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Abstract

Background: Molecular predictor is a new tool for disease diagnosis, which uses gene expression to classify
diagnostic category of a patient. The statistical challenge for constructing such a predictor is that there are
thousands of genes to predict for the disease categories, but only a small number of samples are available.

Results: We proposed a gene network modular-based linear discriminant analysis approach by integrating
‘essential’ correlation structure among genes into the predictor in order that the modules or cluster structures of
genes, which are related to the diagnostic classes we look for, can have potential biological interpretation. We
evaluated performance of the new method with other established classification methods using three real data sets.

Conclusions: Our results show that the new approach has the advantage of computational simplicity and
efficiency with relatively lower classification error rates than the compared methods in many cases. The modular-
based linear discriminant analysis approach induced in the study has the potential to increase the power of
discriminant analysis for which sample sizes are small and there are large number of genes in the microarray
studies.

Background
With the development of microarrays technology, more
and more statistical methods have been developed and
applied to the disease classification using microarray
gene expression data. For example, Golub et al. devel-
oped a “weighted voting method” to classify two types of
human acute leukemias [1]. Radmacher et al. constructed
a ‘compound covariate prediction’ to predict the BRCA1
and BRCA2 mutation status of breast cancer [2]. The
family of linear discriminant analysis (LDA) has been
widely applied in such high-dimensional data [3-6]. LDA
computes the optimal transformation, which minimizes
the within-class distance and maximizes the between-
class distance simultaneously, thus achieving maximum
discrimination. Many other works have also extended the
LDA framework for handling the large p (number of
genes) and small n (sample size) problem. For example,

Shen et al. developed an eigengene based linear discrimi-
nant model by using a modified rotated spectral decom-
position approach to select ‘hub’ genes [5]. Pang et al.
proposed an improved diagonal discriminant method
through shrinkage and regularization of variance, a
method to borrow information across genes to improve
the estimation of gene-specific variance [6].
Studies have shown that given the same set of selected

genes, different classification methods often perform quite
similarly and simple methods like diagonal linear discrimi-
nant analysis (DLDA) and k nearest neighbor (kNN) nor-
mally work remarkably well [3]. However, because the
data points in microarray data sets are often from a very
high-dimensional space and in general the sample size
does not exceed this dimension, which presents unique
challenges to feature selection and predictive modeling.
Thus, finding the most informative genes is a crucial task
in building predictive models from microarray gene
expression data to handle the large p (number of genes)
and small n (sample size ) problem. To tackle this issue,
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different clustering-based classification approaches were
proposed to reduce the data dimensions.
Li et al. developed cluster-Rasch models, in which a

model-based clustering approach was first used to cluster
genes and then the discretized gene expression values
were input into a Rasch model to estimate a latent factor
associated with disease classes for each gene cluster [7].
The estimated latent factors were finally used in a regres-
sion analysis for disease classification. They demonstrated
that their results were comparable to those previously
obtained, but the discretization of continuous gene
expression levels usually results in a loss of information.
Hastie et al. proposed a tree harvest procedure for find
additive and interaction structure among gene clusters,
in their relation to an outcome measure [8]. They found
that the advantage of the method could not be demon-
strated due to the lack of rich samples. Dettling et al. pre-
sented an algorithm to search for gene clusters in a
supervised way. The average expression profile of each
cluster was considered as a predictor for traditional
supervised classification methods [9]. Similar idea was
further explored by Park et al. [10]. They took a two-step
procedure: 1) hierarchical clustering and 2) Lasso. In the
first step, they defined super-genes by averaging the
genes within the clusters; In the second step, they used
the super-gene expression profiles to fit regression mod-
els. However, using simple averages will discard informa-
tion about the relative prediction strength of different
genes in the same gene cluster [9]. Yu also compared dif-
ferent approaches to form gene clusters and the resulting
information was used for providing sets of genes as pre-
dictors in regression [11]. However, clustering
approaches are often subjective, and usually neglect the
detailed relationship among genes.
Recently, gene co-expression networks have become a

more and more active research area [12-15]. A gene co-
expression network is essentially a graph where nodes in
the graph correspond to genes, and edges between
genes represent their co-expression relationship. The
gene neighbor relations (such as topology) in the net-
works are usually neglected in traditional cluster analysis
[14]. One of the major applications of gene co-expres-
sion network has been centered in identifying functional
modules in an unsupervised way [12,13], which may be
hard to distinguish members of different sample classes.
Recent studies have shown that prognostic signature
that could be used to classify the gene expression pro-
files from individual patients can be identified from net-
work modules in a supervised way [15].
In this study, we propose a network modular-based

