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Abstract

Background: Molecular evolution is a very active field of research, with several complementary approaches,
including dN/dS, HON90, MM01, and others. Each has documented strengths and weaknesses, and no one
approach provides a clear picture of how natural selection works at the molecular level. The purpose of this work
is to present a simple new method that uses quantitative amino acid properties to identify and characterize
directional selection in proteins.

Methods: Inferred amino acid replacements are viewed through the prism of a single physicochemical property to
determine the amount and direction of change caused by each replacement. This allows the calculation of the
probability that the mean change in the single property associated with the amino acid replacements is equal to
zero (H0: μ = 0; i.e., no net change) using a simple two-tailed t-test.

Results: Example data from calanoid and cyclopoid copepod cytochrome oxidase subunit I sequence pairs are
presented to demonstrate how directional selection may be linked to major shifts in adaptive zones, and that
convergent evolution at the whole organism level may be the result of convergent protein adaptations.

Conclusions: Rather than replace previous methods, this new method further complements existing methods to
provide a holistic glimpse of how natural selection shapes protein structure and function over evolutionary time.

Background
Natural selection, as first outlined by Charles Darwin,
acts on phenotypes:
“She [natural selection] can act on every internal organ,

on every shade of constitutional difference, on the whole
machinery of life...Under nature, the slightest difference
of structure or constitution may well turn the nicely-
balanced scale in the struggle for life, and so be pre-
served...It may be said that natural selection is daily and
hourly scrutinizing, throughout the world, every varia-
tion, even the slightest; rejecting that which is bad, pre-
serving and adding up all that is good.” [1].
We can think of natural selection as collecting adapta-

tions that optimize an organism’s survival, reproductive
success, and fecundity in a given environment or habitat.
As Darwin explicitly states above, this process is not lim-
ited to the phenotypes of the whole organism; it works on

“every variation, even the slightest.” Although we some-
times think of proteins in this way, there currently is not a
consistently reliable method for identifying and character-
izing the evolution of protein phenotypes. This being
stated, science is currently faced with the challenge of
assessing the impact that anthropogenic climate change is
likely to have with potentially catastrophic effects at the
base of the food chain on the molecular level. The scienti-
fic community’s efforts to produce realistic solutions to
the big problems associated with climate change will be
greatly enhanced by the development of more robust
analytical methods for comprehensively characterizing
the effects of natural selection in terms of the biochemistry
and physics of protein structure, function, and interactions.
Several statistical methods for identifying and charac-

terizing selection at the molecular level have been pro-
posed since the genetic code was determined in the
1960s. Of these, three classes of methods dominate the
literature. The first, and most significant, is the family of
methods that implements one of many variations of the
nonsynonymous-to-synonymous substitution rate ratio,
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or dN/dS (e.g., [2-15]). Briefly, this approach compares the
rate of nonsynonymous (dN), or amino acid changing,
nucleotide substitutions with the rate of synonymous (dS),
or silent, nucleotide substitution. When dN is significantly
greater than dS, the system is said to have been influenced
by positive selection, when dN = dS, the system is said to
be neutral, and dN <dS indicates negative selection. This
family of methods is broadly accepted and implemented,
and has enjoyed a great deal of success. This simple
model, however, has several shortcomings, including pro-
blems with the underlying assumptions (e.g., [16-19]) and
difficulties accurately estimating rates when divergences
are very small and great, and is not sensitive enough to
detect natural selection in some protein coding genes
when it is known to have taken place (e.g., [20-22]).
As a reaction to weaknesses of dN/dS approaches,

Hughes et al. [23] presented a similar approach (hereafter
referred to as HON90) that compares proportions of con-
servative (pNC) and radical (pNR) amino acid replacement
in terms of qualitative properties of amino acids to detect
selection promoting charge profile diversity in class I
MHC proteins. When pNR > pNC, the property of interest
is said to have changed more than would be expected
under random conditions. The Hughes et al. study [23]
was the first to implement amino acid properties–in this
case charge, polarity, hydrophobicity, and volume–to iden-
tify selection at the protein level. From a conceptual stand-
point, this approach presented a method to assess patterns
of amino acid replacement using the phenotypes of pro-
teins, thus providing an avenue of analysis more consistent
with Darwin’s original definition of natural selection. This
protein-level phenotypic approach has since been imple-
mented several times and has yielded encouraging results
(e.g., [24-28]).
In an effort to tap into the wealth of information

