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Abstract

Background: The computational prediction of Transcription Factor Binding Sites (TFBS) remains a challenge due to
their short length and low information content. Comparative genomics approaches that simultaneously consider
several related species and favor sites that have been conserved throughout evolution improve the accuracy
(specificity) of the predictions but are limited due to a phenomenon called binding site turnover, where sequence
evolution causes one TFBS to replace another in the same region. In parallel to this development, an increasing
number of mammalian genomes are now sequenced and it is becoming possible to infer, to a surprisingly high
degree of accuracy, ancestral mammalian sequences.

Results: We propose a TFBS prediction approach that makes use of the availability of inferred ancestral
mammalian genomes to improve its accuracy. This method aims to identify binding loci, which are regions of a
few hundred base pairs that have preserved their potential to bind a given transcription factor over evolutionary
time. After proposing a neutral evolutionary model of predicted TFBS counts in a DNA region of a given length,
we use it to identify regions that have preserved the number of predicted TFBS they contain to an unexpected
degree given their divergence. The approach is applied to human chromosome 1 and shows significant gains in
accuracy as compared to both existing single-species and multi-species TFBS prediction approaches, in particular
for transcription factors that are subject to high turnover rates.

Availability: The source code and predictions made by the program are available at http://www.cs.mcgill.ca/
~blanchem/bindingLoci.

Introduction
With the rapid increase in the number of fully or partially
sequenced genomes [1] comes a wealth of evolutionary
information that begs to be analyzed and investigated. The
complete genomes of several groups of relatively closely
related species (such as mammals [2], fruit flies [3], or
yeasts [4]) have recently been compared to produce a
mine of evolutionary information that has then been used
to improve the accuracy of predictions of various types of

functional elements of extant genomes such as protein-
coding genes, RNA genes, transcriptional regulatory
elements, and many others (reviewed in [5]). In this paper,
we take advantage of another recent advance of compara-
tive genomics, i.e. the high accuracy inference of nearly
complete ancestral mammalian DNA sequences, to design
a new approach for the identification of Transcription
Factor Binding Sites (TFBS) in the human genome.

Ancestral genome inference
An interesting prospect linked to the availability of a
large number of extant genomes is the possibility of com-
putationally inferring ancestral genomes. Assuming the
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availability of a set of extant genomes related to each
other via a known phylogenetic tree, work has been done
in that direction at different levels of resolution. First, the
community has used high-level genome representations
based on gene arrangements and focussed on the infer-
ence of ancestral gene orders and the history of rearran-
gements that has led to a given set of extant genomes
(see for example [6-8], reviewed in [9,10]). Challenges at
this level involve the computational complexity of most
problem formulations, the difficulty to properly account
for and weigh all types of evolutionary events possible,
and the problem of properly identifying orthologs.
At a finer scale, which is the one we consider in this

paper, studies have focussed on DNA sequence evolution
at the level of substitutions, insertions, and deletions, and
have asked to infer a set of ancestral sequences that are
most likely (or most parsimonious) given a set of extant,
collinear (non-rearranged) sequences. This inference pro-
blem is also challenging due to the difficulty of correctly
aligning these sometimes highly divergent sequences, the
computational complexity of maximum likelihood indel
inference, etc. However, the significant amount of work
invested in whole-genome multiple sequence alignment
[11-13] and the set of exact and heuristic algorithms
recently developed to infer ancestral DNA sequences
from these alignments [14-18] now allow the inference of
large sections of syntenic regions with good accuracy.
The eutherian mammals phylum is a particularly inter-

esting target for ancestral genome inference, for several
reasons. First, it includes our own human genome, so the
study of ancestral genomes may shed some light on the
function of various parts of our own genome. Second,
due to the rapid radiation of a large number of eutherian
lineages in a relatively short amount of time (the mam-
malian radiation) [19], certain early-eutherian mammal
genomes can be inferred to a surprisingly high degree of
accuracy. For example, Blanchette et al. showed using
simulated sequence evolution that most of the euchro-
matic genome of the Boreoeutherian ancestor (the ances-
tor of all eutherian mammals except Afrotherians (e.g.
elephants) and Xenarthans (e.g. sloths and armadillos))
can be inferred with 98-99% base-by-base accuracy from
extant genome from each of the main lineages, most of
which have now been sequenced [20]. Improved algo-
rithms have since then been proposed [14-16] and may
yield even higher accuracy.

