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Abstract

Background: In recent years, the use and importance of predicted protein residue-residue contacts has grown
considerably with demonstrated applications such as drug design, protein tertiary structure prediction and model
quality assessment. Nevertheless, reported accuracies in the range of 25-35% stubbornly remain the norm for
sequence based, long range contact predictions on hard targets. This is in spite of a prolonged effort on behalf of
the community to improve the performance of residue-residue contact prediction. A thorough study of the quality
of current residue-residue contact predictions and the evaluation metrics used as well as an analysis of current
methods is needed to stimulate further advancement in contact prediction and its application. Such a study will
better explain the quality and nature of residue-residue contact predictions generated by current methods and as
a result lead to better use of this contact information.

Results: We evaluated several sequence based residue-residue contact predictors that participated in the tenth Critical
Assessment of protein Structure Prediction (CASP) experiment. The evaluation was performed using standard
assessment techniques such as those used by the official CASP assessors as well as two novel evaluation metrics (i.e.,
cluster accuracy and cluster count). An in-depth analysis revealed that while most residue-residue contact predictions
generated are not accurate at the residue level, there is quite a strong contact signal present when allowing for less
than residue level precision. Our residue-residue contact predictor, DNcon, performed particularly well achieving an
accuracy of 66% for the top L/10 long range contacts when evaluated in a neighbourhood of size 2. The coverage of
residue-residue contact areas was also greater with DNcon when compared to other methods. We also provide an
analysis of DNcon with respect to its underlying architecture and features used for classification.

Conclusions: Our novel evaluation metrics demonstrate that current residue-residue contact predictions do
contain a strong contact signal and are of better quality than standard evaluation metrics indicate. Our method,
DNcon, is a robust, state-of-the-art residue-residue sequence based contact predictor and excelled under a number
of evaluation schemes. It is available as a web service at http://iris.rnet.missouri.edu/dncon/.

Background
Protein residue-residue contact prediction is a long
standing and largely unsolved problem in Structural
Bioinformatics with some of the earliest methods being
developed nearly 20 years ago [1]. Since then, the

relevance and importance of the problem has grown
due to the usefulness of predicted contact information.
To date demonstrated uses of predicted protein residue-
residue contact information include rational drug design
[2], protein model ranking and quality assessment [3,4]
and protein tertiary structure prediction [5].
Historically, the prediction of protein residue-residue

contacts has been tied to the challenging problem of pro-
tein tertiary structure prediction. The use of residue-residue
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contacts allows the protein modelling problem to be refor-
mulated as a classification task. In this reformulated setting,
it is only necessary to determine which residues are in con-
tact and then use the contacting residue pairs to generate
protein structures from inferred distance restraints. In prac-
tice, however, it has proven difficult to generate protein
structures from predicted contacts due to the relatively low
accuracy of most residue-residue contact prediction meth-
ods. Accuracies for the top, long range predicted residue-
residue contacts are often in the range of 25-35% [6,7].
Residue-residue contact predictions of this quality are too
noisy for current reconstruction tools [8].
A majority of the sequence based contact prediction

approaches developed make use of machine learning.
These methods attempt to learn a mathematical func-
tion which maps extracted features to a real valued
number representing the predicted class (i.e., contact or
non-contact). The features used as input to the function
are values representing different characterizations of the
protein’s sequence which are believed to be relevant for
the classification task at hand. A number of particular
machine learning approaches have been used including
neural networks [9-13], support vector machine [14,15],
deep learning [16,17] and random forest [18].
Some of the first methods developed attempted to

identify residue-residue contacts using evolutionary
information contained in multiple sequence alignments
(MSAs). This was done by locating residue-residue pairs
which coevolved [1,19,20]. While fast and conceptually
attractive, these methods typically did not perform very
well due to difficulties in distinguishing true, coevolving
residue pairs from transient relationships (e.g., if residue
paris (i,j) and (j,k) are in contact and coevolve, it would
appear that residues i and k also coevolved). Newer tech-
niques such as those used by EVFold [21]and PSICOV
[22] are better able to distinguish true residue-residue
contacts and generate rather accurate predictions pro-
vided that a large, diverse multiple sequence alignment
can be formed for a query protein. These approaches
have lead to a breakthrough in performance and reached
levels were reconstruction from predicted contacts
is possible. The drawback, however, is often these
approaches are not applicable. This is because they
require the construction of a large and diverse multiple
sequence alignment which is not always possible, particu-
larly in the case of hard protein modelling targets.
Hard protein modelling targets are targets for which

structural information (i.e., a protein template) does not
exist or is not detectable by a sequence based search.
These types of targets are the most difficult to model and
evaluate and are precisely the types of targets which could
most benefit from residue-residue contact data. As a
result, a residue-residue contact predictor is typically eval-
uated based on its performance on hard, or free modelling

