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Abstract

Motivation: Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both
structural and functional variability of the human brain is measured non-invasively through techniques such as
magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such
multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of
decision trees, are amongst the best performing machine learning algorithms and have been successfully
employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene
rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures
that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional
traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which
makes the application of these algorithms computationally prohibitive.

Results: We have developed a parallel version of the RF algorithm for regression and genetic similarity learning
tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel
Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is
deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications.
Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation
process. PaRFR has been applied to a genome-wide association study on Alzheimer’s disease (AD) in which the
quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the
human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures
of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known
AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence
supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent
mutation patterns, and an indicator of disease severity.

Availability: The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.
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Introduction
The last few years have seen extensive efforts to correlate
human genetic and phenotypic variation. An increasing
number of population genome-wide association studies
(GWAS) have been carried out to discover causal associa-
tions between common genetic variations and complex
human traits. These studies rely on high-throughput plat-
forms that measure genetic changes at hundreds of thou-
sands or even million single-nucleotide polymorphisms
(SNPs) across the human genome in large random sam-
ples. Full sequencing of human genomes has shown that,
in any given individual, there are on average approximately
4 million genetic variants [1]. The most common study
design generally involves comparing a sample of healthy
control subjects with a sample of diseased subjects, with
the goal of identifying patterns of polymorphisms that
vary systematically between these two populations and
could, therefore, represent the effects of risk-enhancing
alleles. Such abundance of genetic markers has now made
it possible to identify quantitative trait loci (QTL), which
are regions of a chromosome or even individual sequence
variants that are responsible for trait variation. For many
diseases, such as asthma or attention deficit hyperactivity
disorder (ADHD), investigators routinely measure multiple
endophenotypes that are thought to be more proximal to
the biological etiology of the clinical disorder [2].
Traditional statistical genetics methodologies have

started to be complemented with, or even replaced by,
machine learning algorithms because they often make
minimal assumptions about the underlying causal disease
mechanism, which is generally unknown. Case-control
studies can be analysed by performing SNP selection and
ranking in the context of pattern classification. Random
Forest (RF), which is amongst the top performing algo-
rithms for supervised learning, has been found particularly
promising in case-control studies [3-6]. Phenotypic varia-
tion in human populations is typically due to underlying
genetic complexity from multiple interacting loci, with
allelic effects that are sensitive to the environmental condi-
tions each individual experiences. RF has also been
regarded as a particularly powerful approach to capture
gene-environment interactions and epistatic effects [7-10].
Our interest in this work is on detecting genetic var-

iants associated to quantitative, and possibly multivariate
and very high-dimensional, traits. When a QTL is found
to be linked to a causative marker locus, then indivi-
duals with different marker locus genotypes will have
different mean values of the quantitative trait. In this
respect, the QTL mapping problem can also be treated
as a feature selection and ranking problem, albeit in a
regression setting. Several studies mapping QTL that
affect human diseases and complex traits have uncov-
ered new loci. Although much emphasis has been placed

on linkage mapping, or QTL mapping in families, there
is now increasing interest for QTL mapping in unrelated
individuals from the same population, or association
mapping [11].
An instance of association mapping with very high-

dimensional quantitative traits is found in the area of
neuroimaging genetics, an emerging field that is rapidly
identifying genetic variants that influence the brain
structure and function [12-14]. Many research groups
are now scanning unrelated individuals with structural
and functional MRI (Magnetic Resonance Imaging), DTI
(Diffusion Tensor Imaging) and other imaging modalities
to characterise variability in the brain. In whole-brain stu-
dies, an imaging phenotype may consist of thousands or
millions of measurements in a 3D space, representing for
instance gray matter intensities. These studies create
important statistical challenges due to the very high
dimensionality of the quantitative trait being observed.
Power gains can be expected by analysing all these mea-
surements jointly, rather than performing multiple inde-
pendent analyses each involving a univariate response or
using summary measures [15]. The use of such multivari-
ate heritable imaging signatures of disease may increase
the power to detect causal variants, when compared with a
simpler case-control status, since gene effects are expected
to be more penetrant at the imaging level, rather than
at the diagnostic level [16,17]. Although neuroimaging
genetics studies have already identified coherent anatomi-
cal patterns of gene effects in three-dimensions using
advanced statistical methods [15,18-20], the potential of
machine learning methods in that area has not yet been
fully explored, and this may be due to the lack of scalable
implementations.
We describe here a parallel implementation of RF for

regression problems with multivariate responses which
allows to quantify the importance of each genetic marker
in predicting the trait. Our implementation has been spe-
cifically designed to run on large Hadoop clusters, includ-
ing those available through cloud computing services such
as Amazon Elastic MapReduce. The Hadoop ecosystem
consists of a set of tools for building distributed systems,
including tools for storage, data analysis, and coordination,
thus enabling algorithms to be run on thousands of com-
putational nodes. Hadoop was originally designed to
address two main issues that arise when distributing data
and computations across a very large cluster. First, the
problem of hardware failure, which is addressed through
replication; redundant copies of the data are kept by the
system so that in the event of failure, there is always
another copy available. Second, the problem of reliably
combining the data resulting from various parallel com-
putations from potentially many nodes and disks. The
latter problem is addressed by adopting the MapReduce

