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Abstract

Background: The normal functioning of a living cell is characterized by complex interaction networks involving
many different types of molecules. Associations detected between diseases and perturbations in well-defined
pathways within such interaction networks have the potential to illuminate the molecular mechanisms underlying
disease progression and response to treatment.

Results: In this paper, we present a computational method that compares expression profiles of genes in cancer
samples to samples from normal tissues in order to detect perturbations of pre-defined pathways in the cancer. In
contrast to many previous methods, our scoring function approach explicitly takes into account the interactions
between the gene products in a pathway. Moreover, we compute the sub-pathway that has the highest score, as
opposed to merely computing the score for the entire pathway. We use a permutation test to assess the statistical
significance of the most perturbed sub-pathway. We apply our method to 20 pathways in the Netpath database
and to the Global Cancer Map of gene expression in 18 cancers. We demonstrate that our method yields more
sensitive results than alternatives that do not consider interactions or measure the perturbation of a pathway as a
whole. We perform a sensitivity analysis to show that our approach is robust to modest changes in the input data.
Our method confirms numerous well-known connections between pathways and cancers.

Conclusions: Our results indicate that integrating differential gene expression with the interaction structure in a
pathway is a powerful approach for detecting links between a cancer and the pathways perturbed in it. Our results
also suggest that even well-studied pathways may be perturbed only partially in any given cancer. Further analysis
of cancer-specific sub-pathways may shed new light on the similarities and differences between cancers.

Introduction
Complex diseases such as cancer are associated with the
alteration or dis-regulation of multiple pathways and pro-
cesses in the cell. Discovering and cataloging which path-
ways are perturbed in each type of cancer is important
for improving our understanding of the mechanisms
underlying these diseases. In particular, such studies can
pin-point pathways that may be uniquely perturbed in
one or a small number of related cancers, thus providing
potential targets for therapeutic studies.
Many methods have been developed to study the acti-

vation of pre-defined gene sets in human diseases and

tissues [1-7]. In this context, a “gene set” is usually
taken to be a collection of genes that share a common
attribute, e.g., Gene Ontology annotation or membership
in a pathway. For instance, Subramanian et al. [3] devel-
oped “Gene Set Enrichment Analysis” to test if a gene
set is differentially expressed in two phenotypes by rank-
ing all genes by some measure (say, the t statistic) and
using a modified Kolmogorov-Smirnov statistic to
decide whether the genes in the set have surprisingly
high or low ranks. Segal et al. [8] used a hierarchical
clustering algorithm to combine pre-defined gene sets
into modules. They characterized gene-expression pro-
files in specific (sets of) tumors as a combination of acti-
vated and de-activated modules.* Correspondence: murali@cs.vt.edu
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These methods ignore physical or functional interac-
tions between the genes (or their products) in a gene set.
Analysis of gene expression measurements in the context
of the interaction structure inherent in a pathway can
take into account both perturbations in gene expression
and the topological properties of the network. More
recent methods have sought to capture information
about the activation of a pathway from the perspective of
the interactions in it. A number of these techniques,
reviewed by [9], have been developed for case-control
data, for which we can compute p-values reflecting the
statistical significance of the differential expression of
each gene between the samples in the treatment and
those in the control [10-14]. Draghici et al. [10] com-
bined a term that captured the significance of the genes
in a pathway with an additional weighted term that mea-
sured how well the data matches the expected pattern of
induction and repression, as encoded by the interactions
in the pathway. Efroni et al. [11] used pathway perturba-
tion measurements to predict prognosis and tumor
grade. Both approaches measure the perturbation of a
pathway in its entirety. Thus, they may not be sensitive
to situations when only a sub-pathway is highly
perturbed.
Related techniques analyze gene expression measure-

ments made under an experimental condition in the
context of a large-scale protein-protein interaction net-
work (often integrated from multiple sources) in order
to determine the sub-network of interactions that
respond to the experimental condition [15-19]. These
approaches have primarily been used for determining
the global response network perturbed in the cell in a
particular condition, especially since most experimen-
tally-determined protein interactions have not yet been
explicitly associated with pathways.