(FM), targets. Unfortunately, the reported performance of
predicted residue-residue contacts on these types of hard
targets is typically low, making it difficult to understand
how predictions of this quality can be of practical use.
Thus, there is a need to further analyze the quality and
value of predicted residue-residue contacts for hard targets
and the methods used.
Here we present a broad analysis of residue-residue

contact predictors which participated in the tenth round
of the Critical Assessment of protein Structure Predic-
tions (CASP). In the analysis, we used both standard
evaluation metrics such as those used by the CASP
assessors as well novel, non standard metrics (e.g., eva-
luation by neighbourhood, cluster accuracy and cluster
count). The additional evaluation metrics we use show a
strong contact signal present in residue-residue contact
predictions and help clarify a seeming contradiction
between the usefulness of contact predictions and
reported accuracies.
Our method, DNcon, performed well under all of the

evaluation metrics employed and in particular, DNcon
was among the best contact predictors in terms of accu-
racy, accuracy in a neighbourhood and cluster count.
Given its performance in CASP10, we also present a
study of the underlying architecture and features used
in DNcon. We found that DNcon is particularly robust
with respect to the number of layers used and number
of nodes per layer in its underlying boosted, deep net-
work architecture.

Methods
Every two years the current state-of-the-art in protein
structure prediction methods is evaluated in the CASP
experiment. Over a period of several months, protein
sequences which do not have known experimentally
determined structures are sent out for prediction. Each
participant in the residue-residue contact prediction
category had approximately three days to score residue-
residue pairs for contact and send their predictions back
to the Prediction Center. The Prediction Center collects
the results for each participant and makes them avail-
able to the public after the prediction season. In this
assessment, the primary source of residue-residue con-
tact predictions for the methods considered was the offi-
cial CASP10 website [23].
In total more than 25 methods registered in the pro-

tein residue-residue prediction category. We limited our
evaluation to those methods which made predictions for
a vast majority of the CASP10 targets and were, to the
best of our knowledge, ab-initio in nature (i.e., methods
which did not directly use template information in the
contact prediction process). These methods were chosen
since results obtained would generalize to the hard (or
free) modelling targets as they do not directly make use
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of template information. The methods selected included
two approaches based on random forests (groups 257
and 396), an approach using a support vector machine
(group 081), an approach using recursive neural net-
works (group 125), an approach using deep learning
(group 305) and our approach DNcon (group 222).
Descriptions for these methods as well as all of the
methods that participated in CASP10 can be found in
the abstracts on the official CASP10 website [23].
DNcon is a sequence based, ab-initio residue-residue

contact predictor built upon a combination of boosting
and deep networks (DNs). Conceptually, each DN in the
boosted ensemble is similar to a standard two layer
neural network but has many more layer and trained in a
step wise, semi-supervised fashion. The input features to
each deep network stem primarily from two fixed width
windows centred on the residue-residue pair to be classi-
fied. From the residues contained in these windows a
number of features are encoded such as predicted sec-
ondary structure and solvent accessibility, primary
sequence, sequence profile from a position specific scor-
ing matrix (PSSM) and various statistical characteriza-
tions of the residues (e.g., Atchley factors [24]). Some
global information about the protein such as sequence
length and content was also used. More specifically, sec-
ondary structure and solvent accessibility values were
predicted using SSpro and ACCpro from the SCRATCH
suite [25]. To obtain the values for the PSSM, PSI-
BLAST [26] was run for three iterations against a non-
redundant version of the nr sequence database filtered at
90%. For full details on feature generation and the con-
struction and training of DNcon, see Eickholt and Cheng
[17].
The primary dataset used in this benchmark is the