Wang et al. BMC Bioinformatics 2013, 14(Suppl 16):S6
http://www.biomedcentral.com/1471-2105/14/S16/S6

Page 2 of 15



programming model [21]. Programs written in this func-
tional style are parallelized and executed on a large cluster
of commodity machines. Hadoop is currently an open
source Apache project.
The paper is structured as follows. Section Methods

provides a description of the RF algorithm with multi-
variate responses, including an alternative node splitting
criterion for tree building that is computationally conve-
nient when the trait is high-dimensional, and a procedure
for ranking SNPs in order of their predictive importance.
We also present the strategy adopted to parallelize the
algorithm using the MapReduce programming model,
and introduce the motivating application and data set. In
Section Results and discussion we discuss an imaging
genetics study of Alzheimer’s disease, and illustrate how
the PaRFR algorithm detects several genes that have been
previously reported in the literature. We also illustrate
how PaRFR can be used to estimate a measure of genetic
proximity, and investigate the correlation between
genetic and phenotypic diversity, as well as the cumula-
tive effects of multiple mutations on the severity of the
disease. We conclude in Section Conclusions by provi-
ding an overview of alternative parallel RF algorithms
and some remarks on further work.

Methods
Random Forest regression
We call D the data set comprising N unrelated indivi-
duals or samples genotyped at P biallelic markers. For
each individual, the markers are arranged in a data vector
xi = (xi1, xi2, ..., xiP ), for i = 1, ..., N. Depending on the
coding scheme, different genetic models can be applied.
For instance, assuming an additive genetic model, each
xij represents the count of minor alleles recorded at the
jth locus–homozygote of minor allele is 2, heterozygote is
1 and homozygote of major allele is 0. The associated
quantitative trait for each subject is assumed to be a
Q-dimensional real-valued vector which we denote as
yi = (yi1, yi2, ..., yiQ), with i = 1, ..., N. In imaging genetics
study designs, for instance, it is common that the sample
size N is much smaller than min{P, Q}.
The RF algorithm builds an ensemble of regression

trees, each one independently learned on a boot-strapped
version of D. The required number of trees in the forest,
Ntree, is a user-defined parameter. The training data set
for each tree is obtained by randomly sampling N
subjects from D with replacement. The tree building pro-
cess is accomplished by introducing a second layer of
randomness and involves selecting a random subset of
Mtry candidate SNPs at each node, among the P available
SNPs, in order to reduce the correlation among trees. In
each tree, the best split at a node is determined by eva-
luating a split function for each value of a candidate SNP,
and then selecting the SNP that maximises this function

(see also Equation 2). To reduce bias, the trees are grown
to a maximum depth with no pruning or otherwise until
a minimum sample size has been reached; by default, we
set this value to 5 for univariate trait and 20 for multi-
variate traits. We only consider binary trees, although in
principle multi-way splits could also be accommodated
with minor changes.
For each tree, all the subjects in D that do not become

part of the bootstrap sample used for training are col-
lected together to form an out-of-bag (OOB) sample,
which is used as a testing set. Approximately 63.2% of
the subjects in D are utilised as training data, while the
remaining subjects are OOB samples. Each OOB sample
is used to obtain an estimate for the prediction error
(PE) for its tree and these estimates are then averaged
across all trees to provide an overall estimate [22].
Although RF is deemed to be relatively insensitive to

the choice of Ntree and Mtry, in practice, for large-scale
GWAS involving a massive number of predictors, and
possibly multivariate responses, these parameters must
be tuned to achieve an optimal predictive performance
and increase the statistical power of the algorithm to
detect the true causative SNPs. As the number of trees
in the forest increases, the OOB error rate is expected
to converge to a theoretical prediction error according
to the law of large numbers [22]. It is therefore important
to select a sufficiently large number of trees to guarantee
optimal performance and stable ranking.

Split functions for multivariate traits
The node splitting rule determines how each tree in the
forest is built, and depends on the particular predictive
task at hand. For each node j, two operations are per-
formed: (a) every allowable split on each SNP is examined;
(b) the best of these split is selected, and the left and right
daughter nodes are created. The initial node is the root
node, which contains the entire data set D, and the two
operations above are then applied repeatedly to each
daughter node until no more splits can be obtained. Dur-
ing this process the value of a split function j(j) is com-
puted for every split at node j. In regression tasks with
both univariate and multivariate responses, sum-of-
squares functions are commonly used [23]. In what fol-
lows, we let D(j) denote the subset of samples associated
with node j, and Mj the set of Mtry candidate SNPs that
are available to split node j. Furthermore, the mean
response vector observed in D(j) is denoted ȳ(j). With this
notation in place, the total sum of squares at node j is