Identification of transcription factor binding sites
Transcription Factors (TFs) are proteins that bind specific
short pieces of DNA (typically 6-15bp) and contribute to
regulating the expression of one or more nearby genes.
When sufficiently many binding sites for a given TF are
known, the TF’s sequence affinity can be represented
using a position weight matrix (PWM) or more complex

models [21], which can then be used to scan a given
sequence in order to identify new candidate sites. How-
ever, the computational prediction of the set of binding
sites for a given transcription factor remains very challen-
ging, in large part because the affinity to the DNA binding
site is only one of the many factors influencing the binding
of a TF, while others, such as chromatin conformation
[22], nucleosome positioning [23], and the presence/
absence of co-factors [24], are much more difficult to pre-
dict and integrate. The consequence of this lack of infor-
mation is a very low prediction specificity, with generally
95-99% of sites matching a PWM being false positives (i.e.
being never bound by the TF) [21].
Recent high-throughput technologies such as ChIP-Chip

[25] and ChIP-Seq [26] have eased the identification of
genomic regions bound by a given TF. These technologies
have allowed the genome-wide mapping of the binding
sites of a good number of TFs in various species and cell
types [27]. However, despite their rapidly decreasing cost,
they remain only part of the solution: as TFBS vary signifi-
cantly from cell type to cell type and depending on the
conditions (due to changes in chromatin state and co-fac-
tors), the number of experiments that would be required
to produce a comprehensive map of all existing binding
sites for a given TF would be unmanageable. In addition,
just like any other approaches, false-positives and false-
negatives remain an issue, especially in highly repetitive
regions of the genome [28]. In addition, the binding of a
TF to a given site does not mean that this event has any
consequences on gene expression. There thus remains a
need for an improved computational TFBS predictor that
would be cell-type independent and would focus on sites
that actually affect gene expression, therefore comple-
menting experimental data.
Phylogenetic footprinting is an important family of

approaches aiming to improve the accuracy of computa-
tional TFBS prediction by making use of comparative
genomics approaches [29-31]. The principle is simple:
functional sites (i.e. true positive PWM hits) should tend
to be more conserved across species than non-functional
sites (i.e. false positive PWM hits), thanks to natural
selection. Predictions based on the PWM scan of a single
genome (e.g. the human genome) could in principle be
improved by comparing a given region to its orthologs in
other species, identifying regions whose mutation rates
have been lower than expected for neutrally evolving
sites, and focussing on PWM matches located in those
regions. This type of approaches has indeed shown very
good success [31], but accuracy has been limited by an
evolutionary process called binding site turnover [32,33].
Because TFBS are very short stretches of DNA and
because many TFs are fairly permissive in terms of the
DNA sequence they bind to, a small number of muta-
tions (substitutions or indels) can easily turn an unbound
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sequence into one that can be bound by a given TF.
Because the function of TFBSs is often not highly depen-
dent on their exact position w.r.t the regulated gene
(within, say, a hundred base pairs), a newly created site
that would be sufficiently close to an existing functional
one may be able to regulate the target gene just as effec-
tively as the original site.
The resulting pair of TFBS is thus redundant, so that a

mutation hitting one or the other of the binding sites and
destroying its ability to bind the TF would not be strongly
deleterious, due to the presence of the other copy. The
end result, though, is a sequence where neither site seems
well conserved when compared to its orthologous regions
in other species. The consequence is that, although func-
tion (in the form of the ability of the broad locus to bind
the TF) might have been preserved throughout evolution-
ary time, the mechanisms by which it is implemented may
have changed. The shorter and weaker the TFBS signal,
the higher the turnover rate. Phylogenetic footprinting
approaches not accounting for this phenomenon would
thus be at risk of missing such sites and although a few
approaches have indeed been proposed to deal with this
problem [30], they have not been widely adopted.

