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Abstract

Background: As context is important to gene expression, so is the preprocessing of microarray to transcriptomics.
Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of
>2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other
genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the
interpretation. In this paper, we reanalyzed a zebrafish (D. rerio) microarray data set using GeneSpring and different
differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore,
despite the advances in microarray technology, the array captures a large portion of genes known but yet still
leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to
hypoxia-induced angiogenesis.

Results: The data strongly suggests that the number of differentially expressed genes is more up-regulated than
down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated
data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected
signalling which may be a product of tissue (heart) or that the intended response was transient.

Conclusions: Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis
can provide essentially more than one answer, implying data interpretation as more of an art than a science, with
follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain
pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips
interpretation.

Background
As more and more genomes are sequenced and anno-
tated, the capacity to accurately and efficiently catalog
the gene expression profiles of these organisms is
becoming ever more apparent [1]. With techniques such
as in situ hybridization, QRT-PCR, and more recently
absolute quantitation being used to assess gene expres-
sion, there are still lingering issues of humble through-
put and lack of massive parallel comparisons. Array
technology has improved these conditions yet problems
of standardizing statistical analyses are lacking, along

with observed differences when comparing microarray
platforms [2], though others have found significant
reproducibility [3].
Oligonucleotide arrays, for example, prove useful in

not requiring cDNA library production [4], whilst
cDNA microarray proves useful in cases of non-model
organism and even been used to identify heterologous
genes across multiple species [5]. Even so, the current
microarray platforms are still several years behind the
current state of knowledge of many organisms genome.
Furthermore, classifying a differentially regulated gene is
a problem of both array types with research even sug-
gesting it should be dealt with in a tiered approach [6].
To assess the power of analysis, there are many differ-

ent ways when it comes to expression data [7-9]. The
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use of t-tests, ANOVAs, Gene Ontology (GO) annota-
tion, p-value cutoffs, Bonferroni corrections, array nor-
malization, Fishers exact test, and fold change cut offs
all lead towards a reduction in gene expression data
which may inadvertently reduce or increase the power
of analysis.
We obtained a data set from a recently published

paper and reanalyzed the raw data using multiple differ-
ent approaches. From this data analysis, we hypothe-
sized that by changing the significance level as well as
the fold change cut off, more than one interpretation of
the data can be obtained. Subsequently, there is only
one microarray study on heart tissue response to
hypoxia published, implying a low value for replication
and the possibility of perpetuation of error and to the
accumulation of unreliable explanations and unverified
findings. Essentially the novelty of this study in light of
Marques et al. (2008) is for future studies to unravel
which significance criteria is relevant, biological or
statistical.

Results and discussion
Microarray technology has proven beneficial to directly
identifying co-regulated genes, pathways, and systems
allowing for a more informed snapshot of the transcrip-
tome. As such, our results indicate that changes in the
significance level of differential expressed gene products
along with the fold change cut-offs can give very different
results that imply different signaling pathways and

functions involved (Figure 1). As T-tests have been
widely used to identify deviation from the mean, large
sampling sizes (~15,000 genes assayed) can influence the
number of false positives and may infer little if anything
about the biology [9,10]. Fold change on the other hand
lends itself to a more biologically meaningful assessment
yet still encounters problems with identifying what is sig-
nificant to the organism. Therefore using both criteria
may help but not fix the problem of microarray analysis.
Within this study, the contributions of each differen-

tially expressed gene criteria were evaluated. As indi-
cated before, the criteria suggest different biological
meaning. The number of significant genes were over-
whelming at a p ≤ 0.05 and even upon increasing to a
p ≤ 0.02 level, the data is reduced almost in half yet still
remains massive for understanding the biological
response to hypoxia (Supplemental 1, Table 1). Fold
change suggests more meaningful insight to the organ-
ism throughout development and into adulthood [11]
with 1.5 proving to be a better eliminator of background
noise as there were fewer genes left after making a fold
change cutoff of ≥1.5 as compared to using significance
cutoffs (Supplemental 1, Table 1). As the fold change
level increases to that of ≥2, the number of genes signif-
icantly decreases. This suggests that biologically, less
genes change drastically and that the significant differ-
ence observed at p ≤ 0.05 and 0.02 are related to a pos-
sible whole animal response to treatment. To
understand the change and ultimately the importance in

Figure 1 Differentially regulated genes for GO Annotation categories. A. Cellular component B. Molecular function C. Biological Function.
Black shaded blocks are the intersection of genes with p-values ≤ 0.02 and fold change cutoff of ≥2.0. Gray shaded blocks are the intersection
of genes with p-values ≤ 0.05 and fold change cutoff of ≥1.5. The genes found in the dark shaded blocks are also included in the number of
genes in the gray shaded block. Categories are directly taken from the second level of GO annotation from GeneSpring.
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interpretation of genes influenced by chronic constant
hypoxia, an intersection of ≥1.5 fold change and p ≤
0.05 was compared to ≥2 fold change and p ≤ 0.02.
The data obtained from our analysis indicates that there

were more up-regulated genes as compared to down regu-
lated, implying that even in a state of stress the organism
is actively adjusting its transcriptome and, more specifi-
cally, the transcriptome of the heart (Figures 1, supple-
mental 1).
Using the most stringent criteria (intersection of p ≤

