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Abstract

Background: Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at
institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the
increasing number of users, increasing data size, and new requirements in terms of speed and availability of
service. The advent of cloud computing suggests a new service model that provides an efficient solution to these
problems, based on the concepts of “resources-on-demand” and “pay-as-you-go”. However, cloud computing has
not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that
address the requirements of the bioinformatics domain.

Results: In this paper, we provide different use case scenarios for providing cloud computing based services,
considering both the technical and financial aspects of the cloud computing service model. These scenarios are for
individual users seeking computational power as well as bioinformatics service providers aiming at provision of
personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that
facilitates the use of high performance cloud computing resources in general and the implementation of the
suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case
scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented.
Experimental results with large datasets are also included to show the advantages of the cloud model.

Conclusions: Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based
bioinformatics services, which would help in overcoming the data challenge of recent biological research. All
resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.

Background
Web-based computational services have gained wide
popularity within the bioinformatics community. Bioin-
formatics service providers have established computa-
tional infrastructures, where selected applications of
interest are pre-installed and configured according to

the system architecture. The model of service provision
is that the users interact only with the pre-installed
applications through web-interface or web-service. The
resources are shared among multiple users according to
certain rules and priorities defined by the provider. In
spite of the efficiency of this model in facilitating the
execution of bioinformatics tasks, both the users and ser-
vice providers can face a number of limitations due to
the rigid design of the infrastructure. As for the users,
they cannot use software tools not pre-installed in the
system and cannot boost the performance of their tasks
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by utilizing more computational resources. As for the
service providers, it is tedious, complicated, and usually
infeasible to scale the infrastructure in response to the
increasing computation and data load, which might be
abrupt and temporal.
To take one example, Huson et al., [1] discussed the

computational challenges in analyzing the metagenomics
Sargasso Sea dataset [2]. They indicated that the whole
analysis pipeline can run on a moderate infrastructure
except for the sequence comparison step based on
BLAST, which is the most demanding task that need to
be performed on a high performance computer cluster.
They estimated that processing the 1.6 million reads of
the complete Sargasso Sea dataset would require ≈ 1000
hour on a cluster of 64 CPU. Such intensive computation
is a bottleneck for individual users and it is an immense
burden for service providers.
Cloud computing is a new form of providing comput-

ing services, and in our view it provides a promising solu-
tion to overcome the limitations for both the individual
users seeking personalized computational power and the
computational service providers seeking elasticity of the
service. Based on virtualization technology, it enables on-
demand allocation, expansion, and reduction of compu-
tational resources. It also enables assignment of multiple
computing environments with different configurations to
multiple users. These services can be offered free of
charge or on a pay-as-you-go basis. Currently, there is a
number of both academic as well as commercial cloud
computing providers worldwide; these include Amazon
Web Services (AWS) [3] (which pioneered the provision
of such services), Microsoft Azure [4], Rackspace [5],
Magellan [6], and DIAG [7], to name a few. The bioinfor-
matics academic community has recognized the advan-
tages of cloud computing [8-12], and the life science
industry has started to support its use as well. Interest-
ingly, recent NGS machines can stream the sequenced
reads to the client cloud account during the course of
sequencing run https://basespace.illumina.com. This
means that all the new sequence data become available in
the cloud by completion of the wet-lab work.
The features of cloud computing suggests a new model

of providing bioinformatics services, where the users do
not necessarily share the same environment. Rather, each
user can create and configure own infrastructure
(machines and storage) and use software tools of interest.
This model of use is advantageous to both the bioinfor-
matics user as well as the service provider. The user has
the flexibility, better service, and cost saving. The provi-
der no longer worries about scalability and maintenance
of resources.
Despite of its advantages, the cloud computing model

has not yet been widely used among the community to
support bioinformatics services. This can be attributed to

two major reasons: First, cloud computing providers offer
their services in terms of hardware components (i.e.,
Infrastructure as a Service, or shortly IaaS) and not in
terms of application parameters (i.e., Platform and Soft-
ware as a Service, or shortly PaaS and SaaS, respectively).
This could be a sever barrier for many application scien-
tists who have to dig into many system administration
details. Second, there is no well-defined use cases for pro-
viding cloud-based bioinformatics servers, considering
the platform specifications and the underlying business
model. That is, there is a gap between the low-level cloud
computing specifications and the application require-
ments. To bridge this gap, there is a need to 1) develop
an efficient middle-ware layer to map the user require-
ments to low level infrastructure configurations, 2) to
define bioinformatics use cases that take technical as well
as business details into account.

Our contribution
Models of use
We provide different models of using cloud computing
platforms to offer flexible and scalable bioinformatics ser-
vices. Our models consider not only the technical issues
about providing these services, but also the financial
aspects, which could be the major concern with respect
to the bioinformatics service provider.
The scenarios we suggest are divided into two groups:

One for individual users/developers who seek computa-
tional power for specific need and one for service provi-
ders who wish to provide personalized bioinformatics
services. The individual user/developer use cases include
the establishment of a computer cluster and running
cloud-based jobs either through web, command-line, or
programmatic interface. The service provider use case
scenarios show how the service provider can scale its
resources in case of overload and how a personalized
environment can be offered to boost the performance of
certain pre-installed tools or the whole system. In these
scenarios, we particularly highlight the interaction
between the user and the provider server at one side
and the interaction between the bioinformatics server
and the cloud provider at the other side. We also sug-
gest different options to consider the related financial
issues.
elasticHPC
We present elasticHPC (elastic High Performance Com-
puting), a software package and a library to facilitate the
use of high performance cloud computing resources for
bioinformatics applications. Although elasticHPC is cur-
rently based on the Amazon cloud computing platform
(Amazon Web Services or AWS), which is the most
popular provider of cloud computing services, the con-
cepts presented here are applicable to other cloud com-
puting platforms and this will be achieved in future
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versions of the library. The basic features of elasticHPC
include:

• establishment and management of high perfor-
mance computer cluster (with and without MapRe-
duce framework),
• submission of jobs (from remote site) to the cloud
machines and monitoring them,
• establishment of persistent storage in the cloud
and linking it to the computing machines, and
• cost management layer to start-terminate jobs
based on certain price constraints.

