observed at local
minima. To escape local minima, a random-walk [13] algo-
rithm (see the pseudocode in Figure 7) is applied. This algo-
rithm uses pull moves [34] (as shown in Figure 8) to break
the H-core. We use pull-moves because they are complete,
local, and reversible. Successful pull moves never generate
infeasible conformations. During pulling, energy level and
structural diversification are observed to maintain a bal-
ance among these two. We allow energy level to change
within 5% to 10% with changes in the structure from 10%
to 75% of the original. We try to accept the conformation
that is close to the current conformation in terms of energy
level but is diverse in terms of structure.
Relay-restart Instead of using a fresh restart or restart-
ing from the current best solution [8,9], we use a new
relay-restart technique (see the pseudocode in Figure 9)
when the search stagnation situation arises. We use
relay-restart when random-walk fails to escape from
local minima. The relay restart starts from an improving
solution. We maintain an improving solution list that
contains all the improving solutions after initialisation.
When a solution with energy level better than the cur-
rent global best is found, the solution is added to the
top of the list pushing existing solutions back. For relay-
restart, a random conformation from the top 10% solu-
tions of the list is selected to start with. The selected
solution is then sent back to the bottom of the list to
keep it away from the scope of reselection in very near
future.
Further implementation details
Like other local search algorithms, our spiral search
requires initialisation. It also needs evaluation of the
solution in each iteration. Further, it needs to maintain
a tabu meta-heuristic to guide the search.
Initialisation Our algorithm starts with a feasible con-
formation. We generate an initial conformation following

a self-avoiding walk (SAW) on FCC lattice points. The
pseudocode of the algorithm is presented in Figure 10. It
places the first amino acid at (0, 0, 0). It then randomly
selects a basis vector to place the successive amino acid
at a neighbouring free lattice point. The mapping pro-
ceeds until a self-avoiding walk is found for the whole
protein sequence.
Tabu tenure Intuitively we use different tabu-tenures
based on the number of hydrophobic amino acids
(hCount) in the sequence. We intuitively calculate tabu-
tenure using the formula in Equation 4:

tenure =
(
10 +

hCount
10

)
(4)

Evaluation After each iteration, the conformation is
evaluated by counting the H-H contacts (topological
neighbour) where the two amino acids are non-consecu-
tive. The pseudocode in Figure 11 presents the algorithm
of calculating the free energy of a given conformation.
Note that energy value is negation of the H-H contact
count.

Results and discussion
In our experiment, the protein instances (as shown in
Table 1), F180 and R instances are taken from Peter
Clote laboratory website (bioinformatics.bc.edu/clotelab/
FCCproteinStructure). Cebrian et al. [9], Dotu et al.
[10], and Shatabda et al. [8] used these instances in
evaluating their algorithms. We also use six more larger
sequences that are taken from the CASP (predictioncen-
ter.org/casp9/targetlist.cgi) competition. The correspond-
ing CASP target IDs for proteins 3mse, 3mr7, 3mqz,
3no6, 3no3, and 3on7 are T0521, T0520, T0525, T0516,
T0570, and T0563. These CASP targets are also used in
[8]. To fit in the HP model, the CASP targets are con-
verted to HP sequences based on the hydrophobic prop-
erties of the constituent amino acids. The lower bounds
of the free energy values (in Column LB-FreeE of Table
1) are obtained from [8,9]; however, there are some
unknown values (presented as ?) of lower bounds of free
energy for large sequences.
In Table 1, the Size column presents the number of

amino acids in the sequences, and LB-FreeE column
shows the known lower bounds of free energy for the cor-
responding protein sequences in Column ID. However,

Figure 7 Random-walk algorithm. Spiral Search framework: pseudocode of Procedure randomWalk.

Rashid et al. BMC Bioinformatics 2013, 14(Suppl 2):S16
http://www.biomedcentral.com/1471-2105/14/S2/S16

Page 7 of 13



lower bound of free energy for protein 3on7 is unknown.
The best and average free energy for three different algo-
rithms are also present in the table. The bold-faced values
indicate better performance in comparison to the other
algorithms for corresponding proteins. The experimental
results show that our SS-Tabu wins over LS-Mem and
LS-Tabu over the 21 proteins with a significant margin on
average search results.

Relative improvement
The difficulty to improve energy level is increased as the
predicted energy level approaches to the lower bound. For
example, if the lower bound of free energy of a protein is
-100, the efforts to improve energy level from -80 to -85 is
much less than that to improve energy level from -95 to
-100 though the change in energy is the same (-5). Relative
Improvement (RI) explains how close our predicted results

Figure 9 Relay-restart algorithm. Spiral Search framework: pseudocode of Procedure relayRestart.