Our contributions
In this paper, we develop a systematic methodology to
detect which pathways are perturbed in a disease. Here,
we use the term pathway to refer to a network of physi-
cal interactions between genes and gene products that
together perform a specific biological function. Given the
interactions in a pathway (e.g., the TNF alpha pathway)
and genome-wide case-control gene expression data, i.e.,
measurements for a disease phenotype (e.g., melanoma)
and a control phenotype (e.g., normal skin cells), our
method computes the sub-pathway that is most per-
turbed in the disease (when compared to the control).
Thus, our method combines the features of the two
classes of methods discussed above: (i) it treats a pathway
as a network of interconnected molecules rather than
merely as a set of genes and gene products; (ii) it is sensi-
tive to the possibility that the pathway is not perturbed in

its entirety but that only some portion of it is significantly
perturbed; and (iii) it can be applied to specific, well-
defined pathways that a scientist may be interested in
studying.
Our algorithm takes the interactions in a pathway P and

case-control gene expression measurements as input. We
first assess the differential expression of each gene in
P. We develop a statistic based on the Liptak-Stouffer z-
score that measures the combined perturbation of the
genes in P. This statistic takes into account both the inter-
actions in P and the differential expression of each gene.
We use this statistic to compute which sub-pathway of
P is maximally perturbed. Finally, we use a permutation-
based test to assess the statistical significance of the maxi-
mally-perturbed sub-pathway.

Our results
We applied this approach to 20 cancer and immune sig-
naling pathways in the Netpath database [20]. We used
gene expression measurements in the Global Cancer Map
(GCM) [21]. The GCM dataset spans 18 cancers and 13
normal tissues. First, we showed that the scores of per-
turbed sub-pathways computed by our method are much
more statistically significant than the scores of the com-
plete pathways. Second, we compared our results to those
obtained by applying three techniques that analyze case-
control gene expression data: ActiveModules [16], Gene
Set Enrichment Analysis (GSEA) [3], and Sub-GSE [7].
ActiveModules integrates the gene expression data with
protein interaction networks in order to find highly per-
turbed sub-networks. GSEA and Sub-GSE are network-
free approaches that find gene sets that are highly per-
turbed in the gene expression data. Our method showed
much better sensitivity than both ActiveModules and
GSEA in detecting perturbed sub-pathways. The compari-
son between our approach and Sub-GSE was mixed.
Third, our method was robust to missing data, specifically
to the removal of gene expression samples from the input.
Finally, we found ample literature support for a number of
pathway-cancer associations detected by our approach.
Taken together, these results underscore the importance
of carefully incorporating pathway structure into the ana-
lysis of gene expression data. We considered other recent
approaches for comparison, which use mutual information
to score individual genes [15], measure the synergistic
relationship among a set of genes [22], or use biclustering
to account for phenotypic variation among individuals
[23,24]. However, the number of samples per cancer in
the GCM dataset is not sufficient to support robust com-
putation of mutual information. These counts may not
large enough to yield informative biclusters either. There-
fore, we decided not to compare these methods with our
approach in this paper.
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Algorithms
We describe our approach in three stages. First, we for-
malize a measure of how perturbed a sub-network of a
pathway is in a case-control gene expression data set.
Next, we describe how to compute a sub-network that
maximizes this measure. Finally, we discuss how we
measure the statistical significance of the most per-
turbed sub-network.

Condition-specific pathway activation
We define a pathway P = (G, I) to be a graph composed
of a set G of genes and a set I of physical or functional
interactions between the genes in G or their gene pro-
ducts. Typically, P may be composed of multiple con-
nected components. Given genome-wide gene expression
measurements in multiple patients diagnosed with a dis-
ease in a tissue and from normal samples of that tissue,
our goal is to determine whether the pathway P = (G, I)
is perturbed in the disease (when compared to normal
tissue) and to compute the subgraph of P that is most
perturbed in the disease.
For each gene g Î G, let p(g) denote the p-value of its

differential expression in the disease (when compared to
normal tissue). We computed p(g) as the p-value of the
two-sided t-test under the null hypothesis that the distri-
butions of the expression values of g in the disease sam-
ples and in the normal samples have identical means (but
may have different variances). We note that our pathway
perturbation algorithm can take as input any gene
expression pre-processing method that computes p-
values for differential gene expression. We converted the
p-value into a z-score z(g) = N-1(1 - p(g)), where N-1 is
the inverse of the normal cumulative distribution func-
tion [16]. At this stage, we did not impose a cut-off on z
(g). Instead, we included all genes in subsequent analysis.
The rationale for this choice was that while individual
genes may not be differentially expressed to a statisti-
cally-significant extent, significant perturbations may be
noticeable at the level of sets of genes [25].
The method we developed takes the interaction struc-

ture of P into account. Let Q = (G’, I’) be a subgraph of
P. We define the degree dQ(g) of a gene g Î I’ to be the
number of interactions in I’ that are incident on g. We
define the perturbation of a subgraph Q(G’, I’) of P to
be the weighted Liptak-Stouffer z-score [26]

z(Q) =

∑
g∈G′ dQ(g)z(g)√∑

g∈G′ d2Q(g)
.