Paper outline
In this paper, we describe an approach that makes use of
our ability to accurately infer ancestral genomic sequences
in order to identify binding loci, i.e. regions of a few hun-
dred base pairs that have preserved the ability to be bound
by a given TF, while allowing for turnover within the
region. We start by describing briefly our approach to
ancestral genome inference. Then, we present a simple
model of neutral sequence evolution where the number of
predicted transcription binding sites in a given region
changes over time due to sequence drift. Based on this
model, we present an approach designed to assess the sta-
tistical significance of the level of TFBS content conserva-
tion of a given putative binding locus. Our approach is
evaluated on a set of experimentally determined binding
sites identified using ChIP-Seq (from the ENCODE pro-
ject), and we show that it yields significant gains in predic-
tion accuracy as compared to competing approaches,
especially in the case of TFs that are subject to high rates
of binding site turnover.

Methods
Ancestral genomic sequence inference
Ancestral mammalian genomic sequences were inferred as
follows. A whole-genome multiple sequence alignment
was first obtained from the UCSC genome browser [34].
This alignment, which includes the complete genomes of
33 mammals, was built using the blastZ/Multiz pipeline
[35,36]. It is divided into a large number of syntenic blocks
within which no rearrangements, duplications, or large

insertions are expected to have happened. For each align-
ment block, ancestral sequences (for the phylogenetic tree
of mammals used in [34]) were inferred at each internal
node using the Ancestors 1.1 program [16], which infers
the maximum likelihood ancestral sequences based on an
evolutionary model including context-dependent substitu-
tions, as well as insertions and deletions.
Because of the computational effort required to infer

ancestral sequences, we limited our analysis to human
chromosome 1 (with its corresponding fragments in other
mammals), which consists of approximately 250 Mb of
sequence in each species and ancestor, and constitutes
roughly 8% of the human genome. Scaling up to the whole
genome offers no particular challenge other than running
time.

Transcription factor binding site predictions
We used a set of 898 transcription factor PWMs available
from either Transfac (version 9.2) [37] or Jaspar [38] to
predict putative TFBS in each of the extant and predicted
ancestral sequences. Scoring was performed using a simple
log-likelihood ratio (LLR) approach [21]. For each TF, we
tried to select a LLR score threshold so that most genuine
sites are predicted as positive. To this end, for each TF, we
randomly generated a set of 1000 sequences based on the
probabilities defined by the PWM, calculated the LLR
score for each sequence, and chose a LLR threshold that
corresponds to the 10th percentile of the LLR scores (i.e.
900 of the sequences have a LLR score that exceed the
threshold). The number of predicted binding sites for each
TF varies from roughly 60 per kb for PWMs with low
information content such as C/EBP (M00770) to 0.04 per
kb for PWMs with high information content such as
ELK4, with a median close to 2 per kb (obviously, the
number of sites predicted for a given TF can be reduced
by using a stricter score threshold). As previously men-
tioned, the vast majority of these predictions are expected
to be false-positives, and the goal of the method proposed
in this paper is to identify those that are the most likely to
be functional.

A neutral model of TFBS content evolution
We start by presenting a simple evolutionary model that
describes how the number of predicted TFBS in a given
non-functional, neutrally evolving genomic DNA sequence
evolves over time. Consider a neutral evolution model M
that defines the probability of sequence s(t) to evolve into
sequence s(t + δ) after time δ. An ideal sequence evolution
model should include not only substitutions, but also
insertions, deletions, and other higher-level mutations
such as duplications and genome rearrangements.
Now, consider a (deterministic) TFBS prediction algo-

rithmA that takes as input a DNA sequence s and a TF T,
and identifies putative binding sites for T in s. For
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example,A may scan s (on both strands) with a PWM for
T and report every site whose log-likelihood score exceeds
an appropriately chosen threshold. Let BA (s, T) be the
number of sites predicted by A in sequence s.
We are interested in the following question: if

algorithm A predicts a binding sites for TF T
in sequence s(t), what is the probability that sequence
s(t + δ) will contain b predicted binding sites, i.e.
Pr

