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Abstract

Results of high throughput experiments can be challenging to interpret. Current approaches have relied on bulk
processing the set of expression levels, in conjunction with easily obtained external evidence, such as co-
occurrence. While such techniques can be used to reason probabilistically, they are not designed to shed light on
what any individual gene, or a network of genes acting together, may be doing. Our belief is that today we have
the information extraction ability and the computational power to perform more sophisticated analyses that
consider the individual situation of each gene. The use of such techniques should lead to qualitatively superior
results.
The specific aim of this project is to develop computational techniques to generate a small number of biologically
meaningful hypotheses based on observed results from high throughput microarray experiments, gene sequences,
and next-generation sequences. Through the use of relevant known biomedical knowledge, as represented in
published literature and public databases, we can generate meaningful hypotheses that will aide biologists to
interpret their experimental data.
We are currently developing novel approaches that exploit the rich information encapsulated in biological pathway
graphs. Our methods perform a thorough and rigorous analysis of biological pathways, using complex factors such
as the topology of the pathway graph and the frequency in which genes appear on different pathways, to provide
more meaningful hypotheses to describe the biological phenomena captured by high throughput experiments,
when compared to other existing methods that only consider partial information captured by biological pathways.

Background
Microarray experimental data are used extensively to
profile not only the expression levels of thousands of
genes simultaneously [1], but also DNA methylation
levels and transcription factor binding across the promo-
ters of thousands of genes. The data obtained from these
experiments are often used to study gene functions and
interactions within biological pathways. These experi-
ments produce a myriad of data and the results for indi-
vidual genes are often not reproducible [2,3]. As such,
the process of generating biological hypotheses from
such experiments is often very complex.

The invention of new computational methods has
allowed the analysis of experimental microarray data to
evolve from single-gene analysis techniques [4-6], to
group testing procedures [7-9]. These methods compare
either the set of significantly-changed genes within a
microarray experiment or some measure of significance
for all genes in a microarray experiment against pre-
viously defined lists of genes that represent a biological
phenomenon or concept (e.g. biological pathways, Gene
Ontology [GO] categories [10]). [9,11] survey this topic
in detail. In our previous work [12,13], we proposed a
model-based approach for testing the significance of bio-
logical pathways using the underlying gene network and
studied graph theoretic properties of the model. Also,
our GPCR [14] method performs a dimension reduction
over the pathway graph, with the sub-networks of inter-
est defined a priori.
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Even though the development of these computational
methods represents a leap forward towards achieving a
more robust analysis of high-throughput data, we
observe that many of these methods apply only limited
biological knowledge to the analytical process. The goal
of this project is to emulate computationally, for thou-
sands of candidate genes, what a biomedical scientist
would want to do for one gene. This means bringing to
bear as much biological knowledge as possible, as found
in the literature and in public databases, to develop bio-
logically sound hypotheses that could explain the
observed differential expression.
With this in mind, we have devised THINK-Back:

KNowledge-based Interpretation of High Throughput
data. Our objective is to develop a suite of computa-
tional tools and methods that generate a small number
of biologically meaningful hypotheses based on observed
results from high throughput experiments, through the
use of relevant known biomedical knowledge, as pre-
sented in pathway databases, gene interaction networks
and other sources of knowledge. The THINK-Back suite
provides a set of tools for the analysis of microarray
data that are both robust yet easy to use.
In this paper we describe two methods to perform

robust analysis of microarray data by exploiting the
knowledge captured in biological pathway databases,
such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [15], Protein ANalysis THrough Evolutionary
Relationships (PANTHER) [16], Reactome [17], Gen-
Mapp [18], and Biocarta http://www.biocarta.com.
These enrichment testing methods have been published
as a suite of Web services for public use. We briefly
describe these web services in the following sections.

Methods
The THINK-Back suite is a set of tools that provide a
robust gene set enrichment testing analysis of microar-
ray data, using pathways as a source of biological knowl-
edge. The goal of these tools is to derive high-quality
hypotheses regarding microarray data. To do so, each of
these tools performs a complex and specific analysis
over the biological pathway database.
Our analysis methods are further used to adjust the

scores of previously developed methods (e.g. GSA,
GSEA and LRpath). Our methods compute a score for
each studied pathway and that score is used to adjust

the score produced by the underlying group testing
technique for the same pathway. A weight for each
pathway is computed based on our score, which serve as
p-value weights and hence need to be transformed to
ensure that they are positive and that they increase with
increasing levels of differential expression, that is, they
must be positively correlated with increasing impor-
tance. Table 1 summarizes the methods we have devel-
oped as well as how we have implemented them as
adjustment factors to previously-developed methods.