The numerator of z(Q) is the weighted sum of the z-
scores of all genes that appear in Q, where each gene is
weighted by the number of interactions in Q that are
incident on it. Dividing by the square root of the sum of

squared gene degrees ensures that z(Q) is normally dis-
tributed with mean 0 and standard deviation 1, under
the assumption that the z-scores for the individual
genes arise from a normal distribution. Thus, this for-
mulation of perturbation combines p-values over multi-
ple genes in a statistically-sound way [27]. Each gene in
Q contributes both its z-score and its degree in Q to z
(Q). Thus, z(Q) incorporates both the differential expres-
sion of the genes in Q as well as the network of interac-
tions between them.

Computing the sub-pathway that is most perturbed
Among all subgraphs of P, let P̂ be the one with maxi-
mum value of perturbation. Since P̂ is the most differ-
entially-perturbed subgraph of P, we use its perturbation
to assess the overall perturbation of P. Thus, our formu-
lation does not require that every gene in P be differen-
tially expressed in order for us to declare that P itself is
perturbed in the disease. We now describe how we
compute P̂ . Note that we do not require that P̂ be con-
nected, since P itself may not be connected. Ideker et al.
demonstrated that a similar problem is NP -complete
[16]. Hence, we use a heuristic approach based on simu-
lated annealing. Although simulated annealing is a very
well known technique, we describe it below and sketch
it in Algorithm 1 for the sake of completeness. To initi-
alize P̂ , we include each interaction in P with a uniform
probability of 0.5.
We perform the following series of operations for 100|

I| iterations. (Recall that I is the set of interactions in P.)
We select a node or an edge uniformly at random from
P. Let the selected element be a. If a is already in P̂ , we
delete it from P̂ ; if a is a node, we also delete all edges
that are incident on a from P̂ . If a is not a member of

P̂ , we add it to P̂ ; if a is a node, we insert into P̂ all
edges that were incident on a in P. Let P̂′ be the result-
ing subgraph. We compute z( P̂′) and compare it to z
( P̂ ). If z( P̂′) is larger, we accept the modification, since
we have increased the z-score. Otherwise, we accept the
modification with a probability of e(z(P̂)

′−z(P̂))/T , where T
is the temperature in the current iteration. Over the
iterations, we decrease the temperature T geometrically
from Ts = 100 to Te = 10-5. We output the final value of

P̂ .
Algorithm 1 Compute P̂ , the subgraph of P with the

maximum perturbation.
Initialize P̂ by including each interaction in P with

probability 0.5.
T ¬ Ts

for i = 1 .. . 100|I| do

P̂′ ← P̂
Select a node or an edge a Î P uniformly at

random.
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if a is in P̂ then
Delete a from P̂′.

else
Insert a into P̂′.

end if
if z( P̂′) > z(P̂ ) then
Set P̂ to be P̂′

else
Set P̂ to be P̂′ with probability e(z(P̂

′)−z(P̂))/T

end if

T ← T × e
log(

Te
Ts

)

100|I|
end for

Remarks
We experimented with other options within this frame-
work such as starting with an empty subgraph and per-
forming more than 100|I| iterations. We did not find a
significant benefit from either of these choices, i.e., the
score of most perturbed sub-pathway did not increase
substantially (data not shown). We also found that
including the addition and deletion of nodes (along with
their incident edges) yielded subgraphs with much larger
scores than those obtained by addition and deletion of
edges alone.
Estimating the statistical significance of perturbed
pathways
A potential drawback of our definition of z( P̂ ) is that it
assumes that the z-scores of the individual genes are
independent. To ensure that z( P̂ ) was not an over esti-
mate of the significance of a perturbed pathway as a
result of this assumption, we performed a permutation-
based test to compute an empirical estimate of statistical
significance. To build a null distribution for a disease
and pathway P, we repeated the following procedure k
times, where k varies depending on the analysis per-
formed (see “Results” for the values we used):

(i) We permuted node labels (and associated gene
expression data) in the pathway. Let k be the num-
ber of genes in P. We replaced these k genes with k
other genes, selected uniformly at random from a
universe of genes (defined below). Let P̃ be the new
pathway. Note that P̃ and P are isomorphic to each
other, i.e., they have identical interaction structures.
(ii) We obtained the z-scores of the genes in P̃ from
the gene expression data set for the disease.
(iii) We used the simulated annealing algorithm to
compute z(P̃ ).