[
BA (s (t + δ) ,T) = b|BA (s (t) ,T)) = a]? Note that we

only consider here the number of predicted binding
sites for T, not their location or orientation. Our con-
cern is the rate at which new binding sites are created
and existing binding sites are lost, although we will
not model each separately, but only their combined
effects on the TFBS count. We emphasize that we are
concerned with the change in predicted TFBS count in
a random sequence neutrally evolving into another
sequence. All TFBS predictions considered are there-
fore false-positives, and thus we model false-positive
TFBS counts in neutrally evolving sequences. Devia-
tions from this null model will suggest functionality.
Given a fully specified evolutionary model M, the

desired probability Pr
[
BA (s (t + δ) ,T) = b|BA (s (t) ,T)) = a]

could in principle be obtained by summing over the infi-
nitely many ancestral sequences s(t) and evolutionary sce-
narios leading to the appropriate number of predicted
sites. Instead of analytically calculating this complex
expression (whose complexity depends on that of the evo-
lutionary model M and the binding site predictor A), we
estimate these probabilities empirically from actual
sequence alignment data. Specifically, for each TF T, we
consider a set of 1.2 million non-overlapping 200-bp win-
dows taken from the non-coding portion of human chro-
mosome 1, together with their orthologous and inferred
ancestral sequences from placental mammals. Let us
denote by Gu(W) the portion of the genome at node u of
the phylogenetic tree that is orthologous to region W of
the human genome. For each window position W and
each pair of adjacent nodes (p(u), u) in the phylogenetic
tree (with p(u) being the parent of u), we first estimate the
rate of sequence divergence between Gp(u)(W) and Gu(W)
based on percent identity of the two aligned sequences,
from which divergence estimate l(Gp(u)(W), Gu(W)) is
obtained. We then apply TFBS prediction algorithm A to
both Gp(u)(W) and Gu(W), to obtain B(Gp(u)(W), T ) and B
(Gu(W), T). Finally, the desired probability is empirically
estimated as

Pr
[
BA (s (t + δ) ,T) = b|BA (s (t) ,T) = a

]
=

∣∣{W, u|λ (
Gp(u) (W) ,Gu (W)

)
= λ,B

(
Gp(u) (W) ,T

)
= a,B (Gu (W) ,T) = b

}∣∣
∣∣{W, u|λ (

Gp(u) (W) ,Gu (W)
)
= λ,B

(
Gp(u) (W)

)
= a

}
)
∣∣ ,

where all possible non-coding windows W and tree
branches are considered. Ne note that for practical rea-
sons, divergence estimates are rounded to the nearest

percentage point before testing for equality. A small
fraction of these windows (probably less than 1%) will
actually contain functional binding sites for T and will
slightly taint our neutral model. However, this fraction
is sufficiently small that its impact is very minor.
Furthermore, the bias caused by the presence of func-
tional sites will only result in our final predictions being
slightly over-conservative.
In addition to its relative simplicity, this empirical esti-

mation has a number of advantages. First, it does not
require the explicit specification of an evolutionary
model, although one is required for the inference of
ancestral genomes. Second, as it is based on the actual
multiple sequence alignment used later on for TFBS
prediction, it naturally includes variation due to misa-
lignments and incorrect ancestral sequence prediction.