afforded by the implementation of quantitative amino acid
properties, researchers have expanded upon the HON90
approach in a number of ways, including the use of a spec-
trum of magnitude categories [18,29], a sliding window
[30], accuracy benchmarking [31], and potential uses for
characterizing single amino acid replacements [32]. These
approaches (hereafter referred to as MM01 methods) take
the underlying pattern of nucleotide composition into
account. The collective identity of properties that individu-
ally yield positive statistical results provides clues that link
specific genetic variants to selective advantages and disad-
vantages afforded by known changes in ambient environ-
ment [18,33,34]. The robustness of the results yielded by
MM01 approaches is greatly enhanced by the wealth of
information emerging from crystallography and magnetic
resonance experiments that determine protein structures
with a high degree of precision and accuracy. Results loca-
lized to protein regions of known structures and functions

provide evidence useful for comprehensively characteriz-
ing protein function evolution [30,34-38].

Existing solutions fall short
Reconstructing evolutionary events at the molecular level
and diagnosing them in terms of natural selection has
been an extraordinary challenge. Each individual point
mutation carries with it just a small quantum of informa-
tion. Patterns emerge as these quanta accumulate over
evolutionary time. Oversimplifying models used to assess
patterns of evolutionary information emerging from
molecular data results in a net loss of analytical yield.
Overparameterizing models has the opposite effect, pro-
ducing more detail than can be realistically supported by
the data. When studying a phenomenon as nuanced and
multifaceted as molecular evolution, striking a happy
medium between oversimplification and overparameteri-
zation is extremely difficult. Researchers want to squeeze
every ounce of information from their data without see-
ing patterns that are not really there.
It is not surprising that dN/dS approaches sometimes

ignore signs of natural selection that other methods pick
up. dN/dS is a simple method, with several documented
limitations [16-22]. The HON90 approach takes a step
forward by incorporating amino acid properties, but the
number of qualitative properties is limited; if the evolu-
tion of protein-coding gene sequences cannot be linked
to charge, polarity, hydrophobicity, volume, or just a
handful of other properties, negative results will be pro-
duced. Although these properties are important in terms
of protein function, they likely are not the only proper-
ties affected by natural selection.
MM01 approaches present several advantages over

dN/dS and HON90 methods (e.g., [18,30,35,36,39-45]).
However, in an effort to force a greater information
yield from the data, this method may be parameterizing
systems to the point that accuracy suffers [31,32,46].
Clearly, this third class of approaches performs better in
some circumstances, such as when divergences are very
great and rates of synonymous change are underestimated
[18], or when divergences are very small and synonymous
changes have not had time to accumulate [32].

Methods
The high frequency with which new genomes and meta-
genomes are being produced also suggests that a method
with the potential for high-throughput that does not
require information from underlying nucleotides is
needed. Gene annotations produce a huge number of
BLAST results [47,48]. Many of these are in the form of
aligned protein, and not nucleotide, sequences. None of
the methods outlined above are capable of screening this
type of information for signs of molecular adaptation and
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cannot be utilized for studying adaptive changes at the
genomic or metagenomic levels.
There is at least one aspect of physicochemical evolution

that has been largely overlooked: the direction of selection.
One exception is the study by Merritt and Quattro [27].
They identified a case in which positive selection resulted
in a biased accumulation of negatively charged amino
acids after a gene duplication event. However, changes in
charge are generally rare in protein evolution [27,49,50]
and, as discussed, the possible qualitative properties to test
in the way Merritt and Quattro present are few in number.
Testing for directional shifts in quantitative properties, of
which there are now several hundred catalogued in the
Japanese database AAindex [51], will allow for more com-
prehensive exploration of property space, and will likely
result in a more clearly resolved vision of how proteins
adapt to the specific needs of organisms as they evolve in
changing habitats. Such a new method, when coupled
with existing methods, will provide a full set of analytical
tools for identifying and characterizing molecular adapta-
tion in a biologically meaningful way.
A method similar to that presented by Merritt and