In the first step, we defined the universe to be the
intersection of the set of all genes measured in the gene
expression data set for the disease and the set of genes
whose products were present in a protein interaction
network containing 9352 proteins and 39890

interactions (assembled from multiple sources [28-31]).
We used these two sets so that every gene in P̃ (i)
would have gene expression values and (ii) had a protein
product that was known to participate in at least one
interaction.
We computed the p-value for z( P̂ ) as the fraction of

random trials where z( P̃ ) > z( P̂ ). Since we tested multi-
ple pathway-disease pairs, we controlled the false discov-
ery rate using the method of Benjamini and Hochberg
[32]. We used the adjusted p-value in all of the subse-
quent analysis.

Results
After describing the pathway and gene expression data-
sets we used, we present our results in five stages. First,
we evaluate whether the most-perturbed pathway we
computed were more statistically significantly that the
entire pathway. Second, we compare the significance of
the most-perturbed pathways computed by our algo-
rithm to those found by the ActiveModules approach
[16]. Third, we compare our results to GSEA [3], a
purely gene-set based approach. Fourth, we assess the
robustness of our results to the removal of gene expres-
sion samples from the input. Finally, we present data in
the literature that supports the pathway-cancer connec-
tions unearthed by our approach. At this stage, we also
compare our results Sub-GSE [7], another gene-set
based approach.

Datasets
We obtained 20 curated pathways from the Netpath
database [20]. These pathways include 10 signaling path-
ways associated with proliferation (Androgen receptor,
Alpha6 Beta4 integrin, EGFR1, Hedgehog, ID, Kit recep-
tor, Notch, TGF beta receptor, TNF alpha/NF-kB, and
Wnt) and 10 immune response signaling pathways (B cell
receptor, T cell receptor, IL-1 IL-2 IL-3 IL-4 IL-5 IL-6
IL-7 and IL-9). We used gene expression measurements
in the Global Cancer Map (GCM) [21]. The GCM dataset
contains 190 samples spanning 18 cancers (adenocarci-
nomas of the breast, colon, lung, ovary, pancreas, pros-
tate, and uterus; follicular and large B-cell lymphomas;
melanoma; bladder; acute lymphoblastic leukemias of the
B cell and T cell; acute myeloid leukemia; renal carci-
noma; mesothelioma; and glioblastoma and medulloblas-
toma, which are two cancers of the central nervous
system) and 90 samples from 13 normal tissues (bladder,
breast, cerebellum, colon, germinal center, lung, kidney,
ovary, pancreas, peripheral blood, prostate, uterus, and
whole brain). We compared the samples for each cancer
in the dataset to the samples from the corresponding
normal tissue (e.g., prostate cancer and normal prostate)
using the t test. We applied our algorithm to 360 cancer-
pathway pairs (18 cancers times 20 pathways). Note that
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if we performed k iterations of permutation testing fol-
lowed by Benjamini-Hochberg FDR correction, the smal-
lest p-value we would obtain would be 360/k.

Significance of partial pathway perturbation
When a signaling pathway is perturbed, not all compo-
nents of the pathway will undergo transcriptional pertur-
bation, because many changes occur at the post-
transcriptional or past translational level. Thus when
only transcriptional data are available, many pathways
may appear to be partially perturbed. An important inno-
vation in our approach is the ability to sensitively detect
partial pathway perturbation. To assess the degree that
pathways are partially perturbed, for each pathway-can-
cer pair, we computed the statistical significance of the
perturbation score of the most perturbed pathway as well
as for the complete pathway. We used 360,000 iterations
of the permutation test, thus potentially obtaining
p-values as low as 0.001. We observed that for 153 path-
way-cancer pairs, the most perturbed sub-pathway was
significant at the 0.01 level, whereas only 17 pairs were
significant at the 0.01 level for complete pathways. In
Figure 1, for each of the 360 pathway-cancer pairs, we
plot the p-value measuring the perturbation of the entire
pathway in the cancer (y-axis) against the p-value of the
most-perturbed sub-pathway in that cancer (x-axis).
Figure 1(a) shows the data for all pathway-cancer pairs,
while Figure 1(b) restricts the comparison to those pairs
where the most perturbed pathway has a p-value at most
0.01. Nearly all points in the plot lie above the green x =
y line. This feature is especially pronounced in Figure 1
(b), where x = y line is just visible above the x-axis. Note