Binding loci prediction
Equipped with a neutral model of predicted TFBS con-
tent, we can now consider a particular region of the
human genome (on chromosome 1), together with its
aligned orthologous and ancestral sequences, and ask
whether, in that region, the TFBS count for a given TF T
seems to evolve under the neutral model, which would
suggest that the predicted sites are false-positives, or
whether there is evidence for selection to preserve the
number of binding sites over time, which would be an
indication that those predicted sites may be functional.
We considered and tested several alternatives for the pre-
cise form of this hypothesis test before settling on the fol-
lowing. A key question was whether (1) this analysis
should be conditioned on the observed degree of
sequence similarity of the region under consideration
along a particular branch, or whether (2) the level of
sequence divergence associated with a given branch of
the tree should be considered fixed. In the latter case (2),
a region with an extremely low sequence divergence (e.g.
a sequence that would be 100% conserved in all ortholo-
gous and ancestral sequences) would exhibit perfect con-
servation of TFBS content for every predicted sites it
contains. This may be appropriate if the sequence con-
servation is indeed due to selective pressure to maintain
these sites. However, if the region is conserved for other
reasons (e.g. it is an unannotated non-coding RNA), this
would result in a large number of TFBS false-positive
predictions. In the former case (1), the observed sequence
conservation between pairs of sequences is considered as
given, and the surprise associated with the degree of con-
servation of predicted TFBS is conditioned on it.
Sequences with perfect sequence conservation can thus
result in no surprising TFBS conservation. Only some-
what divergent sequences can yield predictions. This is in
some sense similar to the approach taken for RNA sec-
ondary structure prediction based on comparative
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genomics [39], where it is the presence of compensatory
mutations that results in predictive power. We elected to
use approach (1) as it is likely to result in fewer false
positive predictions. The drawbacks are discussed in
Results.
Given a region W of the human genome and orthologs

and ancestral sequences, we calculate a score based on
the p-values of the level of predicted TFBS count conser-
vation along each branch of the tree. For every tree node
u (other than the root) with parent p(u), we obtain the
conditional p-value

pvalue (W,T, u) =

Pr[BA (s (t + δ) ,T) − BA (s (t) ,T) ≥ BA
(
Gp(u) (W) ,T

) − BA (Gu (W) ,T) |
BA (s (t) ,T) = BA

(
Gp(u) (W) ,T

)
, δ = λ

(
Gp(u) (W) ,Gu (G)

)
],

which measures the probability that a random
sequence containing B(Gp(u)(W), T) predicted binding
sites and evolving neutrally for δ = l(Gp(u)(W), Gu(W))
time will have preserved its number of binding sites to at
least the same degree as has been observed in the actual
pair of sequences. Tree branches with small p-values cor-
respond to branches where the observed variation in
TFBS counts is lower than expected for neutrally evol-
ving sequences, suggesting that natural selection may be
at work preserving the predicted sites. However, as
shown in Figure 1, p-values obtained for individual tree
branches are rarely sufficiently small to reliably suggest
deviations from the neutral evolution model. Instead, we
combine the p-values obtained over the branches of the
whole tree to obtain a global binding locus score for the
region W and TF T under consideration:

Binding Locus Score (W,T) = −
∑

u∈tree
log

(
pvalue (W,T, u)

)
.

Finally, for each TF, the human genome (together with
its aligned orthologs and ancestors) is scanned using a

sliding window of size 200 (with 20bp offsets) and binding
locus scores are recorded. The size of the window was
selected to optimize overall agreement with ChIP-Seq
experimental data, although it is possible that different
TFs would be best predicted using different window sizes.
A given window W is deemed interesting for TF T if its
binding locus score is unlikely to have arisen by chance
under the null model, which is evaluated by computing
the convolution of the (discrete) p-value distributions
(under the null) from each branch.

Results
Gains and losses of predicted TFBS in evolving sequences
We first assess the tendency for the number of pre-
dicted binding sites for a given TF to diverge as a func-
tion of evolutionary time. As sequences diverge more
and more, the distribution of the number of predicted
TFBS in the neutrally evolving descendant sequence
tends toward its stationary distribution, which, for
most TFs, means that with fairly high probability the
window will contain no site at all. This tendency to
lose binding sites is accelerated for TFs with long,
highly specific PWMs, which are easily destroyed by
point mutations or indels but rarely created by them.
Figure 1 (left) illustrates this phenomenon for the SRF
TF (Transfac M01007), which has a 9-bp, information
rich PWM (information content = 15.1 bits), for the
example where the parent sequence contains two bind-
ing sites. Loss of binding sites is slower and TFBS
count typically do not reach as low levels for TFs with
more degenerate PWMs, as new matches to those
PWMs are more likely to arise through random muta-
tions. This is illustrated in Figure 1 for GATA-1
(Transfac M00347), a TF with a relatively weak PWM
(information content = 12.1 bits).