SS(j) =
∑

i∈D(j)

(yi − ȳ(j))TV−1(�, j) (yi − ȳ(j)) (1)

where V(�, j) is the Q × Q covariance matrix esti-
mated from D(j), and depends on an unknown para-
meter vector �. A fully parametrized covariance matrix
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requires Q(Q + 1)/2 parameters. With low sample sizes,
a more parsimonious model is generally preferable so
that �. has only a few unknown parameters. It is stan-
dard procedure to set the covariance matrices at the
daughter nodes equal to the estimated covariance matrix
at the parent node, in order to guarantee that the split
function remains positive [23]. This procedure has the
additional benefit of reducing the number of computa-
tions. We call Standard RF the algorithm that uses the
splitting criterion (1).
When a SNP is selected as a candidate to split node j

into two daughter nodes, the total sum of squares com-
puted at the left and right daughter nodes are SS(j)l and
SS(j)r, respectively. A suitable function in this case mea-
sures the reduction in the sum of squares due to the split,
and is given by

φ(j) = SS(j) − SS(j)r − SS(j)l. (2)

Every candidate SNP is tested to split the node, and the
one with the highest j(j) is selected. Once the best split
has been found, the daughter nodes become new parent
nodes and the covariance matrices are estimated again.
Parsimonious parametrisation of the covariance matrices

are required in order to keep the computational burden
low. In high-dimensional settings, and especially when N
is much smaller than Q, it is commonplace to assume that
the covariance matrices are diagonal [15,24]. For instance,
typical whole-brain imaging genetics studies may involve a
few hundred thousands brain-wide measurements while
the sample remain in the order of a few hundreds [19]. In
this situation, the total sum of squares of Eq. (1) can be
alternatively expressed in terms of all N × N squared
inter-point Euclidean distances between all N samples
[25]. By rewriting Eq. (1) in an equivalent form, when

SS(j) =
1

2N(j)

∑

i∈D(j)

∑

l∈D(j)

d2E(yi, yl),,

SS(j) =
1

2N(j)

∑

i∈D(j)

∑

l∈D(j)

d2E(yi, yl), (3)

where N(j) indicates the sample size at node j. This
strategy provides an equivalent but computationally
more efficient way of evaluating the split function of Eq. (2).
The evaluation of each SS(j) term has a cost complexity of
O(N(j)2) instead ofN (j) × Q. We call Distance-based RF the
algorithm that uses the splitting criterion (3).

Measure of variable importance for SNP ranking
One of the attractive features of RF for GWAS consists
in its ability to perform SNP ranking by computing a
measure of variable importance [5]. A commonly used
and computationally simple procedure for SNP ranking
consists in monitoring the value of the split function
j(j) every time a particular SNP has been selected,

in each tree. This score, which we will refer to as the
information gain importance score, usually produces
ranking that are comparable with other variable impor-
tance measures, including those that rely on computation-
ally intensive permutation procedures [22]. In the context
of genetics studies, SNPs with the highest importance
score are preferred candidates for further exploration. In
the literature, this approach has been successfully used as
a prescreening step to prioritise predictive SNPs [26].

Hadoop implementation
RF implementations generally build trees sequentially.
However, a sequential approach is highly inefficient,
especially when each tree involves a large number of
SNPs, and many trees are needed in order to obtain reli-
able measures of SNP importance and estimates of pre-
diction error. RF can be easily parallelised because
all trees are independently learned from randomised
versions of the data. We describe here a parallel version
of the RF regression algorithm that we have implemen-
ted using the MapReduce programming model for
deployment on large Hadoop clusters. Broadly speaking,
the approach consists in letting each node in the cluster
build a certain number of trees in the forest, and then
letting the system collect and aggregate the partial
results from all trees in the ensemble, in an automated
and fault-tolerant fashion.
The MapReduce model involves three phases: the map

phase, the shuffle phase and the reduce phase. Each one
of the map and reduce phase has key-value pairs as
input and output. The shuffle phase shuffles the output
of map phase to the input of reduce phase evenly using
the MapReduce library. The map phase runs a user-
defined mapper function on a set of key-value pairs [kj ,
vj ] taken as input, and generates a set of intermediate
key-value pairs. In the map phase of our application,
each input key corresponds to a unique tree ID and
value is NULL since we load the full data set to build
trees. A user-defined number of mappers, nmap, are
executed whereby each mapper function learns one or
more decision trees from bootstrapped versions of the
data set. The output of the map phase consists of three
types of information: (1) Sample identifier (key) and pre-
dictive value, which is then used to estimate the OOB
error rate at the reduce phase; (2) SNP identifier (key)
and the decrease in sum-of-squares (value), which is
used to obtain the SNP importance scores at the reduce
phase; (3) Sample pair identifier (key) and its proximity
(value), which is used to produce the final proximity
matrix extracted from RF. All these outputs from mappers
are sorted, shuffled, and copied to reducers by Hadoop.
An illustration of this initial process is given in Figure 1.
The Hadoop job initially distributes the data set to each
map task using a DistributedCache mechanism, which
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copies the read-only files on to the slave nodes before
launching a job. In our implementation, each map task
loads the full version of the data set, which is then boot-
strapped and used to learn each tree. In this illustration,
Ntree = 3, and each one of the three mappers builds one
tree. When the number of required trees is larger than
the total number of mappers, each mapper builds more
than one tree.
The output from all the mapper functions, consisting