Quattro [27] that allows for the implementation of quanti-
tative physicochemical amino acid properties will require a
different statistical test. Inferred amino acid replacements
will be viewed through the prism of a single physicochem-
ical property to determine the amount and direction of
change caused by each replacement. This will allow the
calculation of the probability that the mean change in the
single property associated with the amino acid replace-
ments is equal to zero (H0: μ = 0; i.e., no net change)
using a simple two-tailed t-test.
The novel aspect of this new method is its criterion. It

evaluates amino acid replacements multi-dimensionally
across a great number of physicochemical amino acid
properties, and identifies instances of several amino acid
replacements across several sites, evolving across phyloge-
netic space in the same physicochemical direction in a sin-
gle dimension of property space. This approach makes the
study of molecular evolution more applicable to studies
that link patterns of amino acid replacement with environ-
mental changes through time or space. A directional
approach represents a return to the fundamental concept
that selection affects phenotypes, while at the same time
simplifying implementation. By so doing, interpretation of
results will be less ambiguous.
The new method begins with a list of amino acid differ-

ences that includes the location of each in the context of
the linear sequence of nucleotide codons and/or amino
acids, depending on the input data. This list can be gen-
erated using an ancestral character-state reconstruction
algorithm (such as codeml [52]) if the input is a multiple
sequence alignment and a phylogenetic structure, or by
pairwise comparison if the input is the results of a

BLAST search [47,48]. From this list, the magnitude and
direction (i.e., an increase or a decrease) of change in
each amino acid property under consideration is inferred.
A simple two-tailed t-test may be performed for each
property to statistically evaluate the null hypothesis that
the net change is equal to zero. The value of the t-test
statistic is calculated using simple established equations:

t =
X̄

sX̄
/√

N
(1)

sX̄ =

√√√√√�X2
i − (�Xi)

2

N
N − 1

(2)

Here Xi is the value of the change in amino acid prop-
erty for each inferred amino acid difference, i, and N is the
total number of amino acid differences. In the example
below (Table 1), the value of Xi for the difference at resi-
due site 82 is +7.0, while the value of N is 15.
The data may be partitioned in several different ways: A

sliding window may be implemented to evaluate potential
clustering of unidirectional changes; known or estimated
secondary structures may be used to group amino acid
differences according to the structural components of the
protein; the range of amino acid sites corresponding to the
functional domains of the protein may be used. How the
data are partitioned is largely contingent on the scientific
question, the amount and type of differences in the data,
and the amount of supporting structure and function

Table 1 Directional selection analysis of Pan and Homo
SAGE1

Residue Pan Homo Δ Hydropathy

82 Cys Arg +7.0

92 Val Ala +2.4

160 Arg His -1.3

450 Gln Arg +1.0

507 Asp Val -7.7

523 Ser Thr -0.1

563 Val Ala +2.4

582 Val Asp +7.7

605 Phe Leu -1.0

672 Ala Thr +2.5

675 Ser Asn +2.7

694 Thr Ala -2.5

754 Cys Arg +7.0

802 Val Ala +2.4

805 Leu Ser +4.6

Net Change = +27.1

Residue sites of the 15 Pan troglodytes and Homo sapiens SAGE1 (inferred
from XM_001137139 and NM_018666, respectively) protein differences, with
character states and net change in hydropathy [54].
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information available. In each case, care must be taken to
partition the data in biologically meaningful ways that test
specific hypotheses.
There are over 500 physicochemical amino acid prop-

erties on the AAindex database [51] available to assess
amino acid differences. For the purposes of this study,
the 25 properties in Table 2 were chosen to be repre-
sentative of the breadth of amino acid property space.
These properties describe aspects of proteins that are
important to overall structure (e.g., molecular size,
hydrophobicity, secondary structures) and function (e.g.,
ionization, non-bonded energy, solvent accessibility);
properties that can potentially be affected by natural
selection.
Together, these four complementary methods will

enable more robust evaluation of data than is possible
with any single method: dN/dS methods focus on patterns
of nucleotide substitution; HON90 looks at phenotypic
patterns across amino acid changes; MM01 methods
emphasize patterns among the most radical changes; the
new method detects localized directional shifts in protein
phenotypes. Furthermore, certain methods are able to
more easily accommodate different data types. All of the
methods can assess multiple protein-coding nucleotide
sequence alignments with an accompanying phylogenetic
structure, but dN/dS methods, for example, are unable to
evaluate blastp output because there is no way to estimate
the rate of synonymous change in the encoding DNA
sequences from aligned amino acid sequences. The new
directional selection method will easily accept blastp out-
put because it does not require information about the
underlying pattern of nucleotides or the governing genetic
code.