Figure 1 Examples of the distribution of the number of predicted TFBS in the descendant of a 200-bp ancestral sequence containing
two predicted sites that diverge for various durations, for a TF with a relatively high information content matrix (SRF; left) and one
with a relatively low information content (GATA-1; right). At low divergence values, the descendant sequence still contains two sites with
high probability. As the level of divergence increases, the distribution of the number of predicted sites converges toward a different stationary
distribution for each TF.
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Accuracy of binding loci prediction
Transcription factor binding loci were predicted in
human chromosome 1, for each of 898 transcription fac-
tors for which a PWM was available in Transfac [37] or
Jaspar [38], as described in Methods. For each TF, geno-
mic regions of 200-bp were ranked based on their bind-
ing locus score. For a given threshold of binding locus
score, our algorithm predicts as functional TFBS all
PWM hits located within loci of sufficient score. Addi-
tional file 1 shows an example of one of the strongest
predicted binding loci for the GATA-1 TF, which is con-
firmed by ChIP-Seq data (see below), but which does not
show a high degree of sequence conservation due to a
significant amount of TFBS turnover. Binding loci for
each TF are available at http://www.cs.mcgill.ca/~blan-
chem/bindingLoci.
We compared our TFBS prediction approach to two

other simpler approaches. The first, that we call the sin-
gle-genome PWM scanning, simply consist in scanning
the human genome with a PWM and identifying sites
whose log-likelihood score exceeds a given threshold.
The second, called PWM scanning of conserved regions,
posits that functional sites are more likely to be found
within genomic regions that are exhibiting a high degree
of sequence conservation between mammals. Siepel et al.
have developed PhastCons [40], a tool that, from a given
whole-genome multiple alignment, identifies genomic
regions whose reduced substitution rate suggests that
they may be under selection. The set of conserved
regions identified by PhastCons on the basis of the align-
ment of eutherian mammal genomes used in this study
consists of 335,083 regions of approximately 30bp on
average, covering 4.7% of human chromosome 1. These
regions have been shown to be strongly enriched for cis-
regulatory elements [27,34,40]. The set of predictions
made by the PWM scanning of conserved regions
approach is the restriction of the single-genome PWM
predictions to the set of conserved regions identified by
PhastCons.
To evaluate the ability of our approach to identify func-

tional TFBSs, we used a collection of binding loci identi-
fied by ChIP-Seq through the ENCODE project [27].
ChIP-Seq identifies regions bound by a given TF but lacks
the resolution to pinpoint exactly each TFBS. Instead, it
identifies regions of 100-300bp that are bound by a given
TF in the sample under consideration. ChIP-Seq data
were available for 35 TFs (in a handful of cell types) for
which PWMs were available (data produced by the
Richard Myers Lab, available from the UCSC Genome
Browser [41]). Most TFs have between 500 and 5000
bound regions on chromosome 1, which cover between
0.07% and 0.7% of the chromosome. The set of 35 TFs
was divided into two functionally different groups. The
first (that we informally label non-developmental TFs) is a

group of 20 TFs involved in basal regulation (e.g. SP1,
YY1), cell-cycle regulation (e.g. E2F1), cell growth (e.g.
GATA-1, c-Myc), or immune response (NFkB). The sec-
ond (labeled as developmental TFs) is a set of 15 TFs that
play key roles in regulating embryonic development and
cell differentiation, or that regulate tissue-specific or hor-
mone-dependent expression patterns.
Figures 2 (for non-developmental TFs) and Figure 3 (for