of key-value pairs, is then sorted, shuffled and copied to

the reduce tasks, which receive their input in the form
of [kj , [vj1, vj2, ...,]] pairs, where the first element can be
SNP or sample identifier and the second element is a
list of values associated with that SNP or sample. The
reduce tasks run a user-defined reducer function, and
generate an output again in the form of key-value pairs
to be saved on file. The reduce tasks compute informa-
tion gain importance score by summing up all the j(j)
evaluations obtained by the individual trees in the map
phase. Again, the computations are equally distributed

Figure 1 PaRFR design. An illustration of the RF algorithm implemented according to the MapReduce model. In this example there are 6 SNPs
observed on 6 samples, and the analysis is carried out using 3 mappers and 3 reducers. The RF parameters here are set to Ntree = 3 and Mtry = 3.
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across reducers. For instance, in the bottom part of
Figure 1, each reducer generates a partial list of key-
value pairs containing SNP id and its information gain
importance score. These lists are eventually saved on
file and eventually they are joined to obtain the final
output.
This parallel RF regression algorithm has been imple-

mented in Java. It can be run in standalone, pseudo-
distributed, and fully distributed mode. The current ver-
sion, which supports biallelic markers, gives users the
options to calculate OOB, variable importance scores,
and the sample proximity matrix. Both standard and
distance-based splitting criteria are available, and the
Euclidean distance featuring in (3) could be easily
replaced by other distances. For the standard RF version,
currently both the Euclidean and Mahalanobis distances
are available. An installation and user guide is available
from the web site.

The Alzheimer’s Disease Neuroimaging Initiative cohort
This work was motivated by experimental data produced
by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). Alzheimer’s Disease (AD) is a moderate to
highly heritable condition, and a growing list of genetic
variants have been associated with greater susceptibility
to develop early- and late-onset AD [27]. We have
obtained genotypes for 253 unrelated subjects comprising
99 AD patients and 154 elderly healthy controls (CN).
Genotyping was performed using the Human610-Quad
Bead-Chip, which includes 620, 901 SNPs [28]. Subjects
are unrelated, and all of European ancestry, and passed
screening for evidence of population stratification using
the procedure described in [19]. For this study, we
include only autosomal SNPs, and additionally exclude
SNPs with a genotyping rate <95%, a Hardy-Weinberg
equilibrium p-value < 5 × 107, and a minor allele fre-
quency < 0.1. Missing genotypes were imputed as in [29].
For each subject in this study, longitudinal brain scans

at 6, 12 and 24 months after the initial screening were
available. Our multivariate quantitative trait provides a
measure of structural change observed in the brain relative
to baseline over the three time points. More specifically,
each individual phenotype vector yi consists of 148, 023
slope coefficients, one for each voxel, quantifying the tem-
poral rate of linear brain tissue loss over time, and there-
fore providing a localised imaging signature of the disease.
A more detailed description of the preprocessing steps
and the procedure used to extract this imaging signatures
can be found in [30].

Results and discussion
Performance and scalability of PaRFR
Monte Carlo simulation studies were designed to compare
the performance of our PaRFR software against other

implementations of RF regression. In order to reduce the
computational burden incurred in extensive and repeated
simulations, we used a multivariate phenotype consisting
of 100 voxels that were randomly selected from the 148,
023 available, and a set of 1, 000 SNPs randomly selected
from the 434, 271 available markers. Using the 100
observed voxels, we estimated the phenotype sample cov-
ariance matrix, V̂ Each artificial dataset consisted of the
253 samples for which the multivariate phenotype vector
yi was generated by randomly drawing from a multivariate
normal distribution with covariance matrix V̂ and such
that the genetic effects explain approximately 8% of
phenotypic variability. Genetic effects were induced using
an additive model involving 5 randomly selected causative
SNPs with minimum allele frequency (MAF) 0.2, ana-
logously to the simulation procedure described in [29].
The use of real data is important as it preserves the origi-
nal patterns of linkage disequilibrium observed in the real
dataset.
We first report on simulation experiments aimed to