Results and discussion
Directional selection linked to Habitat Shifts
Several marine and freshwater calanoid copepod cyto-
chrome oxidase subunit I (COI) sequence pairs were con-
sidered. The first approximately 650 nucleotides of the
cytochrome oxidase subunit 1 coding region for each were
obtained from the Barcode of Life Database (http://www.
barcodinglife.com) and evaluated using the directional
selection approach. The comparison of Calanus hyperbor-
eus (marine) and Mastigodiaptomus montezumae (fresh-
water) is representative (GenBank accession numbers
FJ602504 and EU770508, respectively). Interestingly, the
first 650 nucleotides encode all of the components of the
first COI proton pump [53]. There are 11 amino acid dif-
ferences within the first 215 amino acid residue sites for
this species pair. These replacements have resulted in radi-
cal changes in several physicochemical properties. None of
the properties were implicated in the proton output region
of the protein (p < 0.05), but three properties affected the

proton input region: one that describes hydrophobicity
(Hp), one for polarity (Pr), and one for tertiary structure
(F). Collectively, these properties, coupled with their direc-
tion of change, indicate that the proton input region
became less hydrophobic, more polar, and more structural
malleability during calanoid adaptation to freshwater,
resulting in a more direct and less energetically expensive
path for hydrogen ions to penetrate the membrane and
enter the proton pump.
Several marine and freshwater cyclopoid copepod

cytochrome oxidase subunit I (COI) sequence pairs
were considered as well. Of these, the comparison of
Oithona similis (marine) and Thermocyclops inversus
(freshwater) is representative (GenBank accession num-
bers EU599544 and EU770551, respectively). There are
40 amino acid differences within the first 215 residue
sites of COI for this species pair. Five properties yielded
statistically significant directional results (p < 0.05)
across the entire alignment, including V0, Pr, p, μ, and
Ht. Like the calanoid data, the cyclopoid data failed to
exhibit positive results in the proton output region. The
proton input region, however, experienced significant
directional change in 12 properties (Table 3). The iden-
tity of the properties and the direction of change were
similar to the calanoid results, indicating a decrease
in hydrophobicity (h, Hp, Ht), an increase in polarity
(Pr, p), and increased structural malleability (Na, Br, F),
but cyclopoids also exhibited a decrease in molecular
size (Bl, V

0) and total non-bonded energy (Et), and an
increase in turn tendency (Pt). Collectively, these results
suggest an even more direct and less energetically
expensive path for hydrogen ions to enter the proton
pump than exhibited by the calanoids.
Interestingly, the calanoid and cyclopoid results appear

parallel at the property level even though none of the
specific sites affected were the same. To illustrate even
the subtle parallel shifts in properties, Table 3 also
includes those properties that yielded results at a lower
significance (p = 0.1). Every property affected during
calanoid adaptation to freshwater was also affected dur-
ing cyclopoid adaptation to freshwater, and in the same
direction. Cyclopoids had a greater number of affected
properties likely due to a greater accumulation of amino
acid replacements.
The discovery that these two lineages of copepods found

parallel routes for COI functional adaptation is the most
exciting conclusion of these results. These findings suggest
that the amazing amount of convergence in the natural
world may be the result of a limited number of alternative
physicochemical strategies. This partially explains how
independently evolving proteins can converge upon simi-
lar structures and functions when sequence identity
remains low. Furthermore, the consistency of these results
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demonstrates how analyzing protein-coding genes in
terms of changing protein phenotypes provides a link
between the evolution of organisms and the influence of
environmental variables, and hints at the actual causes of
natural selection.

Conclusions
The methods for identifying and characterizing natural
selection at the molecular level, dN/dS, HON90, and
MM01, use different aspects of the evolutionary infor-
mation locked in protein-coding sequencing sequences.

Table 2 Quantitative physicochemical amino acid properties

Category/Property Symbol Reference Descriptiona

Hydrophobicity

Hydropathy h [54] The hydrophilic and hydrophobic inclinations of a given residue side chain in terms of transfer
of free energy.