Details of the usage scenarios and their implementa-
tion using elasticHPC are handled in details in the
following implementation section.

Related technical work
Currently, there are some cloud based programs for
bioinformatics applications, especially in the area of ana-
lyzing next generation sequencing data. These include,
among others, Crossbow [13], RSD-Cloud [14], Myrna
[15], and CloudBurst [16]. However, the main focus of
these programs was to solve certain problems using par-
allel infrastructure, and the use of cloud computing was
specific to these tools and not of generic nature.
In the time of developing elasticHPC, other related

software solutions and libraries for AWS have been
released. To the best of our knowledge, these include so
far StarCluster [17], Vappio [18], and CloudMan [19].
StarCluster [17] was developed as a general cluster man-
agement solution for AWS and it is not specific to bioin-
formatics applications or any bioinformatics use cases.
CloudMan [19] was developed as part of the Galaxy pro-
ject to basically provide a version of the Galaxy workflow
system [20,21] in the cloud. (Galaxy is a workflow system
developed basically to serve the bioinformatics domain.)
CloudMan is not offered as a library but it is offered as a
cluster solution with a specific use case scenario. This
scenario starts with a creation of a master machine
(node) in the cloud from the AWS site using a prepared
virtual machine image. From a web-interface on the run-
ning master node, the user can add/delete more cluster
nodes and start the Galaxy workflow system. Vappio
[18], unlike CloudMan, is a standalone library for sup-
porting the creation of a computer cluster in the cloud. It
enables submission of remote jobs to the cloud instances.
Table 1 shows a comparison between the different fea-
tures available in the three libraries and elasticHPC. (The
detailed description of these features is presented in the
coming implementation section.) As can be observed
from this table, elasticHPC includes all the features of
both Vappio and CloudMan, and these features along
with other unique ones of elasticHPC collectively enable

the implementation of different use case scenarios for
providing personalized bioinformatics services.

Implementation
Amazon Web Services
Amazon Web Services (AWS) is the most popular cloud
computing platform. It offers infrastructure as a service
(IaaS) in terms of computational power (CPUs and RAM),
storage, and connectivity. The AWS products that are of
major relevance to solve bioinformatics computational
problems include Elastic Compute Cloud (EC2), Simple
Storage Service (S3), and Elastic Block Storage (EBS).
EC2 includes a variety of user selectable machine

instance types that range in computing power and cost.
Table 2 summaries the features of some instance types
including the strongest ones. With each of these types,
mounted disks (called ephemeral disks) are also provided.
Virtual machine instances are created from Amazon
Machine Images (AMI), which are templates containing
software configurations (e.g., operating system, application
server, and applications). To facilitate the creation of vir-
tual machine instances, EC2 includes a directory of AMI’s
either prepared by AWS or by the community. This direc-
tory includes a variety of AMI’s with different operating
systems and additional applications. From the AWS web-
interface, the user can set-up, launch, terminate any num-
ber of instances within a few minutes.
Because the ephemeral disks are volatile and vanishes

with the termination of the machine, AWS offers two
types of persistent storage: EBS and S3. The former is
defined in terms of volumes, where one or more EBS
volumes can be attached (mounted) to a running
instance, similar to a USB thumb drive (volume size
ranges from 1 GB to 1 TB). The latter is like a data cen-
ter accessed through certain programmatic methods.
The AWS business model is “pay-as-you-go”, where the

user is charged only when the machines are running. The
user is also charged for reserved storage and for data
transfer out of the AWS site and from/to persistent sto-
rage solutions. Table 2 summarizes the storage options
and their prices in AWS (price update of March 2012).
For more information about the AWS pricing schemes,
we refer the reader to the documentation available on
AWS web-site [3].
In addition to the web-based interface, AWS’s services

can be accessed programmatically through command line
interface and AWS-specific API’s. We use programmatic
methods in elasticHPC and build upon them to provide an
efficient implementation and an easy to use interface for
the use case scenarios presented below in this section.

Use case scenarios
As mentioned in the introduction, we suggest two
groups of use case scenarios: one for individual users
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and one for bioinformatics service provider. In this part
of the paper, we discuss these scenarios and their imple-
mentation using elasticHPC.
Use case scenarios for individual users
Use case scenarios for individual bioinformatics users have
been implicitly introduced with Cloudman and Vappio.
For completeness of presentation, we will discuss these
scenarios. Then we will show the major differences
between them and suggest further usage and implementa-
tion enhancement. The suggested use case scenarios for
individual users involve two cases: 1) Web based usage,
and 2) desktop based usage.

Scenario 1: web-based usage In this scenario, a bioinfor-
matics user, who already has an AWS account, heads for
establishing an infrastructure composed of a computer clus-
ter with multiple machines of certain types in the cloud. The
major steps for achieving this task include the following:

1. A third-party development team prepares a virtual
machine image, equipped with necessary bioinformatics
tools and middleware to create and manage a computer
cluster. This machine is then deposited in the public
AMI’s repository of AWS. The bioinformatics tools can
be augmented with the associated web-interface.