test and validate our RF implementation. We compare
the OOB error obtained by PaRFR against the analogous
OOB error obtained by using a publicly available imple-
mentation of RF in R package randomForest. Since the
R implementation only handles univariate responses,
for this specific evaluation we take the average across
phenotypes, ȳ, as response. As can be seen in Figure 2
(left), the linear correlation coefficient between the two
OOB errors is 0.91603 (p-value<0.001). Some discre-
pancy is expected due to the Monte Carlo error made
during the tree building process. Secondly, we compare
the two different node splitting criteria introduced in
Section using the 100-dimensional artificial phenotypes.
Figure 2 (right) shows that the two criteria produce
highly correlated OOB errors, with a correlation coeffi-
cient of 0.93055 (pvalue<0.001). As before, the small dif-
ference in performance is explained by the randomness
involved during the tree building process. In both cases,
we report on average values obtained from 500 simulated
data sets.
To assess the speedups that can be obtained by our

implementation using the distance-based splitting
function, we simulate a large dataset containing 1,000
independent samples, 1 million SNPs and a 10,000-
dimensional phenotype. This analysis was run on a private
cluster with 20 nodes. Each node had 24 GB memory and
16 processors with Intel(R) Xeon(R) CPU 2.27 GHz. We
configured each map and reduce task to have 800 MB
memory, and the whole cluster capacity to run 400 map
tasks and 100 reduce task.
We then compare the running time for different values

of the Mtry parameter, ranging from 10 to 10,000. Figure 3
shows the running time of the two methods on a log
scale. When Mtry = 10, the distance-based RF is only
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2 times faster than the Standard RF because of the initial
time required to launch the cluster and load the data. As
the value of Mtry increases, we observe at least a 10-fold
speedup, indicating that significant running time savings
can be obtained by using Distance-based RF for high-
dimensional phenotypes.
To test the scalability of our implementation as the

number of available nodes increases, we analyze the

same size dataset with parameters Mtry = 1,000 and
Ntree = 2,400. This analysis was run on our local cluster
with 10, 20, 30 and 40 nodes, respectively. Figure 3
(right) shows that the running time decreases as more
nodes are added and that, as expected, rough linear
speedup is observed as the number of nodes increases.
For instance, doubling the number of nodes from 20 to
40 yields a 40% reduction in running time.

Figure 2 The OOB error comparison. Left: OOB error comparison with the randomForest implementation; Right: OOB comparison between the
two multivariate node splitting criteria. In each case, we use 500 simulated datasets.

Figure 3 The runing time comparison. Left:runing time comparison using two different RF implementations for different Mtry; Right: the
scalability test of Distance-based RF in local cluster.
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A GWA study of Alzheimer’s disease
SNP ranking
In order to illustrate the benefits of the proposed PaRFR
algorithm, we carried out the analysis of the ADNI data
set. A handful of genetic variants with very large effect size
are known to be related to AD, and we aimed at detecting
those genes despite the relatively low sample size as a
demonstration that PaRFR provides a useful toolbox for
imaging genetic studies. Only the observed quantitative
traits, and not the actual clinical status, were used by the
algorithm. It is widely believed that such endophenotypes
carry more signal than the cruder case-control status thus
requiring much smaller sample sizes.
The analysis was run on our local cluster using 20

nodes. Different Mtry and Ntree parameter values were
initially tested to determine how sensitive the results
were to changes in these values, and in order to identify
optimal values for which a stable SNP ranking can be
produced. In particular, we explored various combinations
of 3 different Mtry values and Ntree values varying from
10 up to 50, 000. The performance of PaRFR was moni-
tored as more trees were added to the RF, in blocks of
500; once an additional block of trees was added to the
ensemble, a measure of SNP ranking agreement with the
previous ranking, the Jaccard coefficient, was calculated.
Figure 4 shows how the Jaccard coefficient varies as more
trees are added to the forest; this result indicates that a
stable ranking is obtained when more than 40, 000 trees
have been added. Based on this results, we settled for
Ntree = 50,000 and used an optimised value of Mtry = 72,
379 as these parameters provided a final stable ranking.
The total running time was 60 hours on a 20-node cluster,

and the final RF ranked 352, 968 SNPs. Since the process
of inferring an individual tree took approximately 20
minutes, we estimate that a sequential implementation
using the same machines would approximately take
700 days.
In Table 1 we report the top 10 ranked SNPs, using

the information gain importance score. Any gene found
to be within 10k bases of any of top 10 SNPs was con-
sidered mapped and, according to this criterion, we
found 12 mapped genes. Several genes that have been
reported to be linked to increased AD susceptibility are
found in this list, including APOE4, TOMM40,
PICALM and PVRL2 [20,27,28]. To further validate the
relevance of the SNP rankings produced by PaRFR, we
carried out a non-parametric analysis using permutation
testing. First, we focused on the 47 well-known AD-
linked genes reviewed by Saykin et al. [28], of which
only 40 mapped to at least one SNP that had been
ranked by PaRFR in our dataset. We then assessed the
null hypothesis that the observed ranking of these
genes, as produced by PaRFR, could be explained by
chance only. For each mapped AD-linked gene g, we
first obtained an observed score, ŝg, by averaging the
ranks of all SNPs that map onto that gene. Operating
under the null hypothesis that the AD-genes are ran-
domly ranked, we permuted the SNP ranks 10, 000
times, and computed an empirical null distribution of
the average rank score, sg. A p-value was then computed
using this null distribution. As an example, the null dis-
tribution of 2 important genes, TOMM40 and TNK1, is
shown in Figure 5 along with the observed score (vertical
lines). Besides APOE4 and TOMM40, which are also

