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Abstract

Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that
drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with
individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA
sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a
mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the
novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing
reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the
mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all
rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum
completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference
genome, given partial information about the adjacencies present in the mixture of these genomes. We show that
the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular
or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete
genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-
cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the
measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and
the application of these algorithms to real cancer sequencing data.

Introduction
Nearly all current genome sequencing studies sequence
the DNA from a population of cells rather than from
single cells. This is because present DNA sequencing
technologies cannot sequence the DNA in a single cell
without bias-inducing DNA amplification steps. In the
majority of applications, sequencing such a population
of cells is not problematic because the DNA in every
cell is nearly identical. However, there are two notable
examples: metagenomics (e.g. environmental sequencing
or microbiome studies) and cancer sequencing. In the
former case, the genomic differences between cells are
due to the presence of mixtures of microorganisms in

the sample. In the latter case, the genomic differences
between cells are due to somatic mutations that accu-
mulate in individual tumor cells during the progression
of cancer [1].
In this paper, we formulate the problem of inferring the

organization of each genome present in a mixture in the
case where: (1) the individual genomes result from an
unknown sequence of genome rearrangements from a
known (reference) genome; (2) the adjacencies (break-
points) of the genomes in the mixture are measured. This
situation arises in cancer genome studies where somatic
structural aberrations (including inversions, translocations,
duplications, deletions, or other rearrangements of large
pieces of DNA) induce novel adjacencies, also called
breakpoints, that join in the cancer genome two noncon-
tiguous nucleotides from the normal genome. In current* Correspondence: ahmad@cs.brown.edu; braphael@cs.brown.edu
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cancer sequencing projects, these novel adjacencies are
determined from alignments of paired-end reads from
cancer DNA to the reference human genome [2,3]. How-
ever, these approaches generally do not measure all adja-
cencies present in the tumor. For example, the quantity of
DNA sequence reads (coverage) may be insufficient to
measure all adjacencies in all genomes in the tumor, parti-
cularly adjacencies that are present in a minority of cancer
cells. Moreover, alignment of reads to repetitive regions is
challenging, particularly for short reads produced by cur-
rent sequencing technologies, and thus some adjacencies
may not be reliably measured.
We formulate the k-Minimum Completion Problem (k-

MCP) of determining the k genomes present in a mixture
from a set of measured adjacencies that minimize the
total distance between the reference genome and the k
measured (i.e. cancer) genomes. The k-MCP is a general
problem that encompasses different subproblems that
depend on the genomic distance used and the desired
chromosomal content of the measured genomes. We
show the following results: (1) A linear time algorithm
for the 1-MCP in the double cut and join (DCJ) distance
[4] when the desired genome has no restrictions on its
chromosomal content; (2) A linear time algorithm for the
1-MCP in the DCJ distance when the desired genome
has a single circular or linear chromosome; (3) the k-
MCP is NP-complete for any distance when k ≥ 3; and
(4) the 2-MCP with DCJ distance is NP-complete when
the desired genome has no restrictions on its chromoso-
mal content, or when the desired genome has all circular
chromosomes.
We emphasize that the k-MCP does not model all the

issues arising in cancer sequencing: in particular, we
restrict attention to copy-neutral structural variants, and
ignore single nucleotide mutations, small indels, or
other large copy number aberrations. Single nucleotide
mutations and small indels can be addressed separately
as they do not produce novel adjacencies of the type
studied in k-MCP. Copy number aberrations are com-
mon in cancer, but appropriate handling of these muta-
tions when measured in a heterogeneous mixture
introduces an entirely different set of challenges: e.g. a
deletion of a genomic segment in half of the cells in the
mixture with a duplication of the same segment in the
other half of the cells will be difficult to distinguish
from no copy number change. Finally, we assume that
all measured adjacencies are real, while in fact there are
likely to be false positive adjacencies. Extending the
model to consider these additional complexities is left
for future work.
In following sections, we first provide a precise formu-

lation of the k-MCP and describe related work. Then,
we provide algorithms and proofs of the complexity of
the problem in various cases.

Definitions and problem statement
In this section we present some preliminary definitions
and give the formal definition of k-MCP.
A gene g is an oriented sequence of nucleotides, with

two extremities: a head gh and a tail gt. An adjacency is
an unordered pair of gene extremities. A genome G on
n genes is a set A (G) of adjacencies such that each of
the 2n gene extremities in G is a member of at most
one adjacency in A (G) . The gene extremities which are
not members of any adjacency in A (G) are called telo-
meres of G , and we denote the set of all telomeres by
T (G) (Figure 1-a). Through this work, we assume that
the genes of a genome are distinct.
The genome graph of a genome G is a graph whose

labeled vertices are the gene extremities in G , and
whose edge set is A (G) . We denote the genome graph
of G by gr (G) . Because each extremity is in at most
one adjacency of A (G) , the graph gr (G) is a matching
graph (not necessarily perfect). Note that the genome
graph is uniquely determined by the genome, and con-
versely. For convenience, we also define the augmented
genome graph gr (G) to be the genome graph augmen-
ted with additional edges connecting extremities of the
same gene, i.e., gr (G) is the graph whose labeled ver-
tices are the gene extremities in G, and whose edge set
is A(G) ∪ {{gh,gt}|g is a gene in G} .
A chromosome of G is the set of all adjacencies and telo-

meres of gene extremities in a connected component of
the augmented genome graph (Figure 1-b). A chromo-
some is linear (resp. circular) if the corresponding con-
nected component is a path (resp. cycle) (Figure 1-b).
Note that an adjacency {gh, gt} represents a circular chro-
mosome with the single gene g. A genome is circular or
linear if all of its chromosomes are circular or linear, and
we say it is mixed if it has both circular and linear chro-
mosomes. A genome is uni-chromosomal if it has only one
chromosome, and it is multi-chromosomal, otherwise. A
chromosomal condition is a condition on the number or
type of chromosomes in a genome. For example we can
describe the structure of a genome by two chromosomal
conditions: being (i) uni-chromosomal, and (ii) circular.
As described above a paired-end sequencing experi-

ment provides the adjacencies A (G) of the sequenced
genome relative to the genes from a reference genome.
However, our knowledge about a genome’s adjacencies
is typically incomplete. For a set C of chromosomal
conditions, a C -partial genome G′ on n genes is a set

of adjacencies A
(
G′) such that there exists a set Ā

(
G′)