0.02 and ≥2 fold change), there were several genes that
were up-regulated and observed in both intersection
groups (Figures 1, supplemental 1). Hypoxia inducible
factor 1 was found to be up-regulated and is known to
be expressed in response to hypoxic conditions [12].
Interestingly, chemokine (C-X-C motif) ligand 12a stro-
mal cell derived factor 1 was only observed under ≥1.5
fold change and p ≤ 0.05 conditions. CXCL12 is
involved in directing hematopoietic cells and angiogen-
esis [13]. By omitting this chemokine from the biological
interpretation, clinical researchers may overlook a corol-
lary between tumor progression (which requires oxygen)
and ischemia, a state of desperate need for oxygen and
nutrients. Other genes such as bone morphogenetic pro-
tein 2a and insulin-like growth factor binding protein 1a
were observed in each selection criteria indicating they
are significant and change more than two fold in
response to chronic constant hypoxia. IGFBP-1A has
been known to be involved in regulating IGF and insulin
pathways which can be linked to cell proliferation and
protection against cell death along with BMP-2 involved
with bone development [14,15].
Those genes down- regulated at the most stringent

selection criteria show similar reductions to those
observed by Marques et al (Figure 1) [16]. Metabolically
related genes, such as acyl coenzyme A dehydrogenase,
pyruvate dehydrogenase kinase, SOCS3, and creatine
kinase indicate that a shift to oxygen independent meta-
bolism is occurring (Additional file). These genes are
involved in fatty acid oxidation, pyruvate oxidation, cyto-
kine signaling disruption, and the rapid shuttling of ATP
sources, respectively. Interestingly, changes both at a
metabolic level as well as at a synaptic level were
observed as synaptotagmin, uncoupling protein 2, and
ATPase, Ca2+ transporting, cardiac muscle, fast-twitch 1
like gene were found to be significantly down regulated
indicating that mitochondrial membrane leak was
reduced and calcium initiated cellular signaling may be
attenuated in cardiac tissue (Figure 1, Additional file).
However, some genes not identified under the most

stringent criteria and counter to ischemia/ reperfusion,
are superoxide dismutase, heat shock protein 90, and lac-
tate dehydrogenase D. This suggests the response to
chronic constant hypoxia may be tissue specific as these

genes should be up-regulated under hypoxic conditions
[17]. SOD has been found to be crucial in the breakdown
of reactive oxygen species while HSP are used for stabi-
lizing proteins under stressful conditions [18]. Other
genes such as programmed cell death 8 (apoptosis-indu-
cing factor) and RAS association (RalGDS/AF-6) domain
family 8 were down regulated and differentially expressed
but were not found under most stringent statistical cri-
teria. Both of these genes are involved in cellular pro-
cesses important to the survival of the cell or its
interaction with other cells, respectively. As zebrafish
have developed ways to respond and survive under
hypoxic conditions, AIF-8 and RAS may bring insight
into cellular mechanisms responsible for cell survivability
and cell rigidity [19]. Thus understanding the integrative
response to chronic constant hypoxia is beginning to
look more and more like the response observed in
tumorigenesis, which may be overlooked based on selec-
tion criteria of genes.
Using fold enrichment analysis and fishers exact tests

of all sets in comparison to originally published, we
found that though our most stringent criteria was similar
to Marques et al [16], we had distinct changes in GO
annotation groups involved in microtubule activity,
hydrolase activity, nucleic acid binding and carbohydrate
binding (Additional file). Interestingly, reducing the cri-
teria down to 1.5 FC and p of 0.05, several different GO
groups were found to be significant especially those
involved in structural integrity, ribosome structure, and
transcription regulation and factors, suggesting these
may not vary widely in expression but that there are
more significant genes thus pointing towards the pro-
blems of microarray analysis (Additional file). At one
spectrum, novelty in research is revered whilst on the
other hand replication and accuracy to natural phenom-
ena may result in skewed explanations. We humbly feel
the reanalysis of microarray data is necessary along with
follow up gene expression studies to accurately explain
biological phenomena.

Conclusions
Our results point to the dangers of statistical selection
criteria as well as shed light on genes crucial to under-
standing chronic constant hypoxia. As more genes are
sequenced, microarray platform expanded, along with
understanding the role of splice variants in zebrafish
(D. rerio), a larger and more dynamic picture of the
transcriptome can be gathered. In sum, we demonstrate
how fold change and statistical cut-offs modulate the
outcome of microarray data. Future, studies should tie
together previously unanalyzed genes such as leptin to
microarray data in response to constant hypoxia in
adult zebrafish. As the current microarray platform does
not include them, problems still exist at the molecular
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level, influencing our understanding of the physiological
and ultimately behavioural and ecological roles of these
organisms.

Methods
In a previously published paper in which adult zebrafish
heart tissue was assayed in response to chronic hypoxia
[16], microarray files were downloaded from NCBI Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo)
(including accession numbers GSM112796 and
GSM112798 through 806). Raw files were imported into
GeneSpring GX Version 11.0 (Silicon Genetics, Redwood
City, CA) and intensities normalized using MicroArray
Suite 5 method [20]. Due to small sample size, equal var-
iance across data could not be assumed and data was
analyzed using an unpaired TTest with unequal variance
with no statistical corrections [21]. Resultant data was
pooled into four groups (Table 1).

Additional material

Additional file 1: Comparative Fishers exact test and fold
enrichment for significant GO groups within the zebrafish total
gene array. Viewable in excel.
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