that the two x axes in this figure have ranges differing by
two orders of magnitude. For all the pathway-cancer
pairs plotted in Figure 1(b), we computed the ratio of the
p-value of the full pathway to the p-value of the most-
perturbed pathway. The median value in the distribution
of these ratios was 47. Taken together, these results
clearly demonstrate that calculating perturbation at the
sub-pathway level is substantially more sensitive than cal-
culating it at the whole pathway level.
The pathways in Netpath are carefully curated and we

consider them canonical for the purposes of this study.
Given the results just presented, a natural question that
arises is whether the most-perturbed sub-pathway of a
pathway P contains a significant fraction of the interactions
in P. For each pathway, we counted how many interactions
appeared to be perturbed in at least one cancer (consider-
ing only p-values at most 0.01). In other words, for each
pathway, we computed the union of its most-perturbed
sub-pathways over all the cancers and counted the number
of interactions in this union. Table 1 shows that in all but
four pathways, fewer than 70% of the interactions in a
pathway are perturbed. These data suggest that even such
well-studied pathways are perturbed only partially in can-
cers, at least when taking only gene expression data as an
indicator of perturbation. Note that six pathways do not
appear in this table because they were not perturbed in any
of the cancers. We return to these perturbation results in
the section “GCM-Netpath Pathway Perturbations”.

Comparison to ActiveModules
Methods that identify networks that are significantly
perturbed in response to a single condition have been

Figure 1 Results of computing the perturbations of 20 Netpath pathways in 18 human cancers. Each point represents a pathway-cancer
pair: the x-axis is the p-value of the most-perturbed sub-pathway and the y-axis is the p-value of the entire pathway in the cancer, with smaller
p-values indicating greater perturbation. The x = y line is shown in dashed green. (a) Data for all pathway-cancer pairs. (b) Data restricted to
pathway-cancer pairs where the most perturbed sub-pathway has a p-value at most 0.01.
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developed by multiple groups [16,33,19,18]. Among the
approaches that estimate the p-value of the differential
expression of each gene and use the p-values as node
weights in a protein interaction network, the ActiveMo-
dules algorithm developed by Ideker et al. [16] is widely
used and readily available as a plugin for the Cytoscape
software package [34]. ActiveModules operates on the
same types of data as our approach. ActiveModules
defines the score of a subnetwork Q(G’, I’) as:

zAM(Q) =

∑
g∈G′ z(g)√|G′| .

Note that the set of interactions I’ does not play a role
in the definition of zAM (Q). ActiveModules utilizes the
interactions in the network during the search for a sub-
graph Q with the highest value of zAM (Q), by ensuring
that Q is connected. Thus, interactions play an indirect
role in this approach. In contrast, our approach directly
incorporates interaction structure into the scoring
function.
We compared the significance of the sub-pathways

found using our approach to those found using Active-
Modules. To estimate p-values, we executed both meth-
ods on 36,000 randomized pathway datasets. Note that
ActiveModules can be computationally intensive to run
since it includes an expensive check for sub-network
connectivity. Therefore, we performed only 36,000 runs
of permutation testing, as opposed to the 360,000 itera-
tions we executed in the section “Significance of Partial
Pathway Perturbation”. Thus, the smallest p-value we
could obtain was 0.01. We compared the p-values pro-
duced by the two algorithms using a method similar to
the earlier comparison of most-perturbed pathways to
full pathways. In Figure 2(a), each point represents a
pathway-cancer pair: the x-axis is the p-value computed

using our approach and the y-axis is the p-value of the
network computed using ActiveModules, with smaller
p-values indicating greater sensitivity. In Figure 2(b), we
only plot these points when our algorithm yields a
p-value at most 0.05. Note that we used a cutoff of 0.05
instead of 0.01 because the smallest p-value we could
have obtained in this analysis was 0.01. We chose 0.05
so that we could visualize the range of p-values between
0.01 and 0.05. Our algorithm produces a p-value less
than or equal to ActiveModules for all but 7 of the 232
pathway-cancer pairs that meet this cut-off. Note that in
Figure 2(b), the range of p-values produced by our algo-
rithm is between 0 and 0.05 whereas the p-values com-
puted by ActiveModules span a much wider range. For
each pathway-cancer pair in Figure 2(b), we computed
the ratio of the p-value computed by ActiveModules to
the p-value estimated by our algorithm. The median
value in the distribution of these ratios was 16.5, imply-
ing that our algorithm yields p-values that are an order
of magnitude smaller than ActiveModules, on average.
Taken together, these results demonstrate the superior
sensitivity of explicitly incorporating interaction struc-
ture into scoring sub-pathways.