Table 1 Comparison between elasticHPC, Vappio, starCluster, and Cloudman

Feature elasticHPC Vappio StarCluster Cloudman

Create a cloud cluster Y Y Y Y

Create a MapReduce cluster Y N N N

Web-interface Y N N Y

Command line interface Y Y Y N

Multi-user Y N N Y

NFS as shared file system Y N Y Y

S3 as shared file system Y N N N

Persistent storage after termination EBS+S3 Manual Manual EBS

Data flow model fetch/shared/replicate replicate shared Shared

Cluster management at run-time Y Y Y Y

Remote job submission Y Y N N

Remote job monitoring Y Y N N

Associated bioinformatics tools Y N N Y

Use of spot instances Y N N N

Table 2 Amazon Services: virtual machines, storage, data transfer, and disk access (US-East site)

Resource Type AWS Service Service Unit CPUs
(#(GHz))

Memory (GB) Cost($/hr)

m1.large 2 (2) 7.5 0.32

m1.xlarge 4 (2) 15 0.64

Computation EC2 c1.xlarge 8(2.5) 7 0.66

m2.4 × large 8 (3.25) 68.4 1.80

cc1.4 × large 8 (4.19) 23 1.30

Resource Type AWS Service Service Unit Size Tiers Cost ($/GB/Month)

S3 Bucket unlimited 1st 1 TB 0.14

Storage S3 Bucket unlimited Next 450 TB 0.1

S3 Bucket unlimited Next 4000 TB 0.08

EBS Volume Up to 1 TB 0.10

Resource Type AWS Service Service Unit Type Size Cost ($/GB/Month)

S3 I/O Data IN/Within AWS Any 0.00

S3 I/O Data OUT 1st 1 GB 0.00

Data transfer S3 I/O Data OUT Next 10 TB 0.12

S3 I/O Data OUT Next 100 TB 0.07

S3 I/O Data OUT Next 150+ TB 0.05

S3 API GET/PUT/POST 1 K Requests 0.01

Data Access S3 API COPY/LIST 1 K Requests 0.01

EBS I/O R/W 1 M Requests 0.1
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2. The bioinformatics user who wishes to run an
application in the cloud selects that image from the
public AMIs page of AWS.
3. A machine instance is created from the selected
AMI and is kept running. This machine is the mas-
ter node of a cluster.
4. The IP address of the running machine is retrieved
from the Amazon console, and the machine is
accessed remotely by one of two means:

a. Secure shell, where any further interaction
with the cluster takes place at the command line
level.
b. Web-interface, where the machine includes a
web-server that receives requests and processes
them. Each computational tool can have its own
web-page to set related parameters and enter the
input.

5. Based on installed API’s on the master node, the
user builds and configures a computer cluster in the
cloud with the desired number and types of machines
instances. The rationale behind that a cluster node cre-
ates other nodes is twofold: 1) The AMI contains all
the required and tested modules with all settings and
technical details being encapsulated, which reduces the
user’s effort and cost. 2) All the steps run in parallel at
the AWS side with no further communication
overhead.
6. Storage in the form of S3 or EBS products is
attached to the cluster nodes.
7. The execution of tasks can proceed through the
master node using either command line or web inter-
face. Note that we mean with the task any job running
in the cloud; i.e., installation of a software program is
also considered tasks.

Figure 1 shows the steps of this scenario. The user can
start execution only when the cluster nodes are created.
The establishment and usage of storage is handled later in
the storage and data flow subsection.
Scenario 2: desktop based access In this scenario, the
user installs a desktop application (developed by a third
party) that automatically connects to AWS, spots a pre-
pared AMI, and starts it. From the desktop interface, the
user specifies the size and type of cluster and storage. The
desktop communicates with the master node to extend
the cluster, if required. The submission and monitoring of
the jobs is achieved through this desktop application via
the master node.
The implementation of the two scenarios is very similar

except that an additional piece of code should be devel-
oped in the second scenario to realize a communication
protocol between the desktop program and the cloud
machines. It is worth mentioning that Cloudman follows

the first scenario, while Vappio follows the second
scenario.
Data flow The data flow for both scenarios involve the
transfer of user data to the ephemeral disks, EBS, or S3. It
also involves how the data are made available to the clus-
ter nodes. There are four data flow scenarios: In the first
one, each cluster node receives a copy of the whole dataset
either in the ephemeral disks or EBS mounted volumes.
(Ephemeral disks are volatile, and the user should have a
warning to move the data to persistent storage.) In the
second scenario, a shared file system like (NFS) is installed,
where the nodes share the whole disk space. In the third
scenario, S3 is used as a shared file system. In the fourth
scenario, each node fetches the data it needs from the
master node or S3 bucket before starting computation.
Vappio adopts the first data flow scenario, while Cloud-
man and StarCluster adopt the second scenario.
Enhancement elasticHPC enables creation of EMR clus-
ter and use of EMR framework. This feature is not avail-
able in any other library. It also enables use of spot
instances in AWS, where the cluster starts only if the
machine price falls below a given threshold. elasticHPC
provides the four data flow scenarios, and not limited to
just one strategy. It also provides an enhanced implemen-
tation of the first data scenario based on replication of
data, where the copy operation proceeds in parallel in O
(n log P) time, n is the data size and P is the number of
nodes.
Use case scenarios involving service provider
We suggest two main use case scenarios involving a ser-
vice provider. These scenarios address not only the techni-
cal but also the financial part of the model, where the
major concern of the providers is “To which account will
the cloud cost be charged?”
Scenario 1: bypassed provider This scenario includes
the following steps:

1. The bioinformatics service provider prepares a
machine image of his system.
2. The provider offers a web-page, where the user
defines cloud based computer cluster in terms of
machine type and number. The cluster will be estab-
lished using images that have been prepared by the
provider. The provider can keep track of the users
and store their preferred cluster configurations.
3. The user provides its cloud computing credentials
so that the created cluster is associated with the user
account; i.e., the cluster runs at the cost of the user,
and the provider account is not charged whatever
computation time is elapsed.
4. After the creation of the machines, the user is direc-
ted to the cloud version of the provider system, where
all tools are available with the usual web-interface.
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5. The provider provides a cluster management page
in the cloud version where the user can manage the
cluster at the run time and can also terminate it
after completion of computation.