of pairs of gene extremities such that A
(
G′) ∪ Ā

(
G′) is

a genome with chromosomal condition C . When C is
clear in the context we will say partial-genome instead
of C -partial genome. The problems we study below
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involve adding the missing adjacencies in C -partial
genomes to complete them into genomes with chromo-
somal condition C . Sometimes we have an idea about
the number or the structure of chromosomes in a gen-
ome. We define a completion of a partial genome rela-
tive to these chromosomal conditions. If G is a genome,
we say G′ ⊆ G provided A(G′) ⊆ A(G) . A completionC
of a partial genome G′ is a genome G with G′ ⊆ G and
satisfying the conditions in C . When C is clear in the
context, we just say completion instead of completionC .
A multi-genome is a mixture of genomes with the

same set of genes. Formally, the multi-genome M
formed from genomes G1, ...,Gm is a multiset A(M)
obtained from A(M) = �m

i=1A(Gi) , the disjoint union of
A(Gi)′s (For a multiset S and an element r, if cS(r) is the
number of copies of r in S, the disjoint union of two
multisets A � B is a multiset in which each element r
appears cA(r) + cB(r) times.). Note that the partition of
the adjacencies in A(M) into A(G1), ...,A(Gm) is not
known. There is a corresponding genome graph, a multi-
graph whose vertices are the gene extremities, and
whose edge set is the multiset A(M) . We denote the
genome graph of a multi-genome M by gr(M) .
The genome graph is related to the breakpoint graph

in genome rearrangement studies. The breakpoint graph
B(G1, . . . ,Gm) of the genomes G1, ...,Gm is an edge-
colored multigraph whose labeled vertices are the 2n
gene extremities and whose edges are all the adjacencies
in �m

i=1A(Gi), with each edge assigned a color according
to its genome of origin. Thus, the only difference
between the breakpoint graph and the genome graph is
the lack of edge-coloring in the latter, reflecting our
inability to measure the origin of each adjacency.
Our knowledge about a multi-genome can be incom-

plete. For example a tumor is a mixture of different can-
cer genomes, and during sequencing process, we obtain

a mixture of adjacencies from these genomes. We repre-
sent the mixtures of adjacencies by a partial multi-gen-
ome. A partial multi-genome is a multi-set �m

i=1A(G′
i) ,

where each G′
i is partial genome. We define the genome

graph of a partial multi-genome analogously to a multi-
genome.
If k is a positive integer and M is a partial multi-gen-

ome, a k-completion of M is a family of k genomes

Mk = {G1, ...,Gk}, such that M ⊆ �k
i=1Gi . Note that

existence of a completion for a partial (multi-) genome
is dependent on the structure of the partial (multi-) gen-
ome and the chromosomal conditions. Also, the exis-
tence of a completion does not imply its uniqueness.
We use a distance function to distinguish between dif-

ferent completions. A distance function on pairs of gen-
omes (with the same set of genes), is a measure of
dissimilarity between the genomes. Having selected a
pairwise distance function we must define a distance
between the k genomes in a mixture. Motivated by the
fact that the different cancer genomes in a tumor are
obtained by somatic genome rearrangements from a
healthy genome, we model the evolution of the cancer
genomes by a rooted tree in which all the cancer gen-
omes are descendants of the healthy one. Suppose A
represents a healthy genome, and Mk a mixture of k
cancer genomes obtained by rearrangements of the gen-
ome A . A mixture tree TMk ,A is a rooted tree on

Mk ∪ {A}, such that the root vertex is A and k gen-

omes in Mk are (some of) the vertices in TMk ,A . If j
is a distance function on a pair of genomes, then the
j-value of TMk ,A , denoted by φ(TMk,A) is defined as
follows:

φ(TMk,A) =
∑

{u,v}∈E
φ(u, v),

Figure 1 Genome and genome graph. (a) A genome G on the set of genes {1, 2, 3, 4, 5} with two chromosomes (one linear and one

circular). A(G) = {{1h, 3h}, {5t, 2t}, {2h, 4t}, {4h, 5h}},T(G) = {1t, 3t} . (b) The genome graph (black edges) of G with additional

edges (dotted) connecting the extremities of the same gene. There is one cycle component and one path component.
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where E is the set of edges in TMk ,A .
We now define the k-Minimum Completion Problem.
k-Minimum Completion Problem (k-MCP) Given a

C -partial multi-genome M , a positive integer k, a
reference genome A , and a distance function j, find a
k-completion Mk and a mixture tree TMk ,A such that
φ(TMk,A) is minimum over all k-completions and mix-
ture trees. If no k-completion exists for M , we say that
this k-MCP does not have a valid solution. We say the
k-MCP is unrestricted if C = ∅ , and is restricted,
otherwise.
As written, the k-MCP is a general problem that

encompasses many subproblems depending on chromo-
somal condition set C and the distance j. Common dis-
tances in genome rearrangement studies include the
breakpoint distance [5], the Hannenhalli-Pevzner dis-
tance [6] (which generalizes the reversal distance [7]),
and the double-cut-and-join (DCJ) distance [4]. Below
we will use the DCJ distance, which approximates the
other distances [8].
For two genomes G1 and G2 on the same set of n

genes, their double-cut-and-join (DCJ) distance, denoted
by dDCJ(G1,G2) , is equal to

n − c(G1,G2) − p(G1,G2)
2

,

where c(G1,G2) is the number of cycles in
B = B(G1,G2) and p(G1,G2) is the number of paths in
B with odd number of vertices [8].
Remark. When at least one of the Gi

′s are circular we
have p(G1,G2) = 0 and dDCJ (G1, G2) = n - c. Thus, hav-
ing a larger number of cycles in their breakpoint graph
is equivalent to having a smaller distance.