CASP10 dataset. It consists of 96 protein targets used in
CASP10 whose experimentally determined structures
were available on the official CASP website [23] at the
time of this study. We also considered a subset of these
96 proteins which we term the HARD CASP10 targets.
These are 13 protein targets which contained at least one
protein domain which was preliminarily classified as free
modelling or free modelling/template based modelling
according to the CASP10 website [23]. For the additional
analysis we performed on DNcon with respect to archi-
tecture and feature selection, we used 111 valid protein
targets from CASP9 as the evaluation dataset. Protein
sequences and target structures were obtained from the
official CASP9 website [27]. Training was performed
using the DNCON_TRAIN dataset, a collection of 1230
proteins used to train DNcon [17].
Two amino acid residues are said to be in contact if

the distance between their respective Cb atoms (Ca for
glycine) is less than 8 Angstrom. This is a standard defi-
nition of protein residue-residue contact and has been

used in a number of previous studies and official CASP
assessments [6,7,9,18]. Residue-residue contacts are
further classified as short, medium or long range con-
tacts based on their separation in the protein sequence.
Short range contacts are defined as residue-residue con-
tacts with a sequence separation of 6 to 12 residues,
medium range contacts have a sequence separation
from 12 to 24 residues and long range residue-residue
contacts are those separated by 24 or more residues in
sequence. This additional differentiation of residue-resi-
due contacts is useful as the shorter range contacts tend
to be easier to predict and less useful while longer range
contacts present more of a challenge and contain more
information about the overall conformation of a protein.
Given the difficulty in predicting protein residue-residue

contacts, methods are often evaluated by considering the
accuracy of the top L/n predicted contacts where L is the
length of evaluation target and n is a small integer (e.g., 1,
5 or 10). In this setting accuracy is defined as the percent
of residue-residue pairs considered that are true residue-
residue contacts divided by the number of predictions
considered (e.g., if the top 20 residue-residue contact
predictions for a protein are considered and 10 of these
pairs are in contact in the experimentally determined
structure, then the accuracy for this protein would be
0.50). Estimates for the standard error (SE) were obtained
using the sample mean and sample variance of the per tar-
get accuracies over the dataset considered.
Along with the standard evaluation metric of residue-

residue accuracy, we also used a number of additional
evaluation metrics including two novel metrics which we
developed. The first additional metric we term accuracy
in a neighbourhood and it calculates the accuracy of pre-
dictions when allowing for less than residue level preci-
sion. In this setting, a residue-residue pair is counted as
correct if there is a true contacting pair within +/- δ, for
small values of δ (e.g., 1 or 2). The second and third addi-
tional evaluation metrics combine a neighbourhood eva-
luation with clustering. Here the selected contact
predictions (e.g., top L/5) are first filtered using a greedy
clustering approach (see Results section for full details).
The clusters can then be checked for accuracy and
separation (i.e., cluster accuracy and cluster count). The
rationale behind these metrics is to study the distribution
of the predicted residue-residue pairs among the top
scoring predictions and ensure that the predictions are
not clustered around a few interactions.
Finally, we mention that the evaluation unit in this

study is the full protein and we evaluate performance
irrespective of any underlying domain architecture. This
is different from the approach used by the official CASP
assessors which typically evaluate predictions on a per
domain basis. Our assessment over the full protein and
our development and use of additional evaluation metrics
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(i.e., by neighbourhood and clustering) is meant to
complement the evaluation provided by official CASP
assessors. The evaluation provided by the CASP assessors
is finer in nature and at the residue level (i.e., a prediction
is counted as correct if it identifies a contacting residue
pair present in the experimentally determined structure).
Our evaluation is at a courser level of resolution and
characterizes how well predicted residue contacts
describe areas of interaction in the protein chain. A
summary of the official CASP10 residue-residue contact
prediction results is available at: http://www.prediction-
center.org/casp10/rr_summary_results.cgi.

Results
Performance in CASP10
Protein residue-residue contact predictors are best
evaluated on hard protein modelling targets as these
are the types of targets for which predicted contact
information could be of most use. Table 1 reports the
accuracy of DNcon’s top L/10, L/5 and L medium and
long range predictions along with several other
sequence based predictors on 13 hard CASP10 targets
using standard evaluation metrics. The results of this
evaluation indicate that the methods can be grouped
into three sets when considering the top L/10 long
range predictions. The best set of methods achieves
accuracies in the range of 0.21-26 followed by sets with
accuracies in the ranges of 0.12-15 and 0.08-0.09. The
distinction between these three groups is visible as well
when considering the top L/5 long range contacts but
breaks down when considering the top L long range or
any set of medium range contact predictions. For both
medium and long range contact predictions on these
targets, DNcon is consistently among the best
predictors.
The drawback to evaluating residue-residue contact

predictors on hard targets is that the evaluation sets are
often small. This is due to the fact that most hard model-
ling targets are proteins related to new folds and