Scenario 2: Usage-via-provider In this scenario, the
computer cluster in the cloud is hidden from the user,
and every step runs through the main web-site of the
bioinformatics service provider. This scenario includes
the following sequence of events.

1. The user opens a (tool) page on the provider site,
and selects that the execution takes place in the
cloud. In this case, the user is prompted to configure
and to create a new cluster or select one of running
clusters (if any exist). Once the cluster is created,
the respective tool in the cloud image of the cluster
is the one that is invoked.
2. The data, if not residing in S3, could be uploaded
to the cloud cluster by one of two means: First, the
data is uploaded to the provider, who forwards it to

the cloud. Second, the data can be uploaded directly
to the cloud through a special client side script
installed at the user machine. The second method has
the advantage of reducing traffic at the provider site.
3. The provider monitors the progress of the job and
the user follows this progress from the provider
web-pages.
4. After completion, the provider could buffer the
data to be downloaded from the tool page or provide
links so that the user downloads the results from the
cloud. The latter scenario reduces traffic at the ser-
ver site.

Figures 2 and 3 show the traditional way of running
jobs on provider infrastructure and show these cloud
based scenarios.
There are some issues related to these two scenarios:

• The first scenario is usually offered to users that are
considered foreigner with respect to the provider.

Figure 1 Use case scenario for individual users. Use case scenario for individual user: Dotted lines correspond to data flow, where the user
uploads/downloads his queries/databases.
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The computation runs at the cost of the users and the
provider is not charged whatever computation time is
elapsed and whatever data is transferred. In the sec-
ond scenario, the cost of using the cloud can be taken
over by the user (if the user’s credentials are sub-
mitted) or by the provider.
• The second scenario can be used when the provi-
der wishes to scale up infrastructure in a hidden
manner in response to an increasing server load.
Here, the user requests are forwarded to the cloud
cluster and the results are provided back to the user
through the server web-interface.
• The second scenario can help those users that are
related to the provider and have no cloud account to

use the cloud based services. The cloud server runs
at the cost of the provider, who can manage the
consumption of each user through one of two
scenarios:
1. The provider uses a user management layer to
control the computation for each of such users. For
example, each user could be dedicated some free
computation time. The provider controls the cost by
starting and terminating the machines according to
the available user credit.
2. The provider associates his account with the user
account such that the provider takes over the com-
putation cost until certain amount. This is achieved
through the consolidating billing option in AWS.

Figure 2 Use case involving bioinformatics service providers. Use case scenario showing the interaction between the bioinformatics service
provider and the user at one side and between the service provider and the cloud provider at one the other side.
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• The bioinformatics service provider can offer an
additional service in which the snapshots of the
databases needed by the users are made accessible to
them. The cost of maintaining the snapshots in the
cloud is covered by the provider. These snapshots
can be used to create any number of EBS volumes
to be used in computation.
• For each scenario, the provider can offer the whole
system in the cloud or just some tools. When the
focus is on using a certain tool in the cloud, further
abstraction and optimization can be offered to the
user. The idea is that the provider, based on his log
data and knowledge of tool characteristics, can pro-
vide the service in terms of application parameters
and not in terms of hardware parameters. For exam-
ple, if the program in use were BLAST, then the
user could be asked to specify the cost limit or the
desired time by which the computation is over, in

addition to other information about amount of data,
its type (DNA, RNA, or protein), the BLAST pro-
gram (blastp, blastx, blastn, etc.). The provider,
based on these parameters, could then create the
suitable infrastructure to accomplish the given com-
putation task.
• The second scenario at the tool level can support
execution of pipelines, where a part of the pipeline
is executed at the cloud and the other parts at the
provider’s local infrastructure. This pipelining can be
done through pipeline/workflow authoring interface
at the provider site. The cost of cloud in this case
can be taken over either by the provider or the user,
when the latter submits own credentials.

Figure 4 shows a matrix that summarizes the proper-
ties of each of these scenarios, both on the system and
tool instantiation levels.

Figure 3 Data flow scenarios. Data flow scenarios involving service provide. In step A1, the user sends data to the provider. Provider,
according to user options, sends data either to EBS volumes as in step A2 or to S3 as in step A3. In steps B1 and B2, the user directly sends
data to the cloud version and receives the result without passing through the provider.
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elasticHPC design and implementation
Client-server based approach: the elasticHPC package
is composed of a server and a client modules as well as a
set of methods for creating and managing the cloud clus-
ter and for running jobs. The server and client are writ-
ten in Python. To save user’s time, we already prepared a
machine image and pre-installed the elasticHPC package
in it. The security settings are pre-configured within the
machine images. That is each machine instance works as
both a client and a server. The idea to have a server mod-
ule on each node is to enable execution of a task (includ-
ing any administration job) on this node from another
remote node. An asynchronous protocol is used to enable
the client module to execute different tasks on the server
side. The client module is standalone and can be installed
on any machine, for example the user’s local desktop, to
submit jobs to the cloud cluster. The tasks executed on
the server can be broadly categorized into the following
two categories:

• Cloud-oriented tasks: these include functions for the
establishment of additional cluster nodes and termi-
nating some of or all the running ones. It also includes
the configuration of the nodes and the set-up of the
network connectivity, the storage, and job-scheduler.

These tasks are accomplished by executing special
elasticHPC programs which are pre-installed on the
server machine. These programs invoke AWS API’s to
run the cloud related functions and invoke other
scripts to administrate the nodes. The creation of the
master node takes up to 2-3 minutes for a single node.
The creation (including configuration) of the other
cluster nodes is accomplished in parallel and it takes
similar time per node. By means of this parallelization,
the total time for establishing a cluster of any size
ranges between 2-6 minutes.
• Computation-oriented tasks: this includes the recep-
tion of a job from a client program and executing it on
the computer cluster. This job is basically an invoca-
tion of a program already installed on the cluster. The
user can submit the input data and fix the location of
the output in the cluster. The server can also report
the status of submitted job to the client. Note that the
user can invoke an installer program as a job to install
other programs.