Comparison to GSEA
Our approach explicitly uses the interaction structure of
pathways to calculate their perturbation. To assess the
advantages of this approach, we compared our method
to the gene-oriented method GSEA [3]. GSEA compares
two phenotypes of interest by sorting all the genes
based on the difference in their expression profiles in
the two phenotypes, e.g., by using the t statistic. Given a
gene set of interest, GSEA uses a modified Kolmogorov-
Smirnov statistic to test whether the genes in the gene
set are ranked toward the top or the bottom of the
sorted list. GSEA measures the statistical significance of

Table 1 Fraction of interactions in a pathway that occur in any significant most-perturbed sub-pathway

Pathway #cancers perturbed in #measured interactions #perturbed interactions %perturbed interactions

Alpha6 Beta4 Integrin 14 32 24 75

B Cell Receptor 13 105 79 75.2

EGFR1 16 78 45 57.7

ID 1 53 15 28.3

IL-2 17 75 53 70.7

IL-3 18 58 38 65.5

IL-4 11 36 25 69.4

IL-6 3 46 23 50

IL-7 4 20 12 60.0

Kit Receptor 12 55 29 52.7

T Cell Receptor 12 102 67 65.7

TGF-beta Receptor 15 155 87 56.1

TNF-alpha 17 109 82 75.2

The third column contains the number of interactions that connect genes that are also present in the gene expression data.
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an observed score by repeatedly permuting the pheno-
type labels of the samples.
We converted each Netpath pathway into the set of

genes that are members of the pathway. We tested each
of the 360 pathway-cancer using GSEA, ranking genes
by the t statistic and generating 100,000 random permu-
tations to assess the statistical significance of the com-
puted scores. GSEA identified no Netpath gene set as
significant in any cancer, even with an FDR-adjusted p-
value less than 0.1. We had observed that perturbed
pathways computed by our method may contain both
up- and down-regulated genes. We reasoned that GSEA
may not detect corresponding gene sets as significantly
differentially expressed since these gene sets contain
both genes with low ranks (large positive t statistics)
and with high ranks (large negative t statistics). There-
fore, we repeated the analysis using GSEA’s option to
rank genes by the absolute value of the t statistic. Even
with this option, GSEA identified no pathway-cancer
pairs as significant, even at the 0.1 level.
GSEA uses the null hypothesis that the distribution of

the perturbation of the genes in a particular gene set is
the same as the distribution of the rest of the genes
measured in the transcriptional data set. Our approach
uses the null hypothesis that the distribution of the per-
turbation of the genes in a particular pathway P is the
same as the distribution of an equal number of ran-
domly-selected genes, where the interactions between
the randomly-selected genes are isomorphic to the inter-
actions in P. To test the possibility that the stricter null
hypothesis of GSEA prevents it from finding significant
perturbations detected by our method, we used our
results to construct a new gene set for each cancer.

Each new gene set was composed of only those genes
that participate in at least one of the most-perturbed
sub-pathways in that cancer as determined by our
method. We applied GSEA to these new gene sets, rank-
ing genes by the absolute value of the t statistic. For 13
out of the 18 cancers, GSEA found that the combined
gene set constructed based on our results was more sig-
nificant than the gene set for any individual pathway.
Yet, only two of these combined gene sets had an FDR-
corrected p-value less than 0.1. From this comparison
with GSEA, we conclude that incorporating interaction
structure is an important aspect of determining pathway
perturbation.

Robustness of our approach to missing data
We evaluated the robustness of our approach to missing
data. The GCM data contains multiple samples for each
cancer. For each pathway-cancer pair, we removed each
sample for that cancer from the input and re-computed
the most perturbed sub-pathway and its statistical signifi-
cance. This process was computationally intensive since
we had to compute the statistical significance for each
pathway-cancer about 15 times (depending on the num-
ber of samples in each cancer). Therefore, we ran 36,000
iterations of permutation testing, yielding p-values at
least as large as 0.01. For each pathway-cancer pair, we
counted how many leave-one-out datasets yielded results
that were similar to results obtained with the complete
dataset. Specifically, if the pair was statistically significant,
i.e., had a p-value at most 0.05 in the full dataset, we
counted the fraction of leave-one-out datasets for which
the most-perturbed sub-pathway also had a p-value at
most 0.05. Conversely, for pathway-cancer pairs that were