experimentally determined structures for new folds are
not as common. To improve the robustness of our
assessment, we extended our evaluation to 96 CASP10
targets. Since the methods considered in our benchmark
do not make use of template information in the predic-
tion process, this is still a fair assessment and no method
has an undue advantage. The results of this extended
evaluation are presented in Table 2. As before, the meth-
ods can be roughly divided into three sets. The top per-
forming set has accuracies for the top L/10 long range
predictions in the range of 0.33-0.36 followed by two
methods which achieved accuracies of 0.22-25 and
another method with an accuracy of 0.14. Here again,
DNcon performed well and among the best methods for
both long and medium range contact predictions.
In this work we also wanted to further examine what is

seemingly a contradiction between the usefulness of pre-
dicted protein residue-residue contacts and the accura-
cies achieved by state-of-the-art predictors. The literature
contains many documented uses of predicted contacts
but this is difficult to understand given the relatively low
accuracies, particularly for hard targets. Thus, we evalu-
ated the contact predictions using a neighbourhood as
described in the Methods section. This type of evaluation
scheme allows for less than residue level precision and
counts a predicted contact correct if it is within one or
two residues of a true residue-residue contact. Concep-
tually, predictions of this level of resolution would still be
useful for tasks such as model quality assessment and
searching the conformational search space as they
describe areas of interaction along the protein chain.
Tables 3 and 4 show the performance of several predic-
tors using this relaxed evaluation scheme on hard targets
and all targets. As shown in Tables 3 and 4, accuracies
for the top L/10 long range contacts approach 0.60 and
near or surpass 0.70 for the top L/10 medium range con-
tacts. Thus, there is a much stronger contact signal pre-
sent in the contact predictions than the results from the
residue level assessment would indicate and this gives

Table 1 Performance on HARD CASP10 targets

Acc. Top L/10 (SE) Acc. Top L/5 (SE) Acc. Top L (SE)

Method (GroupID) Long Medium Long Medium Long Medium

IBGteam [DL] (305) 0.263 (0.066) 0.356(0.085) 0.208 (0.050) 0.292(0.063) 0.117 (0.024) 0.180(0.027)

DNcon (222) 0.244 (0.039) 0.442(0.072) 0.207 (0.029) 0.346(0.056) 0.128 (0.016) 0.206(0.034)

RandomForest (396) 0.228 (0.063) 0.336(0.066) 0.193 (0.057) 0.283(0.047) 0.122 (0.020) 0.159(0.019)

RandomForest (257) 0.208 (0.067) 0.336(0.066) 0.195 (0.091) 0.283(0.047) 0.119 (0.091) 0.159(0.019)

RaptorX-Roll (358) 0.146 (0.034) 0.412(0.076) 0.164 (0.028) 0.344(0.058) 0.105 (0.026) 0.271(0.041)

PLCT (332) 0.116 (0.027) 0.329(0.070) 0.095(0.016) 0.275(0.050) 0.073(0.008) 0.173(0.024)

SVM (81) 0.087 (0.03) 0.253(0.061) 0.090 (0.03) 0.243(0.051) 0.069 (0.020) 0.162(0.023)

1d-rec. NN (125) 0.075 (0.022) 0.338(0.076) 0.067 (0.017) 0.290(0.055) 0.046 (0.009) 0.183(0.031)

Accuracies for the top L/10, L/5 and L medium and long range contact predictions for 13 hard targets. L is the length of the protein. Estimates for standard error
are provided in parenthesises.
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credence to the usability of predicted contact
information.
In order to ensure that the methods were not clustering

predicted contacts around a few areas of interaction, we
also wanted to consider the distribution or coverage of
predicted contacts in the list of the top L/10 or L/5 con-
tacts. This is to say that we wanted to determine how
many areas of interactions the contact predictors were
identifying. To do this, we first cluster the top L/10 or L/5
contacts for a target in a greedy fashion. For each pre-
dicted residue-residue pair considered, we added it to a
list of cluster representatives if there was not a residue-
residue pair within 8 residues. More specifically, we added
residue pair (x,y) only if |x-xi| > 8 or |y-yi| >8 for all resi-
due pairs (xi, yi) already in the list of cluster representa-
tives. The list of represented contacts was then counted
and evaluated using a neighbourhood of δ = 2. Table 5
presents the results of this study. The cluster count is the
number of cluster representatives considered by a method
(i.e., the number of areas of interaction considered). In this
evaluation, DNcon not only outperforms other methods in

terms of the accuracy of the cluster representatives but
also in the number of clusters identified. Thus, not only
are DNcon’s predictions more accurate, they also identify
and recover more areas of interaction along the protein
chain.
The final assessment we performed on the six residue-

residue contact prediction methods was an analysis of
the ROC curve on the CASP10 benchmark. Figures 1 and
Figure 2 show the ROC curve for the methods on top L
and L/5 predictions respectively. This was accomplished
by collecting the top L (or L/5) ranked predictions for
each protein target and then calculating the true positive
rate and false positive rate of these contact predictions at
a variety of decision thresholds. Tables 6 and 7 show the
calculated area under the curve (AUC) for each ROC
curve and this value characterizes the overall classifica-
tion performance of a method across a number of deci-
sion thresholds. As Figures 1 and Figure 2 indicate, the
deep learning method from group 305 (i.e., IGBteam)
performs better across a variety of decision thresholds,
particularly when considering the top L1 predictions.