Included middle-ware and libraries: an elasticHPC
image is based on Linux Ubuntu and it is equipped with
a number of programs to facilitate its usage. These
include Amazon Command Line Tools, Apache server,

Figure 4 Features of each use case. Features of each use case involving provider with whole system or a tool being instantiated in the cloud
are arranged in a matrix view.
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PBS Torque as a job scheduler, NFS as a shared file sys-
tem, s3fs [22] to handle the S3 as a shared file system,
the boto library http://code.google.com/p/boto, Python/
Perl interpreters, MPICH2, and C/C++ and Java libraries.

Results and discussion
elasticHPC features and distribution
The elasticHPC package and library supports the use case
scenarios presented in this paper. The distribution
includes the library source code and full documentation
of its entire API’s. For individual users wishing to exploit
cloud computing, we prepared a machine image with the
elasticHPC package pre-installed in it with additional fea-
tures described below. This image can be directly used
from Amazon AMI directory as given in the manual. The
running image has a simple web-based user interface on
the master node to manage the cluster. This interface
enables management of the cluster and submission of
tasks. This image can also be started from the elasticHPC
website http://www.elastichpc.org where the user can
set-up the cluster; note that in this case the elasticHPC
website represents a service provider. Figure 5 shows
screen shots for the set-up in the elasticHPC website and
the cluster management page in the master node of the
cloud cluster. The provider can use a similar set-up page
in his web-site to start the personalized cloud service. In
the set-up page, the user can set the number and type of
cluster machines. In the management page, the user
manages the created and currently running cluster. Form
this page, nodes can be added or terminated and storage
volumes can be mounted to one or all the machines.
Status of each node can also be monitored.
The elasticHPC image/machine has additional features

that leverage the use of cloud to the bioinformatics
domain. These include the following:

• The elasticHPC image includes a set of pre-installed
tools that can be directly accessed upon the creation of
the cluster. In the current version of elasticHPC, there
are about 200 tools, coming from BioLinux, EMBOSS
[23], SAMtools [24], fastx [25], NCBI BLAST Toolkit
[26-28], and other individual sequence and RNA ana-
lysis programs. These tools come from the BiBiServ
and NUBIOS bioinformatics servers. Addition of extra
tools and updating this image is explained in the elas-
ticHPC manual. In the management page in Figure 5,
the button titled ‘BiBiServ-NUBIOS’ let the user move
to the library and the web-pages of individual tools.
Figure 6 shows a screen shot of the MegaBlast web-
interface on a created cluster in the cloud. In this
Figure, we also show the web-interface for generic tool
submission, where the user can run a tool not pre-
installed on the cloud. From this page, the user gives
location (S3 path) of the tool binaries, specifies the

input and output files, and runs the tool. In this way,
the use of this library is not limited to any pre-defined
set of tools.
• To save user’s cost and to facilitate usage of data-
base-dependent programs, we have prepared snap-
shots of different databases. These snapshots are
made available to the user free of charge through a
simple user interface, to create EBS volumes and
mount them to the cluster. Our snapshots currently
include the NCBI nucleotide and protein databases in
the form of raw and formatted sequences. These also
include the raw human genome sequence, and pre-
computed indexes of it to be used with some tools, as
explained in the manual. In the management page in
Figure 5, the snapshot list on the left includes identi-
fiers for these volumes to be attached to the cluster
nodes.
• The user has the option to select the location,
where the cluster is hosted. Our benchmark data (not
included in this manuscript) has revealed that the
location of the user affects the latency and quality of
the service. We found that the AWS European site,
for example, is the one with the reduced latency for
south Mediterranean countries. For Asian countries,
the AWS Singapore would be the best choice.
Furthermore, the time of acquiring the service also
plays a role; e.g., the US sites have the highest load on
Monday (especially in the morning), so it would be a
good idea to switch to other sites. Note also that
some machine instance types are offered in one site
but not in the others; e.g., cluster type is so far avail-
able only in the US East site.
• elasticHPC offers the creation of a MapReduce clus-
ter. This option facilitates the use of certain bioinfor-
matics tools, like Crossbow [13], RSD-Cloud [14],
Myrna [15], and CloudBurst [16]. From the elas-
ticHPC web-site the user can set-up a MapReduce
cluster and submit jobs to it. Figure 6 shows a screen
shot of these two steps, where the user specifies the
cluster, defines initialization scripts, and the hadoop
command line, as explained in the manual. The
example in the Figure is for the program Crossbow
[13], which is already included in the elasticHPC
image.
• Clusters built by elasticHPC can be used by multi-
ple users. The jobs and their input and output data
are associated with user identification numbers. This
feature is helpful for service providers extending
their infrastructure for multiple users.
• elasticHPC supports different cloud storage services,
like ephemeral disks, S3, and EBS. Data are made avail-
able to a cluster node in elasticHPC through one of
three options: 1) Data replication, 2) Sharing, and
3) Fetching. In data replication, the user can broadcast
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the data (queries and databases) to all cluster nodes. In
the sharing option, the disk space is shared among all
nodes using a shared file system (NFS). elasticHPC
offers the use of NFS and S3 as shared file systems. In
the final mode, elasticHPC can fetch necessary data for
execution (if not available) from the master node or S3
before execution of a command. Each of these scenar-
ios and storage solutions is advantageous for certain
applications and certain types of data. The access to S3
is more reliable but it is slower and more expensive.