Related work
In comparison to other genome rearrangement problems
considered in the literature, the k-MCP has three distin-
guishing features. (1) The input is a mixture of adjacen-
cies from multiple genomes and the genome of origin of
each adjacency is unknown. (2) The set of adjacencies is
incomplete: not every adjacency from every genome in
the mixture is measured. (3) The ancestral relationships
between the genomes in the mixture are unknown, and
might include both “ancestral” and “present day” gen-
omes. Some of these features have been considered indi-
vidually in other work, but to our knowledge no previous
work has considered all three together. The first feature
bears some resemblance to the genome halving problem
[9] of finding the doubled ancestor genome by minimiz-
ing a rearrangement distance. This problem and further
generalizations to polyploidization [10] involves parti-
tioning (or coloring) adjacencies to minimize a

rearrangement distance. However, in general no adjacen-
cies are missing and the distance is pairwise (i.e., no tree)
in contrast to the 2-MCP.
Regarding the second feature, several authors have con-

sidered the problem of inferring missing adjacencies in a
manner that optimizes a genome rearrangement distance.
Notably, [11] and [12] consider the problem of computing
reversal distance between pairs of partially assembled gen-
omes that are provided as unordered sequences of contigs.
These problems were motivated by limitations in DNA
sequence technologies that result in most whole-genome
assemblies being highly fragmented and comprised of con-
tigs whose relative ordering is unknown. These problems
are variations of the 1-MCP, where the reference genome
A also has missing adjacencies. In particular, [12] orient
sets of contigs from two genomes in such a way that the
number of cycles in the breakpoint graph of the resulting
genomes is maximized, which they note “has been shown
to approximate very well the reversal distance between
them.” However, there is no work on extending this analy-
sis to more than two genomes.
Regarding the third feature, the genome median pro-

blem considers the problem of finding an ancestral gen-
ome that minimizes the distance between three given
genomes [5,13]. This is different from k-MCP in that the
three individual genomes are known (rather than mixed)
and the genomes are complete with no missing adjacen-
cies. Also, in the median problem the topology of the phy-
logenetic tree has been already inferred, while in k-MCP
we have to find an optimal topology for the phylogenetic
tree as well.

Results
In this section we first consider the 1-MCP problem.
We present linear time algorithms that solve 1-MCP in
the cases where: (i) the measured, incomplete genome
has a single circular or linear chromosome; (ii) there are
no restrictions on the chromosomal content of the mea-
sured, incomplete genome.
Next we prove that the unrestricted k-MCP is NP-

complete when k ≥ 3 for any distance function j.
Finally, we show that the unrestricted 2-MCP, and the
restricted 2-MCP where all chromosomes are circular
(i.e., C = {circular}), are NP-complete for DCJ distance.

1-MCP
Here, we consider the unrestricted 1-MCP and two
restricted versions of 1-MCP problem: (1) the chromo-
somal condition set is {circular, uni-chromosomal},
which we denote by 1-MCPc; (2) the chromosomal con-
dition set is {linear, uni-chromosomal}, which we denote
by 1-MCPℓ. We first show that unrestricted version is
linearly tractable. Then, we show that we can solve the
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1-MCPc in linear time. Finally, we prove a relation
between 1-MCPc and, 1-MCPℓ which implies that
1-MCPℓ is also solvable in linear time.
Note that 1-MCPℓ is a variation of the Block Ordering

Problem (BOP) considered in [12]. In our terminology,
the BOP considers two partial genomes, and aims to
complete both partial genomes into linear, unichromo-
somal genomes such that the pairwise distance between
the completed genome is minimal. In [12], Gaul and
Blanchette provide a linear algorithm for BOP. The
algorithm we present for 1-MCPℓ is simpler than the
algorithm for the BOP in [12], and our algorithm is
obtained from a straightforward algorithm (Algorithm 1
below) which solves 1-MCPc in linear time.
We begin with the unrestricted 1-MCP, where we have
the following result.
Theorem 1. The unrestricted 1-MCP with DCJ dis-

tance is linearly tractable.
Proof. In 1-MCP we have a single partial genome G

and a reference genome A (see Figure 2-a). Since both
G and A are matchings over the gene extremities, their
breakpoint graph B(G,A) consists of some paths and
cycles. Suppose P1, . . ., Pr are all the paths such that
the first and their last edges are adjacencies in A . An
optimal completion for G can be obtained by adding an
edge to G which connects the end points of each Pi, for
1 ≤ i ≤ r (see Figure 3), since we only can add edges
between the vertices which are not incident with any
edge in A (G) , i.e., the end vertices of Pi’s. Note that
adding other possible edges just create longer paths in
B(G,A) . □

1-MCPc: circular uni-chromosomal completion
Here we consider 1-MCPc, the restricted 1-MCP for a
partial genome G that we wish to complete to a circular
uni-chromosomal genome Gc . We assume that G is not
already a circular uni-chromosomal genome. Thus G

has a set F(G) of free extremities, i.e., the extremities
that are not in any adjacency in G . Equivalently, F(G)
is the set of vertices of degree 0 in the genome graph
gr (G) . Finding the completion Gc corresponds to find-
ing a partition of F(G) into pairs of extremities, i.e.,
into adjacencies. However, this partition cannot be arbi-
trary as the adjacencies defined by the partition must
satisfy two constraints: (1) The resulting genome Gc is
circular uni-chromosomal, meaning that the augmented
genome graph gr(Gc) has exactly one component, a
cycle. Note that gr (G) has only path components, since
gr(G) ⊂ gr(Gc) and G 	= Gc . (2) The resulting genome
Gc must minimize the distance between the reference
genome A and Gc .
The first constraint on partitioning of F(G) is that

joining extremities at ends of a same path in gr (G) by
an edge, which we call an excluded edge, creates a cycle.
This cycle must be selected carefully to obtain a uni-
chromosomal genome. We define E(G) to be the set of
all excluded edges.
The second constraint on partitioning of F(G) is pro-

vided by our desire to minimize the distance between
the reference genome A and Gc . For the DCJ distance,
we must maximize the number c(A,Gc) of cycles in the
breakpoint graph B = B(G,A) . Adding an edge to
A (G) increases the number of cycles in B if and only if
the edge connects the endpoints of a same path in B.
We call such an edge a desired edge and denote by
DA(G) the set of all desired edges. Now we combine
these two constraints into a graph.
We define the free-extremities graph, R = R(G,A) to

be a bicolored graph, whose vertex set is F(G) , and
whose edge set is DA(G) � E(G) . The edges from
DA(G) are colored blue and the edges from E(G) are
colored red. Note that R is a multi-graph, and R consists
of even cycles. This is because both DA(G) and E(G)

Figure 2 Possible mixture trees when k = 1, 2. (a) The only topology in 1-MCP. (b) Branch-tree and (c) path-tree topologies in 2-MCP.
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are perfect matchings on F(G) : since both A(A) and
{{gh, gt} | g is a gene in G } are perfect matchings on the
set of all gene extremities. The restriction of these per-
fect matchings to F(G) are DA(G) and E(G) . See
Figure 4-b. Thus, we have

|E(G)| = |DA(G)| =
|F(G)|

2
. (1)