Table 2 Performance on CASP10 targets

Acc. Top L/10 (SE) Acc. Top L/5 (SE) Acc. Top L (SE)

Method (GroupID) Long Medium Long Medium Long Medium

RandomForest (396) 0.356 (0.030) 0.455(0.027) 0.314 (0.026) 0.380(0.024) 0.175 (0.013) 0.201(0.013)

DNcon (222) 0.354 (0.027) 0.457(0.027) 0.304 (0.022) 0.381(0.022) 0.176 (0.012) 0.218(0.012)

IBGteam [DL] (305) 0.352 (0.029) 0.422(0.027) 0.298 (0.025) 0.355(0.023) 0.161 (0.013) 0.197(0.011)

RandomForest (257) 0.347 (0.030) 0.455(0.027) 0.298 (0.025) 0.380(0.024) 0.172 (0.013) 0.201(0.013)

RaptorX-Roll (358) 0.331 (0.026) 0.469(0.022) 0.287 (0.044) 0.401(0.020) 0.183 (0.013) 0.313(0.013)

1d-rec. NN (125) 0.252 (0.028) 0.391(0.029) 0.209 (0.032) 0.329(0.025) 0.110 (0.011) 0.189(0.013)

SVM (81) 0.216 (0.023) 0.347(0.025) 0.192 (0.019) 0.297(0.022) 0.120 (0.011) 0.178(0.011)

PLCT (332) 0.142(0.018) 0.369(0.027) 0.123 (0.014) 0.304(0.021) 0.086 (0.008) 0.174(0.011)

Accuracies for the top L/10, L/5 and L medium and long range contact predictions for 96 CASP10 targets. L is the length of the protein. Estimates for standard
error are provided in parenthesises.

Table 3 Performance on HARD CASP10 targets using neighbourhoods (δ)

Acc. Top L/10(SE) Acc. Top L/5 (SE)

Method δ Long Medium Long Medium

DNcon (222) 1 0.484 (0.067) 0.612 (0.069) 0.438 (0.055) 0.559 (0.057)

IBGteam [DL] (305) 1 0.450 (0.103) 0.546 (0.104) 0.395 (0.086) 0.507 (0.081)

RandomForest (396) 1 0.412 (0.081) 0.505 (0.082) 0.385 (0.067) 0.481 (0.058)

RandomForest (257) 1 0.377 (0.078) 0.505 (0.082) 0.365 (0.066) 0.481 (0.068)

RaptorX-Roll (358) 1 0.349 (0.067) 0.626 (0.084) 0.378 (0.062) 0.591 (0.075)

SVM (81) 1 0.251 (0.050) 0.464 (0.087) 0.243 (0.051) 0.440 (0.073)

DNcon (222) 2 0.619 (0.081) 0.726 (0.058) 0.563 (0.062) 0.674 (0.052)

IBGteam [DL] (305) 2 0.500 (0.112) 0.635 (0.093) 0.427 (0.097) 0.592 (0.074)

RandomForest (396) 2 0.527 (0.079) 0.591 (0.080) 0.486 (0.065) 0.569 (0.058)

RaptorX-Roll (358) 2 0.464 (0.075) 0.692 (0.081) 0.471 (0.068) 0.672 (0.072)

RandomForest (257) 2 0.470 (0.078) 0.591 (0.080) 0.456 (0.066) 0.569 (0.058)

SVM (81) 2 0.409 (0.082) 0.566 (0.086) 0.371 (0.071) 0.537 (0.074)