(Recall that AWS charges for each S3 request.) The
use of NFS over ephemeral disks or EBS volumes is
better and more cost effective than using S3 as shared
file system, but it is less reliable, as discussed in [29].
Ephemeral disks are as efficient as EBS volumes, but
ephemeral disks are volatile and data have to be
moved to them before computation and out of them
after computation. Data copy option over ephemeral
disks or EBS volumes is the most efficient option with
respect to reliability and run-time execution, but the

Figure 5 elasticHPC set-up and management pages. elasticHPC set-up and management pages. The set-up page is accessed from the
elasticHPC web-site. The provider can use a similar page in his web-site to start the personalized cloud service. In the set-up page, the user can
set the number and type of cluster machines. In the management page, the user manages the established cluster. Nodes can be added or
deleted. Status of each node can also be monitored. Storage volumes can be mounted to one or all the machines. Clicking on the BiBiServ-
NUBIOS link takes the user to the web interface pages of the hosted bioinformatics tools from the BiBiServ and NUBIOS systems.
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disadvantage is that 1) some data might not be used at
all in some cluster nodes, which lead to unnecessary
disk and I/O cost, and 2) the data could be very large
and take much time to transfer. The manual of elas-
tiHPC includes more details on the use of these sto-
rage solutions and related dataflow scenarios.
• elasticHPC enables further cost management where
the user starts the cluster only when the price of an
instance falls under certain threshold in AWS. This
option is based on the use of spot instances of AWS.

• elasticHPC has an additional API to start other
machine images such as CloudBioLinux [30]http://
cloudbiolinux.org, which encapsulates BioLinux and
CloudMan. (CloudMan includes the Galaxy work-
flow system.) This option is not specific to these
images and can be used with other AMIs. This fea-
ture is inspired by the BioCloudCentral project
https://biocloudcentral.herokuapp.comaiming at pro-
viding a central point of access to start different
AMI’s.

Figure 6 Invoking tools for traditional and EMR cluster. The web-interface page shows MegaBlast tool where the tool parameters are set. The
user enters the path to the data on the S3 account or uploads the data directly to the tool. The lower left screen shot include the web-interface of
using the elastic MapReduce service (EMR), where the user specifies the EMR cluster, initialization scripts, and command line to be executed, as
explained in the manual. The lower-right screen shot is for generic submission of jobs on traditional cluster. In this case, the user has own software
tool (in compatible and executable format), which resides in the cloud. The user specifies the location of this tool, specifies the command line, and
specifies the input and output data. This web-page enables execution of this tool on the system. More details are given in the manual.
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Overview of demonstrations and experiments
In the following subsections, we introduce demonstrations
of individual user scenario and bioinformatics provider
scenario. The individual user scenario includes two experi-
ments: The first is a metagenomics experiment based on
MegaBLAST to demonstrate the use of a traditional com-
puter cluster. The second is an experiment for mapping
NGS reads to a reference genome using Crossbow to
demonstrate the use of MapReduce framework on AWS.
The provider scenario demonstrates the use of cloud ser-
vices on the tool as well as the whole system level, as
implemented in the Bielefeld Bioinformatics Server (BiBi-
Serv) and the Nile University Bioinformatics Server
(NUBIOS).

Demonstrating individual user scenario
Demonstrating the use of traditional computer cluster
To demonstrate the efficiency of the cloud model, we used
the elasticHPC web-interface from its web-site http://
www.elasticHPC.org to construct a cluster of 4 nodes to
analyze metagenomics datasets. The MegaBLAST [28]
program is used to annotate a set of sequences coming
from a metagenomics experiment. With this cluster, we
mounted EBS volumes including the NCBI NT database.
Figure 6 shows the web-interface of the program Mega-
BLAST [28] on a cluster machine in the cloud.
We used the windshield dataset of [31], which is com-

posed of two collections of 454 FLX reads. These reads
came from the DNA of the organic matter on the wind-
shield of a moving vehicle that visited two geographic
locations (trips A and B). For each trip A or B, there are
two subsets for the left and right part of the windshield.
The number of reads are 66575 (12.3 Mbp) 71000 (14.2
Mbp) 104283 (18.8 Mbp) 79460 (12.7 Mbp) for trips A
Left, B Left, A Right, and B Right, respectively.
To make use of the parallel infrastructure, we enhanced

the web-interface with an extra function that splits query
set into multiple subsets, each containing roughly the
same number of sequences. These subsets are then quer-
ied in parallel against the MegaBLAST database based on
the installed job scheduling system. For the dataset at
hand, we created 11 subsets, each with ≈ 6000 reads. For
this experiment, an EBS volume including the required
databases was mounted to each cluster node. To make the
query data available to each cluster node we used the fetch
strategy, in which each node fetches the queries assigned
to it from the S3 directory before starting computation.
Table 3 shows the average running times over computer

clusters of different machine types and different number
of compute nodes. The machine types used include nodes
of the type “Extra Large High CPU” and of the type “Extra
Large High Memory”. The establishment of any of those
clusters with the storage took a few minutes from the
machine images. Table 3 also includes the monetary cost

of running these experiments. It is interesting to see that
the use of more machines led to faster running time with
the same or reduced cost. The best price was obtained
with 8 cores. The fastest time was obtained with total 32
cores, which ran for less than one hour and cost totally
$2.7. We also note that the use of machines of the type
m1.xlarge lead to more running time and more cost than
the use of the same number of machines of c1.xlarge. This
is although m1.xlarge is less expensive than c1.xlarge.
Demonstrating the use of MapReduce
elasticHPC supports the use of MapReduce framework on
AWS, where the user can create EMR cluster on AWS by
specifying the number of nodes and machine types. The
EMR cluster, despite being more difficult to use than job
schedulers, has the advantage of lower machine price in
AWS. The usage of EMR framework within elasticHPC is
generic to any tool as explained in the manual. To further
facilitate the work for life science community, we included
the Crossbow [13] tool within the elasticHPC distribution.
To demonstrate the advantages of EMR, we ran an experi-
ment to map a dataset of NGS reads to a reference human
genome using Crossbow. The dataset is composed of
illumnia reads of around 13 Gbp (47 GB) from the African
genome available at the Sequence Read Archive (http://
trace.ddbj.nig.ac.jp, SRR002271 to SRR002278). The reads
of this dataset were mapped against the human genome
(hg18, build 36) available at the UCSC Genome Browser
web-site http://genome.ucsc.edu.