Figure 2 A comparison of the p-values of the most-perturbed sub-pathways computed by ActiveModules to those computed by our
algorithm. Each point represents a pathway-cancer pair: the x-axis is the p-value of the most-perturbed sub-pathway computed by our
algorithm, while the y-axis is the p-value of the most-perturbed pathway, as computed by ActiveModules. The x = y line is shown in dashed
green. (a) Data for all pathway-cancer pairs. (b) Data restricted to pathway-cancer pairs where the most perturbed sub-pathway computed by
our algorithm has a p-value at most 0.05.
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not statistically significant, i.e., had a p-value greater than
0.05, we counted the fraction of leave-one-out datasets for
which the most perturbed sub-pathway also had a p-value
greater than 0.05. We expected all these fractions to be
close to 1, i.e., the significance for the full dataset would
hold in the leave-one-out dataset as well.
Of the 360 cancer-pathway pairs, 238 pairs were signifi-

cant, i.e., they had a p-value at most 0.05 with the full
dataset, leaving 122 pairs with a p-value greater than
0.05. As shown in Figure 3, of the 238 significant cancer-
pathway pairs, 58% of pairs (138 pairs) had a robustness
of 1, i.e., every time we removed one of the samples for
that cancer, the cancer-pathway pair had a p-value at
most 0.05 with the remaining samples. Only 32% of the
258 pairs failed the significance test for more than half
the samples. For the 122 pairs that were insignificant, as
many as 96% (117 pairs) had a robustness of 1, i.e., the
removal of every sample kept the perturbation p-value
larger than 0.05. We obtained very similar trends if we
performed this analysis with a p-value threshold of 0.01.
These results suggest that our method is highly robust to
modest changes in the input gene expression data.

GCM-Netpath pathway perturbations
We assembled the results obtained in the section “Sig-
nificance of partial pathway perturbation” on the

differential perturbation of each Netpath pathway in
each cancer in the GCM into the matrix shown in
Figure 4(a). Of the 360 pathway-cancer pairs we ana-
lyzed, 35 pairs had FDR-corrected p-values equal to
0.001, 118 pairs had p-values greater than 0.001 and at
most 0.01 and 78 pairs had p-values greater than 0.01
and at most 0.05. Recall that we used using 360,000 per-
mutations to obtain these results. Therefore, we could
obtain p-values as low as 0.001. Many pathways were
perturbed in almost all the cancers, with p-value less
than 0.01: IL-3 pathway (18), IL-2 pathway (17), TNF-
alpha Pathway (17) EGFR1 pathway (16), TGF-beta
receptor pathway (15), Alpha6 Beta4 Integrin pathway
(14), and B Cell Receptor pathway (13). Seven pathways,
including the Androgen receptor, Hedgehog, IL-1, IL-5,
IL-9, Notch, and Wnt signaling pathways were not sig-
nificantly perturbed by any condition in our dataset,
leaving 13 pathways that were perturbed by at least one
cancer. Many cancers perturb more than half of these
13 pathways. A complete analysis of these results is
beyond the scope of this paper. We focus on literature
support for our results on two important pathways:
tumor necrosis factor alpha (TNF-alpha) and interleukin
2 (IL-2). Both pathways are associated with many
tumors (11 and 13, respectively) in our results. Support
for these associations can be found in literature.

Figure 3 Results of robustness analysis. The x-axis plots the fraction of leave-one-out datasets for which a cancer-pathway pair was significant
at the 0.05 level (for pairs that were significant with the full dataset, red curve) or not significant (for pairs that were not significant with the full
dataset, green curve). The y-axis plots the number of cancer-pathway pairs that were significant (red curve) or not significant (green curve).
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Both of these pathways have down-regulated expres-
sion in multiple tumor types [35,36]. The TNF-alpha
pathway is perturbed in association with CNS, mela-
noma, and bladder tumors, among others. TNF-alpha is
down regulated in tumors like melanoma [35]. Studies
have observed the cytotoxic effects of TNF-alpha on
medulloblastoma [37]. Other work has found that TNF-
alpha is an important factor in breast cancer promotion
and survival [38]. TNF is used for localized treatment of
metastatic melanomas and other irresectable tumors
[39]. Recombinant TNF has been effectively used to treat
bladder tumors in vivo [40]. The interleukin 2 (IL2) path-
way is another pathway that we find perturbed by many
cancers. The IL2 pathway is an immune signaling path-
way that is commonly down regulated in tumors like T-
cell lymphoma [36]. Like TNF-alpha, IL2 is also added
exogenously to treat multiple cancer types including
metastatic melanoma [41] and superficial bladder tumors
[42]. These treatments were found to work in breast can-
cer cell lines that express the interleukin 2 receptor on
the cell surface [43].
A comprehensive understanding of pathway perturba-