Figure 4 Jaccard coefficient plot. The Jaccard coefficient plot for the agreement of top 5,000 ranked SNPs with more trees added, the
horizontal line is Jaccard coefficient = 0.88.
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among the top 10 genes, we also found TNK1, NXPH1,
ACE, and MYH13 to have statistically significant average
ranks while controlling the false discovery rate at 10%.
To understand the functional annotations of our top

12 mapped genes we used Gene Ontology (GO). GO
provides a controlled vocabulary for evaluating complex
function. The annotation files and GO tree (ver. 1.2)
files for Homo Sapiens were downloaded from http://
www.geneontology.org (dated 23 April 2011). As GO
uses UniProt IDs while our genes were annotated using
ENSEMBL IDs, we used Biomart to map UniProtKB
accessions to Ensembl Gene IDs. This allows proper
cross-comparisons. The through-path rule was applied
for annotations to each gene, i.e. for a given GO term G
annotated to some gene p, all the ancestral terms of G
is also applied to p. This step was necessary because
GO only maps a gene and/or its corresponding protein
to the most specific term, which corresponds to some
branch on the GO graph. To reduce redundancy and
dependencies amongst the reported functional terms,
informative biological process terms filtering was per-
formed from the GO OBO file [31]. Significance testing
for each cluster was performed using the hypergeo-
metric test with Bonferroni correction (p-value ≤ 0.05).
With this additional information, we were able to com-
pare the list of our top 12 genes against the list of 47
known AD-linked genes. The comparison was carried
out by comparing their GO terms and their correspond-
ing agreement rate. The two lists of GO terms are avail-
able in Additional Files 1 and 2. Each list was tested
against our reference database using a hypergeometric
test with Bonferroni correction at a 5% nominal level.
Overall, 47 GO terms from the top 12 mapped genes in
our list were found to be statistically significant, and 14
of them agree with the 39 GO terms that are significant
from the list of 47 known AD-linked genes. Compatibly
with prior reports in the literature, these results further
strengthen our belief that the top ranked genes are asso-
ciated with an increased risk of AD.

Linking genetic and phenotypic diversity
Our PaRFR algorithm also estimates pair-wise genetic
proximities in the form of a symmetric proximity matrix
P of size N × N without any additional computations.
Each element pij of this matrix indicates the genetic
similarity between a pair of samples, which is obtained
by considering the fraction of trees where the two samples
appeared in the same leaf. A measure of genetic distance
between any two samples is then simply obtained by
taking dij = 1 − pij . Further insights into the heritability
of AD can be gained by analysing such estimated genetic
distances with regards to the observed phenotypic dis-
tances. Specifically, we explored whether there was an
association between phenotypic diversity, obtained from
the neuroimaging measurements, and the inferred genetic
distances. When any of these distances is used for cluster-
ing samples, we would expect to be able to identify at least
two well-separated clusters of points corresponding to
two the clinical conditions represented in the ADNI
cohort, i.e. AD patients and healthy controls, despite the
fact that the clinical status was not used by the PaRFR
algorithm. In order to verify this, we applied multidimen-
sional scaling (MDS) with the objective to visualise both
genetic and phenotypic distances on a two-dimensional
Euclidean space.
Figure 6 shows the resulting MDS plots: (a) provides a

2D representation of the AD and CN samples obtained
from the pair-wise genetic distances estimated by
PaRFR, from which it can be noted a non-linear separation
between AD and CN subjects; (b) provides a 2D represen-
tation of the AD and CN samples obtained from the pair-
wise Euclidean distances applied to the neuroimaging
signature consisting of 148, 023 voxels, which also shows a
separation between the two phenotypically distinct groups,
with higher variability characterising the AD samples.
Remarkably, Figure 7 shows that the paired genetic and
phenotypic distances are almost linearly associated; in
these plots, the pair-wise comparisons are broken down by
clinical group, i.e. AD-only samples, CN only samples, and
combined samples. The linear correlation coefficients are
0.8248, 0.8245, and 0.7989, respectively, and indicate that
the estimated genetic distance is predictive of phenotypic
diversity. These results were further validated by perform-
ing a Mantel test of no association [32] between the paired
genetic and phenotypic distance matrices in each one
of the three cases; using 10, 000 permutations, all three
tests were found to be statistically significant at the 0.01
nominal level.
Linking disease severity with mutation patterns
An alternative view of the phenotypic diversity character-
ising the samples is provided by the three-dimensional
MDS plot of Figure 8. As in the two-dimensional repre-
sentation of Figure 7, here it can be observed that the CN
samples are more tightly clustered while the AD samples