Table 3 Running times of the metagenomics experiment
in the cloud

Dataset AWS Cores

1 8 16 32 64

c1.xlarge (8 cores)

1 node 1 node 2 nodes 4 nodes 8 nodes

Trip A Left 93 ($1.32) 27 ($0.66) 20 ($1.32) 13 ($2.64) 9($5.28)

Trip A Right 127 ($1.98) 33 ($0.66) 21 ($1.32) 13 ($2.64) 7($5.28)

Trip B Left 80 ($1.32) 25 ($0.66) 17 ($1.32) 13 ($2.64) 7($5.28)

Trip B Right 65 ($1.32) 23 ($0.66) 13 ($1.32) 8 ($2.64) 6($5.28)

Total 365 ($4.62) 108 ($1.19) 71 ($2.64) 47 ($2.64) 29($5.28)

m1.xlarge (4 cores)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Trip A Left 77 ($1.28) 18 ($0.64) 13 ($2.64) 9 ($5.12) 7($10.24)

Trip A Right 119 ($1.28) 34 ($0.64) 25 ($2.64) 16 ($5.12) 10($10.24)

Trip B Left 70 ($1.28) 31 ($0.64) 23 ($2.64) 15 ($5.12) 9($10.24)

Trip B Right 65 ($1.28) 27 ($0.64) 13 ($2.64) 9 ($5.12) 6($10.24)

Total 331 ($2.56) 110 ($1.28) 74 ($5.12) 49 ($5.12) 32($10.24)

The average running times in minutes for traditional computer clusters of
different sizes and machine types in the cloud. The machine types are c1.xlarge
and m1.xlarge. The numbers in brackets are the computation costs in US Dollar
for the US-East site with $0.66 per hour for c1.xlarge and $0.64 per hour for m1.
xlarge. (Note that partial computing hour of an instance is billed on Amazon as a
full hour) The cost in the column titled “Total Time” is not the summation of the
above rows, but it is the cost of the total running time if the four datasets in the
respective column were processed altogether in the cluster.
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We used EMR clusters of different machine types and
number of nodes. Table 4 shows the running times of
these experiments and their monetary costs on Amazon
EMR. The results show that Crossbow over EMR scales
well with the increasing number of machines. The limit
is the pre-processing step of Crossbow, which cannot
take less than ≈33 minutes.
It is worth mentioning that we ran the same experi-

ments using a job scheduler on non-EMR clusters of
corresponding sizes. The experiments took almost the
same time, but with much higher cost. This is because
the cost of a traditional cluster node is more expensive
than the cost of a node of the same type in the EMR
product. For example, the price of a node of the type
c1.xlarge is $0.64 per hour, while the cost of a node of
the same type in EMR product is $0.12 per hour. (Price
for a node of type m1.xlarge is $0.09.) That is, the use
of EMR cluster is very cost-effective; of course only if
the problem at hand can be formulated according to the
MapReduce framework. Note that the cost of using 8,
16, or 24 m1.xlargre nodes is $4.32, because in all these
cases there are 48 compute hours, each with a cost of
$0.09. Note that the use of more than 64 nodes will lead
to more cost with no significance reduction in running
time. This is because a fraction of an hour is charged as
a full hour in AWS. We also note that the use of
machines of the type m1.xlarge mostly lead to more
running time and more cost. This is although m1.xlarge
is less expensive than c1.xlarge.

Reliability of the cloud based model
For our use cases, reliability of computation on cloud in
our view can be addressed at two levels: The first is the
ability to acquire required resources, including machine
instances, storage, and connectivity. The second is the
ability to successfully execute compute jobs on the clus-
ter machines.
The reliability of acquiring resources was limited by

the contention of network bandwidth and the highest
load, especially at US sites. In the last few years, the
reliability of AWS is dramatically increased by establish-
ment of many sites (locations) worldwide and continu-
ous improvement of the underlying cloud software
stack. Before the establishment of US-West site in 2011,
for example, users including our team have observed
highest latency at US-East site and some failure of
acquiring network resources for their (EMR) clusters.
We expect further improvements when more sites are
established worldwide.
Reliability of computation with respect to the use case

scenarios, presented in this paper is associated with the
use of the traditional and EMR computer cluster. Failure
of certain nodes and the inability of transferring data
among the nodes are the most two concerns in cloud set-
tings. In our cloud based experiments involving tens of
nodes, we did not experience such type of errors so far
for traditional computer cluster. For EMR, we had
encountered such problems only before Amazon
upgraded the Hadoop version to 0.20.205 in EMR and
tuned its performance. But such errors could appear
when using hundreds and thousands of nodes. Although
the job scheduler and Hadoop implementation of EMR
address the failure issues by re-directing jobs failed on
one node to other running nodes and by replication of
data on multiple nodes, we think there is a need for
another layer built upon elasticHPC to assure that the
data required by the re-directed jobs is available in the
new node and to track the jobs that completely failed for
some reasons. This layer can make use of the elasticHPC
feature of reducing cluster size in run time to re-execute
failed jobs with smaller cluster to save further cost. Alto-
gether, handling fault tolerant computation in the cloud
is a topic of current research and it deserves to be
addressed separately in another study.

BiBiServ-NUBIOS: demonstrating service provider scenario
BiBiServ http://bibiserv.techfak.uni-bielefeld.de is a
bioinformatics server hosted at Bielefeld University. The
server focuses on RNA sequence analysis, and it
includes tools for secondary structure prediction of
RNA (e.g., RNAfold [32], RNAshapes [33]), comparative
structure prediction (e.g., RNAalifold [34], Foldalign
[35]), and RNA structure comparison (e.g., RNAforester
[36]). The user can just use one tool or use the tools in

Table 4 Running times of Crossbow on EMR using
elasticHPC.