developmental TFs) show the positive predictive value
(PPV, defined as the fraction of TFBS predictions that
overlap a region identified by ChIP-Seq) obtained by each
of the three approaches, as a function of the number of
sites predicted (i.e. for different prediction score thresh-
olds). For 15 of the 20 non-developmental TFs considered,
there is a clear gain of PPV obtained by considering only
PWM hits located within our high scoring binding loci, as
compared to the two other approaches. In many cases, the
improvement in accuracy for high-confidence predictions
(top 100 TFBS predicted) in the range of 2 to 4 fold. We
note that simple PWM scanning without guidance by
either PhastCons or binding loci (blue curves in Figure 2)
is rarely competitive with the two other approaches,
except in the rare cases (PU.1, SRF) where the information
content of the PWMs is high enough to make predictions
based on LLR scores alone fairly reliable. We observe that
the accuracy of the predictions varies significantly from
TF to TF. For some (NF-YA, SP1, E2F1, GABP), it is pos-
sible to predict more than 500 sites (on chromosome 1
alone) and retain an accuracy above 50%. For others (c-
Myc, Gata-1/2), the top 100 predictions show the same
level of reliability, but the accuracy drops quickly as less
confident predictions are considered. Finally, certain TFs
(RFX5, FOXA2, GATA-3) obtain very low accuracy pre-
dictions with all methods, suggesting that the PWM used
may be of low quality. The results are quite different for
TFs that are involved in regulating more complex pro-
cesses such as embryonic development, tissue-specific
expression, or hormone response (see Figure 3). These
TFs often interact with each other to bind enhancers and
form cis-regulatory modules [42,43]. These modules tend
to be highly conserved across species due to their critical
role [44,45]. For example, the overlap between PhastCons
conserved regions and ChIP-Seq regions for developmen-
tal TFs POU2F2, MEF2A, OCT-2, and PBX3 is much
higher that of ChIP-Seq regions for non-developmental
TFs SP1, GATA-1 or NF-YA (15-18% vs 9-11%). In these
cases, PWM scanning limited to highly conserved regions
is more effective than our approach. This is in part due to
the fact that highly conserved regions are indirectly pena-
lized by our approach because they lack the sequence
divergence required to reveal unexpected levels of TFBS
count conservation (recall that our calculations are condi-
tioned on the observed degree of sequence divergence).
Indeed, the few non-developmental TFs for which our
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approach performs poorly (ETS1 and YY1) have ChIP-Seq
determined binding sites that are also enriched in Phast-
Cons conserved regions (overlap of 17.8% and 25.0%
respectively). We note however that for the majority of
developmental TFs, the PPV of all methods is quite low.

Discussion and future work
Whereas selection operates on genomic DNA to preserve
fitness, the precise mechanism through which a DNA
sequence encodes a desirable phenotype (e.g. the activa-
tion of a gene by a TF) can evolve over time via binding
site turnover, resulting in sites whose position-specific

evolutionary rates, if measured over a large phylogenetic
tree such as the mammalian phylogeny, may not differ
substantially from the neutral rate. Although a large
number of approaches exist for the detection of regula-
tory regions based on multi-species comparison, our
approach is the first to make use of ancestral sequences
to track the potential of a given region to bind a TF over
evolutionary time. The regions identified as likely binding
loci for a TF are often not the most conserved ones at the
sequence level (e.g. for the GATA-1 and c-Myc TFs, only
18% and 40% and of top-scoring loci overlap PhastCons
elements), but it is the level at which they have