Figure 8 Pull move. The pull move operator [34] used in random-walk for collapsing a premature H-core; for easy comprehension, presented in
2D space.

Figure 10 Initialisation algorithm. Spiral Search framework: pseudocode of Procedure initialise.
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to the lower bound of free energy with respect to the
energy obtained from the state-of-the-art approaches.
In Table 2, we present a comparison of improvements

(%) on average conformation quality (in terms of free
energy levels). We compare SS-Tabu (target) with LS-
Tabu and LS-Mem (references). For each protein, the RI
of the target (t) w.r.t. the reference (r) is calculated using
the formula in Equation 5, where Et and Er denote the
average energy values achieved by target and reference

respectively, and E1 is the lower bound of free energy for
the protein in the HP model. We present the relative
improvements only for the proteins having known lower
bound of free energy values. We test our new algorithm
on 21 different proteins of various length. The bold-faced
values are the minimum and the maximum improvements
for the same column.

RI =
Et − Er
E1 − Er

∗ 100% (5)

Figure 11 Evaluation algorithm. Spiral Search framework: pseudocode of Procedure evaluate.

Table 1 Experimental results of LS-Mem, LS-Tabu, and SS-Tabu

The state-of-the-art Spiral Search Time/run

Protein Info. LS-Mem LS-Tabu SS-Tabu

ID Size LB-FreeE Best Avg Best Avg Best Avg min

F90_1 -168 -164 -160 = -166

F90_2 -168 -165 -158 = -164

F90_3 90 -167 n/a n/a -165 -159 = -165 120

F90_4 -168 -165 -159 = -165

F90_5 -167 -165 -159 = -165

S1 135 -357 -351 -341 -355 -347

S2 151 -360 n/a n/a -355 -343 -354 -347 120

S3 162 -367 -355 -340 -359 -350

S4 164 -370 -354 -343 -358 -350

F180_1 -378 -360 -334 -338 -327 -357 -340

F180_2 180 -381 -362 -340 -345 -334 -359 -345 300

F180_3 -378 -357 -343 -352 -339 -362 -353

R1 -384 -353 -326 -332 -318 -359 -345

R2 200 -383 -351 -330 -337 -324 -358 -346 300

R3 -385 -352 -330 -339 -323 -365 -345

3mse 179 -323 -278 -254 -266 -249 -289 -280

3mr7 189 -355 -311 -292 -301 -287 -328 -313

3mqz 215 -474 -415 -386 -401 -383 -420 -403 300

3no6 229 -455 -400 -375 -390 -373 -411 -391

3no3 258 -494 -397 -361 -388 -359 -412 -393

3on7 279 ? -499 -463 -491 -461 -512 -485

Results for 21 small (size < 100), medium (100 < size < 200), and large (size ≥ 200) sized proteins. The sequences are taken from [8-10] (S, F and R instances) and
CASP competition (others). The results are calculated over 50 different runs with identical settings for each algorithm; duration of each run is presented in last
column. The bold-faced values are the winners in respective rows. Column LB-FreeE presents the lower bounds of free energy.

Note: = denotes the lower bound of free energy is found and ? denotes unknown.
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Table 2 Relative improvement by SS-Tabu w.r.t. LS-Mem and LS-Tabu

Target(t) Reference(r)

Protein Info. SS-Tabu LS-Mem LS-Tabu

ID Size LB-FreeE Avg (Et) Avg (Er) RI Avg (Er) RI

F90_1 -168 -166 -160 75.00%

F90_2 -168 -164 -158 60.00%

F90_3 90 -167 -165 n/a n/a -159 75.00%

F90_2 -168 -165 -159 66.67%

F90_3 -167 -165 -159 75.00%

S1 -357 -347 -341 37.50%

S2 200 -360 -347 n/a n/a -343 23.52%

S3 -367 -350 -340 37.03%

S4 -370 -350 -343 25.92%

F180_1 -378 -340 -334 13.64% -327 25.49%

F180_2 180 -381 -345 -340 12.20% -334 23.40%

F180_3 -378 -353 -343 28.57% -339 35.90%

R1 -384 -345 -326 32.76% -318 40.91%

R2 200 -383 -346 -330 30.19% -324 37.29%

R3 -385 -345 -330 27.27% -323 35.48%

3mse 179 -323 -280 -254 37.68% -249 41.89%

3mr7 189 -355 -313 -292 33.33% -287 38.24%

3mqz 215 -474 -403 -386 19.32% -383 21.98%

3no6 229 -455 -391 -375 20.00% -373 21.95%

3no3 258 -494 -393 -361 24.06% -359 25.19%

3on7 279 ? -485 -463 .. -461 ..