To find a completion of the partial genome G we select
pairs {u, v} of free extremities from F(G) and add them as
adjacencies to A (G) . Respecting the constraints encoded
in the free-extremities graph R, we define a transformation
update(R, {u, v}) that records the effect of adding adja-
cency {u, v} to G (Figure 4). In particular, since u and v
are free vertices of G , there are paths Pu

B and Pv
B in B

with an endpoint equal to u and v, respectively. Similarly,

there are paths Pu
gr(G) and Pv

gr(G) in gr(G) having an end-

point equal to u and v, respectively. We may have Pu
B = Pv

B

or Pu
gr(G) = Pv

gr(G) . By the definition of DA(G) , Pu
B and Pv

B

are represented by blue edges bu and bv in R incident to u

and v. Similarly by the definition of E(G) , Pu
gr(G) and

Pv
gr(G) are represented by red edges ru and rv in R incident

to u and v. Adding the adjacency {u, v} to A (G) will have
the following effects on B and gr (G) :

(i) u and v are no longer free vertices.
(ii) If Pu

B 	= Pv
B then these paths merge into one path

in B ∪ {u, v}. Otherwise these paths merge to create
a cycle in B ∪{u, v}, and the number of cycles in the
breakpoint graph increases by one.

(iii) If Pu
gr(G) 	= Pv

gr(G) these paths merge into one

path in gr(G) ∪ {u, v} . Otherwise these paths merge

into a cycle in gr(G) ∪ {u, v} . In the latter case, we
should add {u, v} as an adjacency if and only if
F(G) = {u, v} . This is because adding {u, v} creates a
cycle component in gr(G) ∪ {u, v} (i.e., a circular
chromosome) and if there are other free vertices any
subsequent completion will not be uni-chromosomal.

Therefore, adding the adjacency {u, v} to A (G) will
have three corresponding effects on R: removing the
vertices u and v from R based on (i) above, identifying
bu and bv based on (ii) above, and identifying ru and rv

based on (iii) above. We denote this process of updating
R by update(R, {u, v}). Figure 4 gives an illustration of
this process.
If {u, v} is a blue edge in R, then update(R, {u, v})

increases the number of cycles in the breakpoint graph
B by one. Hence, to find a solution to 1-MCPc we want
to perform update(R, {u, v}) transformations with as
many blue edges as possible. On the other hand, adding
new adjacencies has to merge the paths in the graph
gr (G) in such a way that we end with a genome with
exactly one circular chromosome. Let Mb(R) be the
maximum possible number of update transformations
using blue edges for the graph R. The following theorem
provides the exact value of Mb(R).
Theorem 2. Suppose G is a partial genome, A is a

reference genome, and R = R(G,A) is their free-extre-
mities graph. We have

Mb(R) = Nb(R) − c(R) + 1,

where Nb(R) is the number of blue edges, and c(R) is
the number of cycles in R.
Proof. We prove the theorem by induction on Nb(R).

Suppose Nb(R) = 1. Then necessarily R consists of a
cycle of length 2 with one blue and one red edge, and c

Figure 3 The breakpoint graph B(G,A) with possible edges to be added to the adjacencies of G . Breakpoint graph B(G,A)
consisting of paths and cycles. Thick edges are in A(A) , and thin edges are in A (G) . Dashed edges are the edges that should be added to

A (G) for the paths whose first and last edges are in A(A) .
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(R) = 1. Thus, we update the graph R with the unique
(and the only possible) blue edge obtaining

Mb(R) = 1 = Nb(R) − c(R) + 1.

Now suppose Nb(R) >1. Then |E(G)| > 1 , since
|E(G)| = |DA(G)| = Nb . Suppose u, v ∈ F(G) , and
{u, v} /∈ E(G) , i.e., there is no red edge between u and v
in R. Then, we have the following three cases for u and
v: (i) u and v are from different cycles Cu and Cv in R,
(ii) u and v are connected with a blue edge in a cycle C
of R, or (iii) u and v are non-neighboring vertices in a
cycle C of R.
Let R’ = update(R, {u, v}) be the free-extremities

graph after the update. Since u and v are incident with
blue edges in R, after update(R, {u, v}) the number of
blue edges decreases by one, i.e., Nb(R’) = Nb(R) - 1.
Thus, by induction hypothesis

Mb(R′) = Nb(R′) − c(R′) + 1 = Nb(R) − c(R′). (2)

Considering the above cases we have:

(i) After update(R, {u, v}), Cu and Cv will shrink
into one cycle, and c(R’) = c(R) - 1. Thus by (2), Mb

(R’) = Nb(R) - c(R) + 1. By choosing such an edge we
can update R with Nb(R) - c(R) + 1 blue edges.
(ii) After update(R, {u, v}), C shrinks into a smaller
cycle, and c(R’) = c(R). Thus, by (2), Mb(R’) = Nb(R) -
c(R). Since {u, v} is a blue edge, we can update R with
Nb(R) - c(R) + 1 blue edges.
(iii) After update(R, {u, v}), C splits into two smaller
cycles. Thus c(R’) = c(R) + 1. Thus, by (2), Mb(R’) =
Nb(R) - c(R) - 1. So by choosing {u, v} we can update
R with Nb(R) - c(R) - 1 blue edges.

By calculations above, choosing a pair {u, v} satisfying
cases (i) or (ii) will result in a greater number of
update moves with blue edges, than choosing a pair
satisfies the case (iii). Moreover, considering pairs {u, v}
from cases (i) and (ii) gives Mb(R) = Nb(R) - c(R) + 1. □

Figure 4 Adding adjacencies to a partial genome G to solve the 1-MCPc. (a) The breakpoint graph B(G,A) . Gray edges indicate

adjacencies of G , black edges indicate adjacencies of A , and the dotted edges connect extremities of the same gene. The set of free vertices is

F(G) = {1t, 1h, 2t , 2h, 4t , 4h, 5t, 6t} . (b) The free-extremities graph R(G,A) consists of two even cycles. Blue edges are desired edges