Surrounding
hydrophobicity

Hp [55] The average sum of residue hydrophobic indices within an optimum sphere of 8 Å radius
around a residue in protein crystals (kcal/mol).

Thermodynamic transfer
hydrophobicity

Ht [56] The experimental values of Noazaki & Tanford [57] combined with values of Zimmerman et al.
[58] adjusted to the same scale (kcal/mol).

Ionization Constants

Equilibrium constant pK’ [56] The ionizable character of the carboxyl group (pH units).

Isoelectric point pHi [58] The isoionic point of the free amino acid, including the ionizable character of the entire residue
(pH units).

Molecular Size & Composition

Bulkiness Bl [58] The ratio of the side chain volume to length (i.e., the average cross section of the chain) (Å2).

Composition c [59] The atomic weight ratio of the non-carbon elements in the end groups or rings to carbons in
the side chain.

Molecular weight Mw [60] The mass of the atoms constituting the residue.

Partial specific volume V0 [61] The reciprocal of density (m3 mol-1 × 10-6).

Non-bonded Energy

Long range energy El [62] The energy between two amino acids separated further than 10 residues (i.e., due to
electrostatic and Van der Waals forces) (kcal/mol).

Short and medium range
energy

Esm [62] The sum of the energy between 1) main chain atoms of a residue and its own side chain
atoms, and 2) two residues located within 10 residues along the chain (kcal/mol).

Total non-bonded energy Et [62] Sum of average short, medium, and long range non-bonded energies (kcal/mol).

Polarity & Polarizability

Polar requirement Pr [63] The slope of the line regressing log RM and the mol fraction of water in the pyrimidine-water
solvent (RM = 1/RF - 1, where RF is the chromatographic index [58]).

Polarity p [59] The average of Pr and PA (PA = 13.66 - 14.85RF).

Refractive index μ [55] The measure of the polarizability of a residue (i.e., the reciprocal measure of its electrical stability
under an external field).

Secondary Structure

Alpha-helical tendency Pa [64] The average intrinsic property of a residue to adopt an alpha-helical conformation.

Beta-structure tendency Pb [64] The average intrinsic property of a residue to adopt a beta-sheet conformation.

Coil tendency Pc [65] A measure of the tendency that a particular residue will be found in a coil secondary structure.

Helical contact area Ca [66] The maximum area loss that could occur in going from an isolated a-helix to a fully buried
environment in the complex (Å2).

Turn tendency Pt [64] The average intrinsic property of a residue to adopt a beta-turn conformation.

Solvent Accessibility

Solvent accessibility
reduction ratio

Ra [67] The ratio of solvent accessibility: the solvent accessibility of a residue in a hypothetically
extanded state over its accessibility in a native folded protein.

Tertiary Structure

Average number of
surrounding residues

Na [67] The average number of residues surrounding a residue within the effective distance of
influence.

Buriedness Br [61] The average propensity of a residue to be found in the interior of a protein.

Compressibility K0 [61] The relative increase in the volume of the system per unit decrease in pressure (m3 mol-1 Pa
-1 ×

10-15).

Mean rms fluctuational
displacement

F [68] The relationship between the average amount of root-mean-square displacement of a residue
and its distance from the centroid of the protein (Å).

a Properties without defined units are dimensionless.

Twenty-five amino acid properties representative of the breadth of amino acid property space.
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However, none of these methods are able to identify signs
of adaptation in protein sequences without the aid of the
underlying nucleotide information. A new method for
identifying adaptation in either protein or protein-coding
DNA sequences is presented. Collectively, the four meth-
ods will enable a more robust evaluation of existing data
than is possible with any single method. Furthermore, the
new directional selection method can tap the wealth of
information in BLAST reports, like those emerging from
genome and metagenome annotation efforts. It is likely

that high-throughput analysis of annotation reports will
provide a glimpse of the collective evolutionary forces that
shape the morphologies and behaviors at the organismal
level, especially as they evolve in a changing environment,
providing a strong link between macroevolution and
microevolution. Such a link will likely prove important to
improving our understanding of how modern anthropo-
genic changes in global and local climates may be affecting
vulnerable organisms over evolutionary time or at more
accelerated rates.
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