Accuracies for the top L/10 and L/5 medium and long range contact predictions for 13 hard targets. L is the length of the protein. Estimates for standard error
are provided in parenthesises. δ is the size of the neighbourhood.
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Analysis of DN architecture and feature selection
Given the positive performance of DNcon on the
CASP10 benchmark, we decided to extend our analysis
of our boosted, deep network architecture to its robust-
ness with respect to the features used and underlying
network topology. To assess the sensitivity of the under-
lying DNs used, we trained and evaluated a number of
small, boosted ensembles. First, we studied the effect of
the number of layers and nodes per layer. Table 8 shows
the performance of 5 different architectures evaluated on
the CASP9 dataset. For each architecture considered, a
boosted ensemble of 30 DNs was trained using the
DNCON_TRAIN dataset and the standard learning pro-
cedure outlined in Eickholt and Cheng [17]. The accura-
cies of the various architectures are very comparable and
do not show wide variation even though the number of
parameters in the underlying models varies by a wide
margin. Thus, in this particular application, the boosted

ensemble of DNs is rather robust with respect to the
DN’s architecture.
To analyze the effect of features used, we divided the

input features into five groups based on the type of infor-
mation they represented or contained. The five groups
were residue type (seq), Atchley factors (atch), sequence
separation between the residue-residue pair considered
(bins), global information consisting of contact potentials,
relative positions in sequence and percentage of SS or
SA content (globs) and profile information (pssm-ssa).
Table 9 lists and describes the feature groups.
Given the time required to train a full, boosted ensemble

(approximately 1 day), it was not possible to evaluate all
possible combinations of the features groups and therefore
we chose to start with only those features directly related
to the sequence and then add groups. It is generally
accepted that a sequence profile contains more informa-
tion than the sequence itself and that using a sequence
profile often leads to better performance. The drawback is
that calculating a sequence profile can be computationally
intensive. Thus, the rationale was to see how well a
boosted ensemble could perform without profile informa-
tion and with limited amounts of sequence data. We also
evaluated the performance of an ensemble trained on all
the feature sets and on a combination of profile informa-
tion and Atchley factors. Note that all feature groups are
used for the ensembles in DNcon.
Table 10 lists the results of our feature set evaluation on

the CASP9 dataset. The best performing ensemble does
make use of all of the feature groups indicating that all of
the features do provide some value. The combination of
profile information and Atchley factors is quite effective as
well. In general, a great deal of contact information
appears to be encoded in the sequence profile since

Table 5 Performance on CASP10 targets with clustering
and neighbourhoods (δ = 2)

Top L/10 long range Top L/5 long range

Method Acc. (SE) Cluster
count

Acc. (SE) Cluster
count

DNcon(222) 0.583(0.030) 666 0.520(0.025) 1018

RaptorX-Roll(358) 0.524(0.030) 596 0.476(0.027) 917

IBGteam [DL] (305) 0.503(0.037) 408 0.391(0.034) 662

RandomForest (396) 0.477(0.035) 577 0.441(0.031) 895

RandomForest(257) 0.455(0.034) 627 0.415(0.030) 907

SVM(81) 0.416(0.034) 596 0.345(0.027) 936

Accuracies for the top L/10, L/5 and L medium and long range contact
predictions for 96 CASP10 targets. L is the length of the protein. Estimates for
standard error are provided in parenthesises. δ is the size of the
neighbourhood. Cluster count is the number of clusters identified by the
method.

Table 4 Performance on CASP10 targets using neighbourhoods (δ)

Acc. Top L/10(SE) Acc. Top L/5 (SE)

Method δ Long Medium Long Medium

DNcon (222) 1 0.580 (0.032) 0.674 (0.029) 0.526 (0.029) 0.623 (0.026)

IBGteam [DL] (305) 1 0.555 (0.036) 0.648 (0.030) 0.491 (0.033) 0.609 (0.027)

RandomForest (396) 1 0.534 (0.036) 0.671 (0.030) 0.504 (0.032) 0.628 (0.028)

RaptorX-Roll (358) 1 0.529 (0.031) 0.731 (0.025) 0.490 (0.030) 0.680 (0.024)

RandomForest (257) 1 0.526 (0.036) 0.671 (0.030) 0.484 (0.032) 0.680 (0.024)

SVM (81) 1 0.394 (0.032) 0.598 (0.033) 0.365 (0.028) 0.542 (0.029)

DNcon (222) 2 0.663 (0.032) 0.749 (0.027) 0.615 (0.029) 0.720 (0.024)

RandomForest (396) 2 0.609 (0.035) 0.734 (0.027) 0.577 (0.032) 0.705 (0.026)

IBGteam [DL] (305) 2 0.607 (0.037) 0.729 (0.027) 0.555 (0.034) 0.695 (0.025)

RaptorX-Roll (358) 2 0.606 (0.031) 0.801 (0.023) 0.540 (0.029) 0.764 (0.022)

RandomForest (257) 2 0.597 (0.035) 0.734 (0.027) 0.561 (0.031) 0.723 (0.026)

SVM (81) 2 0.484 (0.034) 0.681 (0.032) 0.451 (0.034) 0.644 (0.029)

Accuracies for the top L/10 and L/5 medium and long range contact predictions for 96CASP10 targets. L is the length of the protein. Estimates for standard error
are provided in parenthesises. δ is the size of the neighbourhood.
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Figure 1 ROC curve for Top L predictions on CASP10 protein targets.