Num
Nodes

Num
Cores

Processing
Time

Mapping
Time

Total
Time

Cost

Using c1.xlarge

1 8 66 m 769 m 835.1 m $1.68

4 32 39.5 m 258.6 m 298.4 m $2.4

8 64 35.25 m 121.5 m 156.8 m $2.88

16 128 34.1 m 62.6 m 96.9 m $3.84

24 192 33 m 46.6 m 79.8 m $5.76

32 256 33.0 m 39.95 m 73.5 m $7.68

64 512 32.65 m 23.6 m 56.1 m $7.68

Using m1.xlarge

1 4 72.2 m 1675.6 m 1748 m $2.7

4 16 40.6 m 431.4 m 472.6 m $2.88

8 32 37.3 m 263.8 m 301.1 m $4.32

16 64 33.6 m 95.6 m 129.6 m $4.32

24 96 32.9 m 54.2 m 87.1 m $4.32

32 128 32.6 m 51.5 m 84.3 m $5.76

64 256 32.8 m 33.3 m 66.1 m $11.52

The average running times in minutes for EMR clusters of different sizes and
machine types in the cloud. The machine types are c1.xlarge and m1.xlarge.
A number in the column titled ‘Total Time” is the summation of the pre-
processing and alignment times.
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a pipelined fashion. This pipelined mode became possi-
ble only through consistent data types as specified in
[37] and through the storage of intermediate data on
the server in each usage session.
NUBIOS http://www.nubios.nileu.edu.eg is a bioinfor-

matics server hosted at Nile University. The server
focuses on sequence analysis tasks and hosts tools from
EMBOSS and NCBI toolkit. The web-interface of the
tools is generated on the fly, according to certain XML-
based schema describing the interface components and
the tool parameters. The tool set in NUBIOS comple-
ments that set of BiBiServ and it is useful to have both
systems accessed in the cloud.
Due to infrastructure limitations, the allowed job time

both in BiBiServ and NUBIOS is limited to one day per
user. Statistics on the server usage show that using cer-
tain tools under certain parameter settings can cause
abrupt intensive load on the server side. RNAshapes [33]
on BiBiServ and MegaBlast on NUBIOS are two exam-
ples of such compute intensive tools. Therefore, it would
be a good solution to delegate such computations to the
cloud, while running other non-intensive parts on the

local infrastructure. NUBIOS and BiBiServ use the
bypassed provider scenario presented in this paper, both
at the system and tool level. elasticHPC is used for imple-
menting both scenarios. At the former level, the user spe-
cifies an instance of the system in the cloud. This is
enabled by accessing the cluster set-up page. At the latter
level, the user accesses a tool page and selects that this
tool is executed on the cloud. The user is also prompted
to specify a cloud cluster details. Figure 7 shows screen
shots from the NUBIOS web-server for both levels of
use. For both scenarios, the user is then forwarded to the
system or tool page in the cloud machine, where compu-
tation takes place. The elasticHPC image is used to create
the machine instances because it includes the tool set of
both NUBIOS and BiBiServ. These options clearly enable
personalized services and relieve the original infrastruc-
ture from abrupt computational loads.

Conclusions
In this paper, we introduced a set of use case scenarios to
provide bioinformatics services based on cloud comput-
ing model. Our scenarios consider both the technical and

Figure 7 NUBIOS server using provider use case scenario. The NUBIOS bioinformatics server uses the provider scenario at the whole system
and tool level. Left: the user set-up a cluster to instantiate the NUBIOS system on the cloud. Right: a tool page in the NUBIOS server where the
user can select to run this tool on the cloud. In this case, the user has to specify an existing computer cluster in the cloud or create a new one.
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financial issues. We introduced elasticHPC package and
library to manage high performance cloud computing
infrastructure with additional features to support the pro-
posed use case scenarios. Our demos and experiments in
this paper show the efficiency of cloud model in support-
ing computation at affordable price.
The use of elasticHPC is not limited to BiBiServ and

NUBIOS; it can be used to support any other bioinfor-
matics service provider like Mobyle [38] and GenePattern
[39]. Currently elasticHPC is used within the Tavaxy
workflow system http://www.tavaxy.org[40]. In this work-
flow system, the user can delegate the execution of some
steps in the workflows to the cloud while other parts run
on local infrastructure. The control and data flows are
coordinated between the local infrastructure and cloud
instances based on functions of elasticHPC.
Our current version of elasticHPC is limited to com-

puter clusters. We can support other high performance
computing options like GPUs, but we delayed this step
because there are no bioinformatics packages so far sup-
porting it at the production level.
Cost prediction at the tool level was suggested for

BLAST [41]. This step is useful to add more abstraction
to the service, in which the user can ask for faster com-
putation time and the infrastructure is configured auto-
matically to satisfy this requirement.
Currently elasticHPC is limited to AWS and to Linux

environment. In future versions, we will extend it to
include other providers and Windows operating systems.
elasticHPC is useful for educational purposes to support

courses for parallel programming and advanced data pro-
cessing, where students can use the package to directly
build clusters in the cloud and use it to test their parallel
programs and scripts. With the free start-up package of
AWS, the students can use the micro instances as the
types of the cluster nodes. With the job-submission inter-
face, the students can install new tools and re-configure
the machines according to the course needs.

Availability and requirements
Project name: elasticHPC.
Project home page: http://www.elastichpc.org.
Operating system(s): Linux.
Programming language: Python, C, Java script,

HTML.
Other requirements: Compatible with the browsers

FireFox, Chrome, Safari, and Opera. See the manual for
more details.
License: Free for academics. Authorization license

needed for commercial usage (Please contact the corre-
sponding author for more details).
Any restrictions to use by non-academics: No

restrictions.
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