DA(G) and red edges are excluded edges E(G) . (c) The resulting breakpoint graph after adding adjacency {1h, 4h}. (d) The resulting free-

extremities graph after update(R, {1h, 4h}). The vertices 1h and 4h are no longer free extremities and thus are removed during update(R, {1h, 4h}).
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We call a pair {u, v} (which may or may not be an edge in
R) satisfying case (i) or (ii) in the proof of Theorem 2 an
optimal adjacency. Optimal adjacencies play an important
role in finding a solution of 1-MCPc: updating the free-
extremities graph with these adjacencies results in the max-
imum number of blue edges used in update transforma-
tions. We have the following important corollary to this
theorem.
Corollary 1. Suppose G is a partial genome and A is

a reference genome. Adding any optimal adjacency to
A (G) leads to a solution for 1-MCPc. In other words,
for any optimal adjacency e, there exists a solution Gc

for 1-MCPc which includes e as an adjacency.
Proof. By Theorem 2, adding any optimal adjacency to

A (G) will allow the maximum number of blue edges in
the update process. Since each update transforma-
tion on a blue edge increases the number of cycles in
the breakpoint graph by one, a sequence of update
transformations on optimal adjacencies gives a solution
Gc to 1-MCPc. Hence, if Gc is the resulting completion
of G , we obtain the maximum number of cycles in the
breakpoint graph B(Gc,A) . □
A linear time (in number of genes) algorithm for sol-

ving 1-MCPc adds optimal adjacencies according to
cases (i) and (ii) in Theorem 2, and is shown in Algo-
rithm 1. The following corollary is an immediate conse-
quence of Corollary 1 and Algorithm 1.
Corollary 2. The 1-MCPc is solvable in linear time.
Algorithm 1: Solving 1-MCPc
Input : Partial genome G and reference genome A.
Output: A 1-completion Gc that is circular uni-chro-

mosomal and maximizes c(Gc,A) .
1 begin
2 Construct the free-extremities graph R = R(G,A) ;
3 Gc ← G ;
4 while c(R) >1 do
5 u, v ← select two vertices from different cycles in R;
6 A(Gc) ← A(Gc) ∪ {u, v} ;
7 R ← update (R, {u, v});
8 while the number of blue edges in R >1 do
9 u, v ← select two vertices connected via a blue

edge in R;
10 A(Gc) ← A(Gc) ∪ {u, v} ;
11 R ← update (R, {u, v});
12 Add the single remaining excluded edge in E(G)

to A(Gc) ;
13 Output the resulting circular uni-chromosomal

genome Gc ;
14 end

1-MCPℓ: linear uni-chromosomal completion
In this section we consider the 1-MCP with chromoso-
mal condition of a linear uni-chromosomal genome. We
refer to this restricted problem as 1-MCPℓ. We relate
solutions of 1-MCPℓ to solutions of 1-MCPc. Combined

with the results in the previous section, we derive a lin-
ear time algorithm for 1-MCPℓ.
Recall that ĉc(G,A) is the number of alternating

cycles in the breakpoint graph B(Gc,A) , for any solu-

tion Gc of 1-MCPc. Similarly, we define ĉ�(G,A) to be

the number of alternating cycles in B(G�,A) , for any
solution G� of 1-MCPℓ. The following theorem relates
the solutions of 1-MCPc to the solutions of 1-MCPℓ.
Theorem 3. Let G be a partial genome, Ac be a circu-

lar uni-chromosomal genome, and A� be a linear uni-
chromosomal genome obtained from Ac by removing
an adjacency e. Suppose Ac and A� are the reference
genomes in 1-MCPc and 1-MCPℓ, respectively. From
any solution Gc to 1-MCPc we obtain a solution G′

� for
1-MCPℓ. Also, from any solution G� to 1-MCPℓ we
obtain a solution G′

c for 1-MCPc. Moreover,
ĉc(G,Ac) = ĉ�(G,A�) + θ(e) , where

θ(e) =
{
2 if e is in a cycle in B(G,Ac),
1 otherwise.

Proof. First, suppose e is not in any cycle in the graph
B(G,Ac), and hence θ(e) = 1. Let Gc be a solution to 1-

MCPc, and let G′
� be a linear uni-chromosomal genome

obtained from Gc by removing an adjacency
f ∈ A(Gc)\A(G) , such that f and e are in the same cycle
in B(Gc,Ac) . Note that such edge f exists, since e is not
in any cycle in B(G,Ac) but it is in a cycle of B(Gc,Ac) .
See Figure 5. Both gr(Gc) and gr(Ac) are perfect match-
ings as Ac and Gc are both circular. Removing the edges
e and f from B(Gc,Ac) will decrease the number of cycles
by exactly one since e and f are in a same cycle in
B(Gc,Ac) . Hence c(G′

�,A�) = c(Gc,Ac) − 1 , and we have,

ĉc(G,Ac) − 1 = c(G′
�,A�) ≤ ĉ�(G,A�), (3)

where the last inequality follows from the definition of
ĉ�(G,A�) as the largest number of cycles in any linear
chromosomal completion of G .
Now suppose G� is a solution to 1-MCPℓ, so

|E(G�)| = |E(A�)| = 1 . Assume E(G�) = {f ′} . Let G′
c be

the circular uni-chromosomal genome obtained by add-
ing f ′ to G� . Note that there is at least one path com-
ponent in B(G�,A�) which becomes a cycle after adding
the edges f’ to A(G�) and e to A(A�) . Hence,

ĉ�(G,A�) + 1 = c(G�,A�) + 1 ≤ c(G′
c,Ac) ≤ ĉc(G,A) ,

and we have

ĉ�(G�,A�) ≤ ĉc(G,Ac) − 1. (4)

Thus by (3) and (4) we have ĉc(G,Ac) = ĉ�(G,A�) + 1 ,
which implies that c(G′

c,Ac) = ĉc(G,Ac) and

c(G′
�,A�) = ĉ�(G,A�) . This means that G′

c and G′
�

are solutions to 1-MCPc and 1-MCPℓ that are obtained
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from G� and Gc , respectively, which completes the proof
for the case θ(e) = 1.
Now suppose e is in a cycle in B(G,Ac), and thus

θ(e) = 2. Using the same argument above, we have
ĉc(G,Ac) − 2 = c(G′

�,A�) ≤ ĉ�(G,A�) since we cannot
find such edge f and the number of cycles in B(Gc,Ac)
decreases by two, when we remove an edge from Gc