Gene Appearance Frequency Analysis
Gene set enrichment testing has helped to close the gap
from an individual gene to a systems biology interpreta-
tion of microarray data. Unfortunately, although gene
sets are defined a priori based on biological knowledge,
current methods for gene set enrichment testing treat
all genes equal. It is well known that some genes, such
as those responsible for housekeeping functions, appear
in many pathways, whereas other genes are more specia-
lized and play a unique role in a single pathway.
Drawing inspiration from the field of Information

Retrieval (IR), we have developed an approach to incor-
porate the frequency in which a specific gene appears in
a pathway. We then use the results of this analysis to
adjust previously-developed group testing techniques,
such as GSEA and LRpath, to generate more reproduci-
ble and biologically meaningful results.
For example, in GSEA [19], genes are first ranked by a

signal to noise ratio. A “running sum” statistic is calcu-
lated for each gene set, based on the ranks of members in
the set, relative to those of non-members. An enrichment
score (ES) is defined to be the maximum of the running
sum across all genes, which corresponds to a weighted
Kolomogorov-Smirnov statistic. The weight places more
importance on the top and bottom of the ranked list.
When a gene set contains a large number of highly
ranked genes, a high ES is achieved.
In the original implementation of GSEA, the running-

sum statistics used equal weights at every step. Our
Gene Frequency Appearance technique [20] adopts a
classical Information Retrieval term weighting method
[21]. The importance of a term in a given document can
be estimated by multiplying the raw term frequency (TF)
of the term in a document by the term’s inverse docu-
ment frequency (IDF) weight. The importance increases

Table 1 Summary of THINK-Back tools and adjustment methods

THINK-Back Method Abbr. Adjustment to prior methods

GSEA [19] GSA [24] LRpath [23]

Gene Appearance Frequency AF GSEA-AF - LRpath-AF

Density Analysis DS GSEA-DS GSA-DS LRpath-DS

Our two THINK-Back adjustment methods can be used in combination with previously-developed gene set enrichment tools.
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proportionally to the number of times a word appears in
the document but is offset by the frequency of the word
in a collection. This method was easily transformed for
our purpose. Each pathway map is composed of a group
of genes, which is the analog of a document and the
words in it.
Since most genes only appear once in a given pathway

map, the term frequency does not provide further useful
information in our case. The inverse term frequency is a
measure of general importance of the term. IDF is
obtained by dividing the number of all documents by
the number of documents containing the term, and then
taking the logarithm. In our case, the number of docu-
ments containing the term is the appearance frequency
of genes across all KEGG pathways.

Density Analysis
As mentioned earlier, there are several methods that use
biological pathways to interpret microarray experiments.
Nevertheless, the biological knowledge captured by the
pathway networks is typically introduced in a very simple
way–for example all genes in the pathway are defined to
be in a gene set and considered equivalent for statistical
purposes. Our Density Analysis Score (DS) method takes
into account the topology of the pathway graph by con-
sidering the relative positions of differentially expressed
genes over the pathway network. This score is then used
to adjust any prior gene set enrichment testing scores.
Our assumption for the method proposed here is that a

pathway with a closely-connected cluster of differentially
expressed genes is more likely informative and relevant
than a pathway which has the same number of differen-
tially expressed genes spread out uniformly or randomly
across the pathway. Figure 1 illustrates this idea intui-
tively: it presents two different configurations for an
example pathway. Figure 1(a) shows differentially
expressed genes spread out uniformly across the

pathway; in contrast, Figure 1(b) shows the same number
of differentially expressed genes, but clustered in one
portion of the pathway, creating a tight cluster of con-
nected genes. We can observe how the pathway is more
clearly activated in Figure 1(b) than in Figure 1(a). We
justify this assumption by observing that since pathways
are often activated via sub-paths, one does not expect the
expression levels of all genes to change in an activated
pathway. This is partially because the activity level of
some genes may change through a different mechanism,
but also because some canonical pathways are defined in
ways that involve more than one function. For example,
the KEGG pathway for “Apoptosis” involves a sub-path
leading to apoptosis and a sub-path leading to cell
survival.
To achieve our objective, we create a graph represen-