Figure 2 ROC curve for Top L/5 predictions on CASP10 protein targets.
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ensembles that included this information outperformed
those that did not make use of it.

Discussion
One outcome of this study is need for broader evaluation
metrics for predicted residue-residue contacts. As
demonstrated by the strong performance of contact pre-
dictors when allowing for less than residue level precision
(i.e., evaluating the predictions within a neighbourhood),
there is quite a strong contact signal present in the resi-
due-residue contact predictions. Conceptually, this looser
definition makes more sense as proteins are dynamic
macromolecules. The information we have in experimen-
tally determined structures is simply snapshots of the
protein’s conformation but minor changes in a protein’s
shape can and do occur. The noise introduced by such
shifts may not make it possible to learn and predict speci-
fic residue level contacts from experimentally determined
structures. We can, however, learn and predict a number
of coarse interactions within the protein chain. This find-
ing explains how predicted residue-residue contacts have
been useful in tertiary structure modelling and model
quality assessment even though the reported residue-resi-
due accuracies are in the range of 25-35%. Part of the
problem has been in properly characterizing the perfor-
mance. When using a neighbourhood of size 2 (i.e., δ =
2), contact accuracies are in the range of 65-75%. Given
that we are able to predict at this level what areas of the
protein’s chain are in contact, it is not surprising that this

information does indeed characterize portions of a pro-
tein’s conformation.
From a historical perspective, it was quite logical to pre-

dict and evaluate contacts at the residue level. These types
of predictions naturally translated into inputs that could
be used with existing protein reconstruction or modelling
pipelines. Given, however, that the contact predictions of
state-of-the-art contact predictors are fairly accurate but
less precise, what is needed is the development of addi-
tional protein reconstruction or modelling pipelines that
recognize and exploit this fact. One example of such an
approach would be a model evaluation scheme we devel-
oped in an earlier work. It allows and considers some
slight deviations between predicted contacts and those
present in a predicted model [4].
Moving forward, we believe that both residue level

(i.e., standard evaluation metrics) and courser level (i.e.,
by neighbourhood, clustering, etc.) evaluations are
important and should be used in assessing the perfor-
mance of contact predictors. As mentioned, from a his-
torical perspective most attempts to use predicted
contact information do so at the residue level and there
are undoubtedly situations when residue level accuracy
is required. Hence, assessing performance at this level is
important but it is also important to better characterize
the overall quality and possible value of contact predic-
tions. Knowing that current state-of-the-art contact pre-
diction methods can accurately predict a number of
areas of interaction can spur the development of new
protein structure prediction techniques that can leverage
this information, particularly for the hard modelling tar-
gets where additional information is often scarce.
With respect to our residue-residue contact predictor,

DNcon, it has shown itself to be rather robust and state-
of-the-art approach. In our comparison with other
sequence based approaches from CASP10, DNcon consis-
tently performed well and placed in the upper echelon of
methods in terms of performance regardless of the evalua-
tion metric used (i.e., residue level accuracy, evaluation by
neighbourhood, cluster accuracy and cluster size). The dif-
ference between DNcon and other methods was even
more pronounced when evaluating hard targets with less
than residue level precision. Here, DNcon achieved an

Table 6 AUC for the top L predictions on CASP10 targets

Method AUC

IBGteam [DL] (305) 0.753

RandomForest (396) 0.718

RaptorX-Roll(358) 0.710

RandomForest(257) 0.708

DNcon(222) 0.701

SVM(81) 0.620

Area under the curve (AUC) for ROC curve calculated using the top L per
protein predictions over 96 CASP10 targets. L is the length the protein.

Table 7 AUC for the top L/5 predictions on CASP10
targets

Method AUC

IBGteam [DL] (305) 0.759

RandomForest(257) 0.754

RandomForest (396) 0.748

RaptorX-Roll(358) 0.721

DNcon(222) 0.719

SVM(81) 0.658

Area under the curve (AUC) for ROC curve calculated using the top L/5 per
protein predictions over 96 CASP10 targets. L is the length the protein.