(to obtain a linear genome), and e from Ac (to obtain
the genome A� ). Also, ĉ�(G,A�) + 2 ≤ ĉc(G,Ac) , as
adding the excluded edges of A� and G� will increase
the number of cycles by 2. Thus, for this case we have
ĉc(G,A) = ĉ�(G,A) + 2 □
Notice that the function θ depends only on the partial

genome G and the reference genome Ac , and not on
the completion Gc . Also, it is easy to see that θ is com-
putable in linear time (in number of genes). We have
the following corollary.
Corollary 3. The 1-MCPℓ is solvable in linear time.
Proof. Suppose G is a partial genome and A� is a lin-

ear chromosomal reference genome. Since A� is linear
and uni-chromosomal, |E(A�)| = 1 . Assume that
E(A�) = {e} . Let Ac be the circular uni-chromosomal
genome obtained by adding e to A(A�) . Using Algo-
rithm 1 we obtain a solution Gc for 1-MCPc with Ac as
the reference genome. Then by Theorem 3, we can
transform the solution Gc to a linear uni-chromosomal
completion G� in linear time in the following way: If
there exists an edge f ∈ A(Gc)\A(G) such that f and e
are in the same cycle of the breakpoint graph B(Gc,Ac) ,
i.e. θ(e) = 1, remove f from A(Gc) . Otherwise θ(e) = 2

and we remove an arbitrary edge from A(Gc) to make a
linear uni-chromosomal genome. Therefore, we obtain a
solution to 1-MCPℓ by viewing G as a partial genome
for a 1-MCPc, solving the problem, and converting the
solution Gc of 1-MCPc into a solution G� for 1-MCPℓ.
Since all of these steps are done in linear time (in num-
ber of genes), the proof is complete. □

(3 ≤ k)-MCP
In the unrestricted case of the k-MCP, the completion
of a partial genome is always possible as we can add
adjacencies and telomeres arbitrarily to the partial gen-
ome, since there is no restriction on the number and
type of chromosomes in the resulting genome. The
hardness of showing the existence of a k-completion
derives from the fact that finding a k-completion for the
partial multi-genome results in a proper edge coloring
for the genome graph of the partial multi-genome.
Let G = (V, E) be a graph. We define the edge-chro-

matic number of G, denoted c’(G), to be the minimum
number of colors required to obtain an edge-coloring of
G. For each edge-coloring of G a color class is a set of
all edges with a specific color. A color class defines a
matching in the graph since no two edges of the same
color share a vertex.
The following proposition shows the relation between

the edge-coloring of a genome graph and the edge color
classes of the corresponding breakpoint graph.
Proposition 1. If M is a multi-genome of k genomes

then χ ′(gr(M)) ≤ k .

Figure 5 Relating 1-MCPc and 1-MCPℓ. (a) The breakpoint graph B = B(G,Ac) ; black edges are A(Ac) and and gray edges are A (G) .

The edge e = {1t, 6h} is the only edge in A(Ac)\A(A�) . Since e is not in a cycle component of B, we have θ(e) = 1. (b) The breakpoint

graph B′ = B(Gc,Ac) , where Gc is a completion of G and a solution to 1-MCPc. The adjacency f is in A(Gc) and shown by a gray dashed

edge. B’ has two cycles, and removing e and f decreases the number of cycles by one.
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Proof. Suppose M is a mixture of k genomes
G1, . . . Gk . Then the breakpoint graph B = B(G1, . . . ,Gk)
can be partitioned into the sets A(Gi) of adjacencies,
and each A(Gi) can be considered as color class. So the
edges of B can be colored with k colors. Since B and
gr(M) are isomorphic, we have χ ′(gr(M)) ≤ k . □
Using the same argument as in Proposition 1 we have:
Lemma 1. If M is a partial multi-genome of k partial

genomes then χ ′(gr(M)) ≤ k .
Now, in the following theorem we show a relation

between the edge-coloring of a genome graph and the
k-completion of the corresponding partial multi-
genomes.
Theorem 4. Let M be a partial multi-genome. Then

M has an unrestricted k-completion if and only if
χ ′(gr(M)) ≤ k , for any positive integer k.
Proof. (⇒) If M has a k completion, then it can be

considered as a partial multi-genome of k genomes.
Then by Lemma 1 we have χ ′(gr(M)) ≤ k .
(⇐) Now assume that χ ′(gr(M)) ≤ k . Hence, we can

color the edges of gr(M) with k colors. If C1, . . ., Ck are

the color classes of G, we have �k
i=1Ci = E(G) . Each Ci is a

matching in the graph gr(M) , and is a set of adjacencies
among the gene extremities. So we can define a partial
genome G′

i by adjacencies A(G′
i) = Ci . The color classes

partition the edges of gr(M) into k matchings, and we

have M = �k
i=1G′

i . Since there is no restriction on the

completions, taking any completion Gi for each G′
i results

in a a k-completion Mk = {G1, . . . Gk} for M ; because

M = �k
i=1G′

i ⊆ �k
i=1Gi . □

Now, by Theorem 4 and using the following two clas-
sic theorems, we show that deciding whether there
exists a valid solution to a (k ≥ 3)-MCP is NP-complete.
For a graph G let Δ(G) be the maximum degree of G.
Theorem 5 (Vizing [14]). If G is a simple graph, c’(G) =

Δ(G) or Δ(G) + 1.
Theorem 6 (Holyler [15]). For a graph G, deciding

whether c’(G) = Δ(G) or Δ(G) + 1 is NP-complete, if Δ
(G) ≥ 3.
Corollary 4. If k ≥ 3, deciding whether there exists a

valid solution to the unrestricted k-MCP is NP-
complete.
Proof. In order to prove this corollary we reduce the

edge-coloring problem to k-MCP. Suppose G = (V, E) is a
simple graph and k = Δ(G) ≥ 3. If |V | is not even, add an
isolated vertex so that the number of vertices in G is 2n
for some positive integer n. Consider these 2n vertices as
gene extremities of a set of n genes. Now, G defines a par-
tial multi-genome M on these n genes, since the k-MCP
is unrestricted and any graph can be considered as a par-
tial multi-genome with no restriction on the chromosomal

structure of its partial genomes. If there is a polynomial
algorithm for k-MCP, we can input to this algorithm M
as the partial multi-genome, along with an arbitrary dis-
tance function j and a healthy reference A . First, suppose
the algorithm gives a valid output. Since the algorithm is
polynomial, we can find a k-completion for M in polyno-
mial time, and by Theorem 4, we can find an edge color-
ing of G with k colors in polynomial time.This implies that
the c’(G) ≤ k. Now if the algorithm does not give a valid
output, by Theorem 4 we have c’(G) > k. This implies that
the k-MCP is NP-complete, since the genome graph of a
partial multi-genome is always a multigraph and the class
of simple graphs is a subset of the class of multigraphs. □
Note that in Corollary 4 we only considered the

unrestricted version of k-MCP. This allows us to assume
that for each (multi-) graph G there exists a partial
multi-genome M such that G and gr(M) are iso-
morphic.Thus, if M̄ = {gr(M′) | for all partial multi-
genomes M′ } and if Ḡ is the set of all multi-graphs,
then M̄ = Ḡ . However, one can restrict the k-MCP by
taking a set of chromosomal conditions. Consequently
we may have M̄ � Ḡ such that the new restricted k-
MCP is polynomially tractable for all partial multi-gen-
omes (whose genome graph is in M̄ ).
Corollary 5. If k ≥ 3, then the unrestricted k-MCP is