tions has important implications in disease treatment. As
noted above, exogenous treatment with recombinant
TNF and IL2 have had success in mitigating tumor pro-
gression in a number of diseases [37,39,40,42]. The suc-
cess of these treatments illustrates that reversing pathway
perturbation to a pre-cancerous state can help to restore
the healthy phenotype. Therefore, it is important to char-
acterize both the extent and direction of pathway pertur-
bation across diseases.

Comparison to Sub-GSE
Sub-GSE [7] is another gene-set oriented method that
has been reported to be more sensitive than GSEA.
Therefore, we ran Sub-GSE on the GCM and Netpath
data and compared the results to our perturbed path-
ways-cancer pairs. We ran Sub-GSE with 10,000 itera-
tions (for the permutation test Sub-GSE uses to compute
significance). The Sub-GSE software gave memory alloca-
tion errors for approximately 20,000 or more iterations.
Since we could not run Sub-GSE for larger numbers of
iterations, we did not correct the p-values yielded by
Sub-GSE for multiple hypotheses testing.
We found that both Sub-GSE and our method identi-

fied many common pathway-cancer associations (Figure
4). However, Sub-GSE failed to identify any cancer asso-
ciations for the ID or the alpha 6 beta 4 integrin signaling
pathways. These pathways are known to be perturbed in
multiple tumor types. The ID signaling pathway has been
associated with carcinogenesis by supporting tumor cell
migration and invasion [44]. Although the ID pathway is
mostly dormant after embryogenesis, the pathway is reac-
tivated during tumor progression [45]. Upregulation of
the alpha 6 beta 4 integrin pathway has been associated
with metastatic potential in many cancers [46]. In tumor
microenvironments, alpha 6 beta 4 is re-localized to the
leading edge of tumor cells and promotes invasion [46].
While Sub-GSE has superior sensitivity to GSEA, Sub-
GSE was not sensitive enough to identify these important
associations.
However, our approach was not able to identify sig-

nificant associations with the Wnt or Androgen

Figure 4 An overview of the perturbations of 20 Netpath pathway in 18 cancers in the GCM dataset. Each row is a pathway and each
column is a cancer. The color of a cell indicates the FDR-corrected p-value of the perturbation of a pathway in a cancer: red = 0.001, orange ≤

0.01, yellow ≤ 0.05, and gray >0.05. (a) Results obtained by our algorithm. (b) Results obtained with Sub-GSE.
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receptor pathways that were detected by Sub-GSE.
Both pathways are known to be associated with multi-
ple cancer types. Disregulation of the Wnt signaling
pathway leads to upregulated expression of B-catenin,
which ultimately results in increased proliferation of
tumor cells [47]. Sub-GSE is able to identify numerous
cancers in which the Androgen receptor pathway is
perturbed. However, neither Sub-GSE nor our method
was detect the well-known and widely studied associa-
tion between this pathway and prostate cancer [48].
We note that the increased sensitivity of Sub-GSE in
the case of these two pathways may arise from the fact
that we did not adjust for testing multiple hypotheses
in the case of Sub-GSE.

Summary
Our results indicate that integrating differential gene
expression with the interaction structure in a pathway is
a powerful approach for detecting links between a can-
cer and the pathways perturbed in it. The use of Stouf-
fer’s z-score to combine multiple p-values provides an
important advantage over methods that consider path-
way membership alone: in many perturbed pathways, we
noticed that the receptor protein at the head of the
pathway was very slightly differentially expressed, often
not to a statistically significant extent, whereas many
genes with products downstream of the receptor were
differentially expressed (data not shown). Our use of
meta analysis to combine p-values enabled detection of
the perturbation of the pathway even in such cases.
There are several avenues for future work. Our method

currently ignores the direction of differential expression
of each gene. Incorporating this information is important.
It is also essential to take into account prior information
on whether any interactions are regulatory and on the
type of regulation implied by an interaction [10]. Such
information may yield pathways with both directed and
undirected interactions. Finally, it would be interesting to
use universal protein interaction networks in order to
expand curated pathways.
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