tation of each pathway. We let the nodes in the graph
represent the genes in the pathway and the edges
between nodes represent the interactions between genes.
We then calculate the pair-wise shortest paths from
each gene in the pathway graph to every other gene in
the graph. The Floyd-Warshall algorithm can be used to
compute this in Θ(n3) time complexity [22].
We then compute the density score ds for all the genes

in the pathway to represent the effect of one gene over
another in the sub-graph with a penalty of the distance
between the genes. It signifies the effect of global differ-
ential expression values on a local site by giving higher
significance to closely clustered differentially expressed
genes. The final score for the pathway is calculated by
computing the average of the density scores across all
genes in the pathway. This final score favors both the
ratio of differentially expressed genes within the pathway,
as well as the distance between the differentially
expressed genes and the relative position among them.
Pathways are ranked in decreasing order of their density
score values. The pathways that have higher density

Figure 1 Example of density analysis on biological pathways. Two example pathways with differentially expressed genes appearing in
different configurations. A pathway with differentially expressed genes appearing tightly-clustered in one portion of the graph is more
significant than a pathway in which the differentially expressed genes appear spread out.
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score are deemed more significant than the pathways that
have lower density score.

Results and discussion
We have developed and deployed a suite of gene set
enrichment testing tools that provide a richer analysis
than the state-of-the-art tools, by applying a complex
analysis of KEGG pathways and exploiting some factors
that can lead to a better application of the underlying
biological knowledge.

Gene Appearance Frequency Analysis
When applying the Gene Appearance Frequency (AF)
method described in the previous section over KEGG
pathways, we can confirm our assumptions regarding
the varying appearance frequency of genes and to
explore the biological basis for the observed variance.
Figure 2 shows the distribution of appearance frequency
of genes within KEGG pathways. Half of the genes
appear only once in a specific pathway.
These genes are evenly distributed among all KEGG

pathways, without significant enrichment in any particu-
lar gene set. A decreasing proportion of genes have an
increasing frequency of appearance. Less than two per-
cent of KEGG pathway genes appear more than sixteen
times. This figure reflects the underlying biology of sig-
naling pathways and the property of gene occurrence
within them.

We applied the GSEA and GSEA-AF methods on two
independent breast cancer datasets, which were origin-
ally analyzed and compared in [23]. GSEA-AF identified
more overlapping KEGG pathways than GSEA. Examin-
ing the overlapping gene sets with False Discovery Rate
FDR <= 0.05 in the ranked list generated by GSEA and
GSEA-AF (Table 2), we see that there are more overlap-
ping gene sets discovered by GSEA-AF. More specifi-
cally, one more breast cancer related gene set was
identified by GSEA-AF. For a detailed experimental eva-
luation of this technique, please see [20].

Density Analysis
We also executed our Density Score analysis with the
breast cancer datasets described earlier. We ran both
the standard methods and the DS-adjusted methods
with KEGG pathways on the paired data sets and ranked
the pathways based on their descending order of signifi-
cance. We then calculated the correlation coefficient of
the enrichment scores between paired data sets, and the
correlation coefficient of the ranks of the gene sets
between paired data sets in order to compare the
results. We focus our evaluation on a set of signaling
pathways that have been identified as genetically altered
in a majority of cancers.
Similar to our experiment with AF, we appear to find

more biologically relevant results with the DS-adjusted
methods. Table 3 presents the summary of improvement

Figure 2 Distribution of appearance frequency of genes in KEGG Pathway database. The x axis indicates the appearance frequency of
each gene in KEGG Pathways. The y axis shows the proportion of genes with indicated appearance frequency out of all KEGG Pathway genes.
The total number of genes at each appearance count is indicated.
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in rankings for 19 cancer-related KEGG signaling path-
ways, when using the DS-adjusted methods. In more
detail, we observe that in GSEA-DS, “Toll-like receptor
signaling pathway” and “Wnt signaling pathway” are
ranked in the top pathways. The Wnt pathway is
another conserved pathway critical for mammalian
development and adult tissue maintenance and hyper-
activated in most human cancers. “Apoptosis” and “p53
signaling pathway”, two other cancer-related pathways,
are also ranked higher in GSEA-DS.

THINK-Back web services
The main objective of the THINK-Back suite is to
develop and deploy a series of gene set enrichment test-
ing methods that can be used by scientists worldwide.
To achieve this goal, we have implemented the compu-
tational tools described in the previous section and have
made them available as web services. Extensive docu-
mentation and examples for the THINK-Back web ser-
vices can be accessed at http://www.eecs.umich.edu/db/
think/software.html.