NP-complete.
Proof. Since in solving a k-MCP we need to find a k-

completion for its partial multi-genome, by Corollary 4
the proof is complete. □

2-MCP
In this section, we prove that the unrestricted 2-MCP,
and the restricted 2-MCP where all chromosomes are
circular (i.e., C = {circular} ), are NP-complete for DCJ
distance. The NP-completeness of the unrestricted 2-
MCP is done by a reduction from MAX 3-AND pro-
blem. The MAX 3-AND is a satisfiability problem,
where given a set of conjunctions, each with 3 literals,
the goal is to determine an assignment of Boolean value
to each variable that maximizes the number of satisfied
conjunctions. Note that in 2-MCP there are only two
possible topologies for the mixture tree: the branch-tree
and path-tree (Figure 2-b, c).
Theorem 7. The unrestricted 2-MCP with DCJ dis-

tance is NP-complete.
In order to provide the proof of this theorem, we need

the following lemmas.
Lemma 2. Suppose M is a partial multi-genome

whose genome graph, gr(M) , consists of m cycles C1, .
. ., Cm with even lengths, and A is a reference genome
which consists of ℓ edges (i.e., it has ℓ adjacencies).
Assume that there are ℓ’ cycles among the cycles in
gr(M) such that no edge in A is connected to any of
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their vertices. If ℓ’ >2ℓ then in every solution to the 2-
MCP, the optimal mixture tree is a path-tree.
Proof. Note that in 2-MCP there are only two possible

topologies for the mixture tree: the branch-tree and
path-tree (Figure 2-b, c). Since the degree of each vertex
in gr(M) is two, if we partition the edges of gr(M)
into two perfect matchings G′

1 and G′
2 . Therefore, for

any 2-completion M2 = {G1,G2} we have G′
1 = G1 and

G′
2 = G2 , since G1 and G2 are maximal (and circular)

and we cannot add any edge to them. Also, for each

Gi(i = 1, 2) we have Gi = ∪m
j=1Mij , where Mij is a perfect

matching on vertices of Cj. Obviously, c(G1,G2) = m .
We have c(A,Gi) ≤ � for i = 1, 2, since A has ℓ edges
and each of them can be in at most one cycle in
B(Gi,A) . Therefore,

c(A,G1) + c(G1,G2) ≥ c(G1,G2) = m ≥ �′ > 2�

≥ c(A,G1) + c(A,G2),

which shows that the dDCJ-value of a path tree is
smaller than the dDCJ -value of a branch tree, and com-
pletes the proof. □
Lemma 3. Any MAX 3-SAT instance is reducible to a

MAX 3-AND instance. Moreover, MAX 3-AND is NP-
complete.
Proof. Let Δ = ℓ1 V ℓ2 V ℓ3 be a clause (disjunction) of

three literals. Define

L (�) = {(t1 ∧ t2 ∧ t3)|1 ≤ i ≤ 3, ti ∈ {�i, �̄i}, (t1, t2, t3) 	= (�̄1, �̄2, �̄3)}.

By using basic Boolean rules we have Δ ⇔ VSÎℓ(Δ) S.
Now, suppose I is a MAX 3-SAT instance which has m

clauses Δ1, . . ., Δm. Let I ′ be an instance of MAX 3-AND
which consists of all the conjunctions in ∪mL

j=1(�j). Since
for every assignment to the variables at most one conjunc-
tion in L(Δj), 1 ≤ j ≤ m, is satisfied and this happens if and
only if Δj is satisfied, then every optimal assignment to the
variables in I will be also an optimal assignment to the
variables in I . Therefore, MAX 3-SAT is reducible to
MAX 3-AND, which implies that MAX 3-AND is NP-
complete, as MAX 3-SAT is NP-complete [16]. □
Now, consider an instance I of the MAX 3-AND

problem. We show how to represent I by a genome

graph and a reference genome, to make a reduction
from MAX 3-AND to 2-MCP. Suppose we represent a
variable x with a cycle C of even length, which we will
call a variable-cycle (see Figure 6-a). This cycle has
exactly two perfect matchings. We label one of these the
true matching, T(x), and the other one the false match-
ing, F(x) (see Figure 6-b, c). We represent an assignment
to a variable by choosing one of the matchings T(x) and
F(x) and remove the edges in the other matching (see
Figure 7).
Let ℓ(x1), ℓ(x2), ℓ(x3) be three literals of variables x1,

x2, x3, and Δ = (ℓ(x1) Λ ℓ(x2) Λ ℓ(x3)) be a conjunction
in I . A conjunction-cycle of Δ is a cycle which is
obtained as follows:

1. For each i Î {1, 2, 3} consider an edge in T(xi) if
ℓ(xi) = xi. If �(xi) = x̄i take an edge in F(xi).
2. Add three new edges, called conjunction-edges, to
the three edges we chose in the previous step, and
build a cycle of length 6. This cycle is a conjunction-
cycle of Δ.

It is easy to see that an assignment a to xi’s satisfy the
conjunction Δ if and only if the corresponding matching
assignment to a keeps all the edges in the conjunction-
cycle of Δ. We call a representation of a MAX 3-AND
instance I with cycles and conjunction-cycles a graphi-
cal representation of I .
If the literals of a variable appear in at most t con-

junctions, and the variable-cycles have length at least
4t, then by choosing the edges of conjunction-cycles
properly, we have a graphical representation of a
MAX 3-AND instance, where no edge in a variable-
cycle is incident with two conjunction edges from dif-
ferent conjunction-cycles. This implies the following
lemma:
Lemma 4. For each MAX 3-AND instance I there

exists a graphical representation Ig such that any as-
signments to the variables in I which maximizes the
number of satisfied conjunctions, induces a matching
assignment that maximizes the number of conjunction-
cycles, and vice versa.
Combining Lemmas 2-4 gives the proof of Theorem 7.

