MEETING ABSTRACT

Open Access

Empirical Bayesian selection of hypothesis testing procedures for analysis of digital gene expression data

Stan Pounds¹, Cuilan Gao^{2*}

From 12th Annual UT-ORNL-KBRIN Bioinformatics Summit 2013 Buchanan, TN, USA. 22-24 March 2013

Background

Differential expression analysis of digital gene expression data involves performing a large number of hypothesis tests that compare the expression count data of each gene or transcript across two or more biological conditions. The assumptions of any specific hypothesis-testing method will probably not be valid for each of a very large number of genes. Thus, computational evaluation of assumptions should be incorporated into the analysis to select an appropriate hypothesis-testing method for each gene.

Materials and methods

Here, we generalize earlier work to introduce two novel procedures that use estimates of the empirical Bayesian probability (EBP) of overdispersion to select or combine results of a standard Poisson likelihood ratio test and a quasi-likelihood test for each gene. These EBP-based procedures simultaneously evaluate the Poisson-distribution assumption and account for multiple testing. With adequate power to detect overdispersion, the new procedures select the standard likelihood test for each gene with Poisson-distributed counts and the quasi-likelihood test for each gene with overdispersed counts.

Results

The new procedures outperformed previously published methods in many simulation studies. We also present a real-data analysis example and discuss how the framework used to develop the new procedures may be generalized to further enhance performance.

* Correspondence: cuilan-gao@utc.edu

²Department of Mathematics, University of Tennessee Chattanooga, Chattanooga, TN 37403, USA

Full list of author information is available at the end of the article

Authors' details

¹Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. ²Department of Mathematics, University of Tennessee Chattanooga, Chattanooga, TN 37403, USA.

Published: 22 October 2013

doi:10.1186/1471-2105-14-S17-A21

Cite this article as: Pounds and Gao: **Empirical Bayesian selection of hypothesis testing procedures for analysis of digital gene expression data**. *BMC Bioinformatics* 2013 **14**(Suppl 17):A21.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Pounds and Gao; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.