Figure 2 Positive predictive value (fraction of bases within predicted sites that overlap a ChIP-Seq peak for the same TF) curves for 20
non-developmental TFs, as a function of the number of TFBS being predicted. Three prediction approaches are considered: (i) Blue curves:
PWM scanning; (ii) Red curves: PWM scanning limited to highly conserved regions identified by PhastCons on the eutherian genomes alignment;
(iii) PWM scanning limited to regions identified as conserved binding loci by our algorithm. For the red and blue curves, the desired number of
predicted sites is obtained by varying the LLR threshold (but always maintaining it above the minimum threshold chosen for each TF). For the
green curves, the desired number of predicted sites is obtained by varying the threshold on the binding locus scores and reporting all sites with
LLR score above the minimum threshold located within these regions.
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maintained the ability to bind the TF that makes them
stand out. Our approach is thus complementary to the
more classical phylogenetic footprinting approaches that
seek binding site conservation as evidence for function.
Indeed, our approach produces significantly improved
prediction accuracy for a large number of TFs that tend
to bind promoters that exhibit low to medium sequence
conservation, while other approaches are preferable for
developmental TFs whose binding sites lie within large,
highly conserved enhancers. Clearly, a more detailed
benchmarking of the panoply of approaches that have
been proposed for the identification of TFBS based on
comparative approaches would be timely, although it
exceeds the scope of this paper.
Several directions are worth exploring from here. An

interesting avenue would be to make use of the full poster-
ior probability distribution over ancestral sequences, pro-
duced by Ancestors 1.1 for each ancestral node in the tree
in the form of a sequence profile, in order to estimate

more accurately the expected number of sites contained
within a given ancestral region. Replacing the TFBS count
in the maximum likelihood ancestral sequence by an
expected TFBS count may be particularly beneficial when
there is considerable uncertainty about a given ancestral
sequence. Doing so would necessitate the calculation of
the expected number of PWM hits in a sequence gener-
ated by a given profile hidden Markov model (HMM),
which can be done either analytically by coupling the pro-
file HMM and the PWM-HMM, or, more pragmatically,
by sampling ancestral sequences from the profile HMM.
Another exciting prospect is to simultaneously consider
groups of interacting TFs that coordinately bind DNA,
and study the conservation of the binding potential of the
group rather than that of individual TFs.
Genomic regions such as protein-coding exons, whose

GC-content differs from that of the rest of the genome
and where selection operates to maintain this unusual
composition, are likely to yield an elevated rate of false-

Figure 3 Positive predictive value curves for 15 developmental/hormone response TFs, as a function of the number of TFBS being
predicted. See caption of Figure 2 for details. In some cases (e.g. NF-E2, MEF2A, EBF), very few binding loci were identified by our algorithm,
resulting in the impossibility of that approach to make more than a handful of TFBS predictions, explaining why the green curve does not
extend over the full range of the x axis.
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positive predictions for TFs whose binding affinity
matches the GC composition. Future versions of our
approach will derive different TFBS gain/loss models for
regions with different GC content. An important
assumption underlying our methodology is that the bind-
ing preference (modelled by a PWM) of a given TF
remains constant across all extant and ancestral species
considered. The same assumption underlies most com-
parative genomics studies [3,46] and appears well justi-
fied when the species considered are relatively closely
related (e.g. within mammals or within drosophila). How-
ever, our approach could be modified to take into
account different PWMs for different species, should
those become available, by using the appropriate species-
specific PWM when available, or, otherwise, that of the
most closely related species.
Finally, the type of approaches described in this paper,

where conservation of function potential, rather than
sequence conservation per se, is evaluated, may be fruit-
fully applied to the identification of other types of func-
tional elements whose position in the genome tends to be
approximately conserved but whose exact location may
vary due to turnover-like phenomena. This may be the
case for splicing regulatory elements [47], which have
similar properties to TFBS, as well as for more diffuse sig-
nals such as nucleosome positioning [48], which is defined
by low-level sequence features that affect DNA flexibility.

Additional material

Additional file 1: Example of the GATA-1 binding sites predicted in
each extant and ancestral sequences in the first exon of the NPL
gene. A region bound by GATA-1, identified by ChIP-Seq, is located just
upstream of the second (alternative) exon. Rows corresponding to
ancestral sequences are identified by listing the names of the extant
descendants of each ancestor. Panel B is a zoom on the high-scoring
binding locus region. Note that the region does not exhibit elevated
sequence conservation, and contains many examples of TFBS turnover.
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