Figure 6 Representing variables with cycles. (a) A variable represented by a cycle, (b) a true matching, and (b) a false matching.
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Proof of Theorem 7. Since the MAX 3-AND is NP-com-
plete by Lemma 3, it suffices to reduce the MAX 3-AND
problem to the 2-MCP. Suppose I is a MAX 3-AND
instance. Assume I has m conjunctions. We can add 3m
+ 1 new conjunctions δ1, . . ., δ3m+1 where each δi consists
of a new single variable xδi; obviously in any optimal
assignment the value of all the xδi’s should be true.
Now by Lemma 4, there is a graphical representation Ig
such that finding an optimal assignment in I is equiva-
lent to finding a matching for each variable-cycle such
that the number of preserved conjunction-cycles are
maximized. Note that there are 3m conjunction-edges
and 3m + 1 variable-cycles which are not connected to
any conjunction-edge. Now, consider all the vertices in
Ig as gene extremities, and all the edges in the variable-
cycles as the adjacencies of a partial multi-genome G.
Also, consider all the conjunction-edges as the adjacen-
cies of a reference healthy genome A . In the 2-MCP
problem with partial multi-genome G and reference
healthy genome A , the optimal tree is forced to be a
path-tree by Lemma 2 (Figure 2). Therefore, in the opti-
mal solution of this 2-MCP, G1 should be a genome such
that the number of cycles in the breakpoint graph
B(G1,A) is maximized, i.e., the number of conjunction-
cycles are maximized. Since G1 is a union of perfect
matchings of the variable-cycles (see the proof of Lemma
2) it induces an assignment for the variables which maxi-
mizes the number satisfied conjunctions, and this com-
pletes the proof. □
We end this section by considering the restricted version

of k-MCP, where the chromosomal condition set is {circu-
lar}, i.e. all genomes have all circular chromosomes. We
denote this restricted version by k-MCPc, and the unrest-
ricted version of k-MCP by k-MCP∅. If opt(k-MCPc) and
opt(k-MCP∅) are the dDCJ-value of a solution to k-MCPc
and k-MCP∅, respectively, then:

Theorem 8. For the k-MCPc and k-MCP∅ versions of
k-MCP with DCJ distance we have

opt(k − MCPc) = opt (k − MCP∅) .

Proof. First note that each solution to k-MCPc is also a
solution of k-MCP∅, since there is no restriction in k-
MCP. Hence, opt(k-MCPc) ≥ opt(k-MCP∅). Second, for
each solution to k-MCP∅ if the resulting genomes are
not circular we can add new edges to the genomes and
make them circular. By adding the new edges the num-
ber of cycles in the breakpoint graph does not decrease
which implies that the dDCJ-value of the newly obtained
genomes is not larger than opt(k-MCP∅). Therefore,
these circular genomes form a solution of k-MCP∅. So
opt(k-MCPc) ≤ opt(k-MCP∅) completing the proof. □
Combining this theorem and Theorem 7 we have
Corollary 6. If k ≥ 2, then k-MCPc with DCJ distance

is NP-complete.

Discussion and conclusion
In this paper we introduced the k-Minimum Completion
Problem (k-MCP) motivated by the type of data pro-
duced in current cancer genome sequencing studies. We
showed the following results. (1) A linear time algorithm
for the unrestricted 1-MCP; (2) a linear time algorithm
for the restricted versions 1-MCP where the genomes
are circular or linear; i.e. the chromosomal condition set
C is {circular, uni-chromosomal} or C is {linear, uni-
chromosomal}; (3) the unrestricted k-MCP is NP-com-
plete for any distance when k ≥ 3; and (4) the 2-MCP
with DCJ distance is NP-complete in the unrestricted
version and with the condition that all chromosomes
are circular, i.e. C = {circular} . These results lay the
foundation for future algorithmic studies of the k-MCP
and the application of these algorithms to real cancer
sequencing data.

Figure 7 Representing conjunctions with cycles. (a) Three cycles representing the literals x̄ , ȳ , and z, and the conjunction edges (bold) for a

conjunction � = x̄ ∧ ȳ ∧ z . (b) For x = y = false and z = true we obtain the conjunction-cycle Δ of length 6. (c) Any other assignment

(e.g., x = true) destroys the conjunction cycle.

Mahmoody et al. BMC Bioinformatics 2012, 13(Suppl 19):S9
http://www.biomedcentral.com/1471-2105/13/S19/S9

Page 12 of 13



There are numerous further directions to pursue. As
noted in the introduction, the model described in this
paper does not consider all the complexities of cancer
genome sequencing: most importantly copy number
aberrations (duplications and deletions) and errors in
the measured adjacencies are important features of can-
cer genome sequencing and should be addressed.
To handle errors, one might consider weighted ver-

sions of the k-MCP where adjacencies have a weight cor-
responding to the confidence in the measurement.
Regarding the current model, further work is needed on
different chromosomal conditions, genomic distances, or
other constraints on the relationships between the gen-
omes in the mixture. For example, the case of linear
chromosomes demands further attention, as human
chromosomes are linear, although circular chromosomes
have been observed in cancer [17]. Similarly, one may
impose an upper bound on the number of chromosomes.
One may also place restrictions on the structure of the
mixture tree.
Another direction is to derive approximation algo-

rithms. In the k-MCP we aim to minimize distance over
all possible k-completion and mixture trees simulta-
neously. However, by separating the completion and dis-
tance optimization steps, one may employ techniques
that have developed for other problems. For example,
one may try to first complete the partial multi-genomes
using some clustering techniques, as have been employed
in metagenomic studies [18]. With complete genomes,
one could then try to find optimal mixture trees rooted
at the reference genome. Depending on the allowed
structure of the mixture tree, techniques from genome
rearrangement phylogeny problems may be employed.
For example, in the case of 2-MCP, if the complete gen-
omes are the leaves of the mixture tree, then the problem
becomes the median problem (with the reference genome
genome as the third genome) [5,13]. Alternatively, if the
genomes are the vertices of the mixture tree, then the
tree construction problem becomes the problem of find-
ing a minimum spanning tree, which is in generally
easier. In between these extremes, where some of the
genomes in the mixture are the leaves and some are
intermediate nodes (ancestors), the problem becomes a
Steiner tree problem. In the cancer application, any of
these cases might provide useful approximations, as the
process of clonal evolution of cancer [1] might mean that
cells at intermediate stages of cancer progression remain
present in the tumor.
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