Table 1 10 top ranked genes

Mapped Gene(s) Ranked SNP(s)

TOMM40/APOE/APOC1* APOE4

PICALM* rs7938033

PVRL2* rs2075650

NTNG2 rs7862808

NTM rs12293070

SLC12A1 rs6493311/rs1531916

MEF2D rs1750304

CD109 rs9352023

UNC5B rs10762435

DPYD rs496179

ADNI: top 10 genes and corresponding SNPs as ranked by PaRFR. The starred
genes have been known to be linked with AD.
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are more spread out, which is indicative of a large spec-
trum of disease progression. The variability in disease
progression that can be observed here also reflects differ-
ent degrees of disease severity, which in turn corresponds
to different levels of cognitive impairment. It is therefore
sensible to assume that the Euclidean distance between
an AD-labelled point in this 3D space and a the centre of
CN-labelled points provides a quantitative indicator of
disease severity. For a complex disorder like AD, it is also
plausible to assume that there is a large set of genetic
markers, besides those with relatively large marginal
effects, that jointly contribute to the disease and possibly

determine its severity in each individual patient. Under
the assumption that AD is the result of the cumulative
effect of the dysfunction of multiple genes, we should
then be able to observe an association between our indi-
cator of disease severity and the number of mutations.
For this analysis we focused on the top 1, 000 SNPs

ranked in decreasing order of importance by the PaRFR
algorithm. For each one of these SNPs, we let the major
allele be the reference state and the minor allele be the
mutated state. In order to precisely define the severity
of the disease for a given sample, we initially apply a
hierarchical clustering algorithm to segment the samples

Figure 5 The distribution of null ranks. The Null distribution obtained by permuting 10,000 times the rank of SNPs harboured by the top 2 genes.

Figure 6 Two-dimensional multidimensional scaling plots. (a) 2D representation of the AD and CN samples obtained from the pair-wise
genetic distances estimated by PaRFR; (b) 2D representation of the AD and CN samples obtained from the pair-wise Euclidean distances of the
multivariate neuroimaging phenotypes (148, 023 voxels). Sample clustering can be seen in both plots.
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into four non-overlapping clusters (from C1 to C4) as
shown in Figure 9. The proportions of AD samples in
these clusters are 11%, 16%, 63%, and 93%, respectively.
The first notion of disease severity is defined as the Eucli-
dean distance between an AD sample point and the cen-
troid of points in the C1 cluster, which is mostly
populated by CN samples. The second notion of severity
is defined as the projected distance – on the axis of disease
progression– of an AD sample to the centroid of C1 sam-
ples. The axis of disease progression is defined as the line
connecting the centroids of the two extreme clusters, i.e.

C1 and C4. We expect AD patients that are further away
from the C1 centroid tend to have more mutated states
compared to those that are nearer to the C1 centroid.
Figure 10 is obtained by plotting the correlation between
the count of mutated states and each one of two severity
indicators defined above. Both correlations are positive
and statistically significant at the 5% nominal level thus
providing support for our hypothesis. From the bottom
left part of the two plots, the CN samples are tightly
clustered and have a lower number of mutated states,
which is also in consistent with our expectations.

Figure 7 The genetic distance and phenotypic distance correlation. The three plots are the scatter plot of genetic Euclidean distance
derived from Figure 6 left and phenotypic Euclidean distance derived from Figure 6 right for three types of sample pair. 4 outliers from CN
groups are excluded.

Figure 8 The 3D MDS plot of the 148,023 voxels from 253 ADNI samples. This plot is used to visualize the relative distance between
different samples from high-dimensional space to 3 dimensions.

Wang et al. BMC Bioinformatics 2013, 14(Suppl 16):S6
http://www.biomedcentral.com/1471-2105/14/S16/S6

Page 11 of 15



As a further refinement of this approach, we per-
formed a second analysis in which we explored SNP/
SNP combinations, or mutation patterns, in the geno-
types containing mutated states that are frequently pre-
sent in samples near the C4 centroid. For this analysis,
we considered the top ranked 100 SNPs. All homozy-
gous two-major-allele genotypes were removed in the

data because disease-causing mutation patterns are
expected to occur in the homozygous two-minor-allele
genotypes and heterozygous genotypes. Only mutation
patterns that were more frequently found in the C4
cluster were included in this analysis. Specifically, for
each pattern we tested the null hypothesis that the pro-
portions of that pattern in the C4 cluster and in the

Figure 9 The hierarchical clustering results of 253 ADNI samples. The 2D MDS plot of the hierarchical clustering of 253 ADNI samples. The
four clusters, from right to left, are referred to in the main text as C1, C2, C3 and C4.