The relative improvements of SS-Tabu w.r.t. LS-Mem and LS-Tabu are presented in the table. The column RI presents the relative improvements. The values are
calculated using the formula in Equation 5. The value ? denotes an unknown value. The results are calculated over 50 different runs with identical settings for
each algorithm. The bold-faced values are the minimum and maximum values of relative improvements for the respective columns. The column LB-FreeE
presents the lower bounds of free energy.

Note: ? denotes unknown.

Table 3 Effectiveness of relay-restart in SS-Tabu

Protein Info. Reference(r) Target(t) RI (on avg using RR)

SS-Tabu
without RR

SS-Tabu
with RR

ID Size LB-FreeE Best Avg Best Avg

F180_1 -378 -355 -333 -357 -340 15.56%

F180_2 180 -381 -358 -338 -359 -345 16.28%

F180_3 -378 -365 -346 -362 -353 21.88%

R1 -384 -362 -336 -359 -345 18.75%

R2 200 -383 -362 -340 -358 -346 13.95%

R3 -385 -362 -333 -365 -345 23.08%

3mse 179 -323 -291 -275 -289 -280 10.42%

3mr7 189 -355 -323 -309 -328 -313 8.70%

3mqz 215 -474 -423 -402 -420 -403 1.39%

3no6 229 -455 -412 -389 -411 -391 3.03%

3no3 258 -494 -423 -386 -412 -393 6.48%

3on7 279 ? -510 -484 -512 -485 ..

Comparison between two different variants of SS-Tabu: i) The results under the heading Reference are obtained by running SS-Tabu without relay-restart (RR)
and ii) the results under the heading Target are obtained by running SS-Tabu with relay-restart technique. The results are calculated over 50 different runs with
identical settings for each algorithm. The bold-faced values in Columns Avg are the winners for the respective proteins, and that in Column RI are the minimum
and maximum values of relative improvements. Column LB-FreeE presents the lower bounds of free energy.

Note: ? denotes unknown.
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Improvement w.r.t. LS-Mem The experimental results
in Table 2, at column RI (relative improvement) under
LS-Mem shows that our SS-Tabu is able to improve the
search quality in terms of minimizing the free energy
level over all 21 proteins. The relative improvements
with respect to LS-Mem range from 12.20% to 37.68%.
Improvement w.r.t. LS-Tabu The experimental results
in Table 2, at column RI under LS-Tabu shows that our
SS-Tabu is able to improve the search quality in terms
of minimising the free energy level over all 21 proteins.
The relative improvements with respect to LS-Tabu
range from 21.95% to 75.00%.

Effectiveness of relay-restart In Table 3, we present
another set of experimental results to show the effective-
ness of relay-restart in the spiral search framework. The
results under the headings Target and Reference are
obtained by running SS-Tabu respectively with and with-
out relay-restart. The relative improvements on average
search results are presented in the last column of the
table. The relative improvements after including relay-
restart in our SS-Tabu, are as minimum as 1.39% and as
maximum as 23.08%.
Simplified structure In Figure 12, we show the best
structures found by SS-Tabu, LS-Mem and LS-Tabu for

Figure 12 Structure comparison. The 3D structures of protein R1 obtained by a) LS-Tabu, b) LS-Mem, and c) SS-Tabu.

Figure 13 Search progress. Search progress for protein R1 with time for different approaches. The results are calculated over 50 different runs
with identical settings for each algorithm.
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protein R1. Each algorithm runs over a period of 5
hours to achieve the results.
Search progress
We compare the search progresses of different variants
of local search; LS-Tabu, LS-Mem, and SS-Tabu over
time. Figure 13 shows the average energy values
obtained with times by the algorithms for protein R1.
We observe that all of the algorithms achieve very good
progress initially, but with time increasing, our spiral
search SS-Tabu makes more progress than LS-Tabu
and LS-Mem.

Conclusion
In this paper, we present a new spiral search (SS-Tabu)
under the local search framework for simplified protein
structure prediction on 3D face-centred-cubic lattice.
We use a new search guiding heuristic, which is the dis-
tance of a hydrophobic amino acid from a dynamic
hydrophobic-core centre. We also use a novel relay-
restart technique to break the stagnation. We compare
our results with two other local search algorithms: LS-
Tabu and LS-Mem, which achieved the state-of-the-art
results for similar models. We found that our SS-Tabu
significantly outperforms both LS-Mem and LS-Tabu.
We aim to apply our algorithm in high resolution pro-
tein structure prediction in future.
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