Table 8 Performance of DN ensembles composed of
varying architectures on CASP9 targets

Acc. Top L/5 (SE) Acc. Top L (SE)

Architecture Long Medium Long Medium

500-500-500-350-1 0.174(.012) 0.245(.014) 0.113(.006) 0.144(.008)

750-500-350-1 0.162(.012) 0.231(.013) 0.101(.006) 0.137(.007)

500-500-350-1 0.182(.012) 0.24(.013) 0.122(.006) 0.150(.007)

500-250-1 0.159(.012) 0.243(.131) 0.107(.006) 0.142(.007)

250-250-1 0.169(.010) 0.236(.012) 0.108(.006) 0.142(.007)
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accuracy of 0.62 for the top L/10 long range predictions
while other approaches reached accuracies in the range of
0.47 to 0.53. In addition to higher accuracy, DNcon’s pre-
dictions are more dispersed and hence contain more infor-
mation about the overall conformation of a protein. This is
evident by examining the cluster counts in Table 5.
DNcon has more clusters present in the top L/10, L/5 and
L long range predictions. The interactions represented in
these clustered predictions are also more accurately
predicted.
The underlying ensembles employed by DNcon

showed themselves to be rather robust to the effects of
the number of layers or nodes per layer in the DN. This
can be seen in Table 8 as the top L/5 medium and long
range predictions have accuracies in the ranges of 0.23-
0.25 and 0.16-0.18, respectively. While adding additional
nodes and layers to the DNs does not appear to increase
performance, it also does not negatively affect it, as can
often be the case in applications of machine learning.
In analyzing the value of the features sets used, it is

clear that the information contained in the PSSM (i.e.,
sequence profile information) is of great value and sig-
nificantly contributes to increased performance. For the
top L/5 medium and long range contact predictions, it
is possible to only use the PSSM and Atchely factors
and achieve performances comparable to that of using
all features. This is not surprising and the value of pro-
file information in sequence based machine learning
methods has been known and used for some time [28].
The drawback to using profile information is that it
often comes at a significant computational cost (e.g,
running PSI-BLAST for several rounds to create a

MSA) and thus makes applications on a genomic scale
more difficult. Given the performance of ensembles of
DNs which do not use profile information, it is clear
that there is a need for further development in this area.
In the future, we plan on further investigating and
improving the performance of methods which do not
require profile information or look for ways in which
similar information can be achieved.

Conclusions
We have presented a study and broad benchmark of
DNcon, a method to predict protein residue-residue con-
tacts using deep networks, on the CASP10 dataset. In a
comparison with several other sequence based predictors
on hard protein modelling targets, DNcon achieved
state-of-the-art performance under a variety of evaluation
metrics. We also developed and used novel evaluation
metrics which characterize a methods performance when
allowing for less than residue level precision. In particu-
lar, our study shows that state-of-the-art residue-residue
contact predictions such as those produced by DNcon do
exhibit a strong and distributed contact signal and cap-
able of identifying several areas of interaction in a protein
chain. This finding explains how predicted residue-resi-
due contacts have been useful in tertiary structure mod-
elling and model quality assessment even though the
reported residue-residue accuracies are in the range of
25-35%. Furthermore, we have demonstrated that the
underlying ensembles of DNs used by DNcon are rather
robust with respect to architecture and make use of all
the features used. DNcon is available as a webservice at
http://iris.rnet.missouri.edu/dncon/.

Table 9 Feature groups used in feature assessment and description

Name Features included

seq Residue type (hot encoded)

atch Atchley factors

bins The separation in sequence between the residue-residue pair (hot encoded)

globs Contact potentials, relative position and percentage of helix, loop, beta sheet, exposed

pssm-ssa Information from the PSSM and predicted secondary structure and solvent accessibility (hot encoded)

Table 10 Performance of a DN ensemble training on different groups of features on CASP9 targets

Feature set(s) Acc. Top L/5 (SE) Acc. Top L (SE)

Long Medium Long Medium

seq 0.040(.005) 0.042(.004) 0.035(.003) 0.040(.003)

seq-atch 0.088(.006) 0.075(.006) 0.077(.005) 0.074(.003)

seq-atch-bins 0.078(.005) 0.092(.006) 0.077(.005) 0.085(.005)

seq-atch-bins-globals 0.142(.01) 0.202(.007) 0.100(.005) 0.130(.007)

seq-atch-bins-globs-pssm-ssa 0.157(.011) 0.221(.013) 0.106(.006) 0.132(.007)

pssm-atch 0.168(.012) 0.236(.014) 0.110(.006) 0.130(.007)

ALL 0.182(.012) 0.240(.013) 0.122(.006) 0.150(.007)
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