Figure 10 The correlation between the severity of disease and the count of mutated state. The correlation between the number mutated
state and the distance to the healthy centroid (centroid of C1). Red stars are the AD samples and green circles are the CN samples. The fitted
line are plotted because the beta coefficient of the line is statistically significant at p-value 0.05.
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entire sample are equal, and only retained those patterns
for which the null hypothesis was rejected at a 5% nominal
level. We also required the frequency of each pattern to be
at least 0.05 as a criterion for inclusion in the analysis.
This procedure generated approximately 17, 000 mutation
patterns. Figure 11 shows the correlation between the
mutation pattern counts and our two measures of AD
severity. Again, in both cases, the correlations are positive
and statistically significant. As with the previous findings,
this result supports our hypothesis that the number of
mutation patterns carried by the AD samples is directly
related to AD severity.

Conclusions
In this paper we have introduced four contributions.
First, we have proposed Random Forest regression with
multivariate responses as a suitable approach to genetic
association studies involving quantitative, and possibly
high-dimensional, endophenotypes. This algorithm,
which has been previously employed only in case-control
studies, provides a natural framework for obtaining a
ranked list of SNPs according to their predictive power.
Second, we have proposed a parallel version of Random
Forest regression, called PaRFR, which enable large-scale
genetic association studies to be carried out in a compu-
tationally efficient way. The corresponding software,
which has been made freely available, takes advantage of
the Hadoop framework for distributed computing to
build very large tree ensembles on large commodity clus-
ters. We have also reported on extensive simulation

results and comparisons of our implementation to a
traditional (serial) implementation in terms of scalability
and speed. Third, we have described an application of the
proposed methodology to an imaging genetics study of
Alzheimer’s disease using quantitative traits extracted
from brain scans by means of neuroimaging techniques.
To the best of our knowledge, this is the first time that
such a regression modelling methodology is used in
imaging genetics. Lastly, we have demonstrated how the
Random Forest regression algorithm can also be used to
infer a measure of genetic similarity that is predictive of a
quantitative phenotype, and have discussed this parti-
cular feature of the algorithm using the ADNI data set.
Other Hadoop-based implementations of the Random

Forest regression algorithm currently exist, including
COMET [33] and Mahout (http://mahout.apache.org).
COMET is particularly suited for large data sets as it
splits the input files into blocks of fixed size. However,
this implementation only supports classification problems,
and therefore is not suitable for handling quantitative
traits, and is not open source. Mahout is an open-source
machine learning library for large-scale data processing
using Hadoop. Its latest version includes regression pro-
blems, but these are limited to univariate traits. Currently,
other features are also missing in those implementations
that are needed for performing genetic association studies
as described in this paper, including mechanisms to gener-
ate SNP rankings and estimating sample proximities based
on the genetic data. In future work we plan to improve
further on the current implementation of PaRFR by

Figure 11 The correlation between the severity of disease and the count of mutation patterns. The correlation between the number
mutation pattern and the distance to the healthy centroid (centroid of C1). Red stars are the AD samples and green circles are the CN samples.
The fitted line are plotted because the beta coefficient of the line is statistically significant at p-value 0.05.
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building forests using partial data (or splits) generated by
Hadoop for applications to much larger data sets. We also
plan to build a multi-pass MapReduce implementation
which can monitor changes in OOB error as the forest
grows, and incorporate a sequential hypothesis testing
procedure [38] to automatically determine the optimal
number of trees.
Our proposed distance-based node splitting criterion

can potentially allow for more general phenotypic dis-
tances to be used within the same framework. Alternative
distances would be able to better capture the phenotypic
variability observed in the populations, and may be appro-
priately selected depending on how the multivariate quan-
titative traits are measured. For instance, PaRFR can be
used to detect SNPs that are highly predictive of variability
in more complex neuroimaging phenotypes, such as brain
connectivity networks, which are commonly represented
as graphs (i.e. collections of nodes and links between pairs
of nodes). Such networks describe the set of connections
in the neural system, or connectome, in which nodes
could be neurons or cortical areas, and edges could be
axons or fibre tracts [39]. PaRFR only requires choosing a
distance measure that captures certain aspects in which
the brain graphs differ.
Although we were mostly motivated by applications in

neuroimaging genetics, the algorithm proposed here has
wider scope and can be used for any QTL mapping study
involving a very large number of genetic markers and
high-dimensional responses. For instance, there is recent
interest in detecting genetic variability associated with
facial shape, which can be quantified using 3D phenotypes
obtained from statistical shape analysis [40]. Other multi-
variate traits arise, for instance, in eQTL mapping studies,
where the phenotypes consist of gene expression abun-
dances, or in longitudinal studies involving time series or
repeated measurements [41].

Additional material

Additional file 1: GO terms mapped by 47 AD linked genes. The file
contain three columns, the first column is the id of GO terms, the
second column is the name of GO terms and the third column is the p-
value of hypergeometric test.

Additional file 2: GO terms mapped by 12 top-ranked genes ranked
PaRFR. The file contain three columns, the first column is the id of GO
terms, the second column is the name of GO terms and the third
column is the p-value of hypergeometric test.
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