THINK-Back software architecture
We have implemented our THINK-Back suite of tools
under the software architecture depicted in Figure 3.
This architecture allows us to easily connect to several
pathway databases (e.g. KEGG, PANTHER) to utilize
that data for our analysis. In addition, it provides a
transparent mechanism to publish interfaces to our
methods, via web services, an application programmer’s
interface (API), and soon we will be providing a web-
based user interface as well.

Web service usage
The THINK-Back web services have been implemented
with the purpose of enabling scientists to access our tools
from anywhere in the world, and have been designed to
be executed as long-running tasks. This means that the
service can be invoked and will return the results asyn-
chronously. These web services have been included into
the suite of web Long Running Web Services of the
National Center for Integrative Biomedical Informatics
(NCIBI), available at http://ws.ncibi.org/longrunning.
html. When the web service is initially invoked, the
request is sent to an execution queue and a unique iden-
tifier for the job is returned. The user can then check the
status of the desired job until it is completed. Once com-
pleted, the web service returns the list of results, includ-
ing the pathway identifier and its p-value. Figure 4
describes this process. We have provided a sample Java
implementation of the THINK-Back client in Additional
File 1 . The example shows the client class submitting a
request to the web service to perform the GSEA-DS
enrichment method over the breast cancer sample
described in the Results Section. After the web service is
invoked and the unique identifier is obtained, the client
proceeds to poll for the job to be done, checking the sta-
tus every ten minutes. Once the DONE status is received,
the user can check the results of the enrichment method,
having the adjusted p-value for each analyzed pathway.
We have deployed all necessary Java classes in a

Maven http://maven.apache.org/ repository. A project
object model (POM) file containing all the required
references to build the Java project is also included in
Additional File 2.

Table 3 Ranking improvement for cancer-related KEGG signaling pathways with DS

Dataset #Pways GSA-DS LRpath-DS GSEA-DS

0 - 10 >10 TOTAL 0 - 10 >10 TOTAL 0 - 10 >10 TOTAL

Breast GSE-2990 18 8 5 13 7 8 15 6 7 13

Breast GSE-3494 18 9 5 14 8 5 13 10 5 15

Lung Boston 18 4 4 8 4 9 13 5 6 11

Lung Michigan 18 6 7 13 4 6 10 7 7 14

AVERAGE 7 5 12 6 7 13 7 6 13

This table presents the summary of improvement in rankings for 19 cancer-related KEGG signaling pathways, when using the DS-adjusted methods. We can
observe that out of these 19 cancer-related pathways, DS-adjusted methods improve the rankings of more than half of the pathways, with LRpath-DS showing
average improvements in the rankings of 78% of the mentioned signaling pathways. We also differentiate between large ranking improvements (greater than 10
ranks), and observe that GSEA-DS has an average rank improvement greater than ten ranks in 69% of the studied pathways.

Table 2 Comparison of overlapping gene sets generated by GSEA and GSEA-AF

Methods Overlap Gene Sets
(FDR <0.05)

Cancer Related
Gene Sets

Name of Gene Sets

GSEA 7 3 Proteasome, Cell cycle,
Biosynthesis of steroids

GSEA-AF 9 4 Proteasome, Cell cycle,
Biosynthesis of steroids,

Oxidative phosphorylation

The ranked list generated by GSEA was ranked by Normalized Enrichment Score (NES). Only gene sets with qvalue less than 0.05 were considered.
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Figure 3 THINK-Back Software Architecture. The THINK-Back suite of tools has been developed to allow scientists worldwide to use our gene
set enrichment testing methods and to combine them with previously-developed methods as adjustment tools. These tools can be accessed
via web services, an application programmer’s interface (API), and soon we will be providing a web-based user interface as well.

Figure 4 THINK-Back Web Service Call Diagram. The sequence diagram shows the steps to call the THINK-Back Web service, request the job
status, and finally obtain the results. After submitting the job for execution, the web service returns a unique identifier that should be used to
check the job status. Once the status returned is DONE, the user can check for the results of the execution.
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Additional material

Additional file 1 : Java implementation of the THINK-Back client
(NcibiLongRunningSample3.java). This Java class shows the execution
of a request to the web service to perform the GSEA-DS enrichment
method over the breast cancer sample (GEO Accession number
GSE3494) described in the Results Section of the paper.

Additional file 2: THINK-Back Project Object Model (POM) file. We
have deployed all necessary Java classes in a Maven repository. This
project object model (POM) file contains all the required references to
build the Java project to invoke the THINK-Back web services.
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