LDA (named as MLDA) method for improving the pre-
diction performances of DLDA, DQDA and among
others. The major difference between our method and
other LDA-based methods is that MLDA incorporates

the gene network modules into LDA in a supervised
way. We built the MLD prediction model using modu-
lar-specific features. As a comparison, we also imple-
ment a variant of super-gene based regression models
[10]. We first define super-genes by extracting the first
principal component (PC) within the network modules.
We then use the super-gene expression profiles to fit a
logistic regression (LR) model. We named the method
as MPCLR.

Materials and methods
Data sets
Three real microarray data sets are used in evaluating
the performance of our proposed algorithm and other
established classification methods. The detailed
description of these data sets is shown in Table 1. We
got the preprocessed colon cancer microarray expres-
sion data from http://genomics-pubs.princeton.edu/.
For prostate cancer and lung cancer microarray data
sets, we downloaded their raw data from gene expres-
sion omnibus (http://www.ncbi.nlm.nih.gov/geo/) and
preprocessed using robust multi-array average (RMA)
algorithm [16].

Seed-based network-module identification
To identify gene modules in a gene co-expression net-
work, we modify the correlation-sharing method devel-
oped by Tibshirani and Wasserman [20], which was
originally proposed to detect differential gene expres-
sion. Specifically, we first use a seed-based approach to
identify correlation-shared gene modules from gene net-
work. Each of these modules includes a differentially
expressed gene between sample classes, which is treated
as a seed, and a set of other genes highly co-expressed
with the seed gene. The revised approach works in the
following steps:

1: Build a co-expression network using Pearson cor-
relation coefficient (r) [21].
2: Compute test statistic Ti(i = 1,2,..., p)for each gene
i in the co-expression network using the standard t-
statistics or a modified t-statistics, such as signifi-
cance of microarrays (SAM) [22].

Table 1 Descriptive characteristics of data sets used for
classification

Disease Response
type

No.
Samples

No. genes/
features

Reference

Colon
cancer

Tumor/
Normal

40 / 22 2000 [17]

Prostate
cancer

Tumor/
Normal

50 / 38 12635 [18]

Lung cancer Tumor/
Normal

60 / 69 22215 [19]
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3: Rank the absolute test statistic values from the
largest one to the smallest one and select the top m
genes as seed genes.
4: Find the module membership s for each selected
seed gene i* in the co-expression network. The mod-
ule assignments can be characterized by a many to
one mapping. That is, one seeks a particular encoder
Cr(i*) that maximizes

i∗s = max{0≤r≤1} avei∈Cr(i∗)|Ti|
Where Cr(i∗) = {s : abs(corr(xi∗ , xs)) ≥ r}. The set of

genes s for each seed gene i* is an adaptively chosen
module, which maximizes the average (ave) differential
expression signal around gene i*. The set of identified
genes s should have absolute (abs) correlation (corr)
with i* larger than or equal to r.

MLDA algorithm
We propose a new formulization of the traditional linear
discriminant analysis. Specifically, we first use the seed-
based approach to identify gene network modules. Then
we perform LDA in each module. The linear predictors
in all the identified modules are then summed up. The
new modular-based classification approach returns sig-
nature components of tight co-expression with good
predictive performance.
Let assume there are A and B two sample groups

(such as disease and normal groups), which have nA and
nB samples, respectively. The data for each sample j
consists of a gene expression profile xj = (x1j,x2j,...,xpj),
where xij be the log ratio expression measurement for
gene i = 1,2,...,p and sample j = 1,2,...,n, n = nA+nB. We
assume that expression profiles x from group k (k Î {A,
B}) are distributed as N(μk,∑k). The multivariate normal
distribution has mean vector μk and covariance matrix
∑k.
In a simplified way, we assume that ∑ = ∑A = ∑B = {si,i’}

i,i’ = 12,...,p , whereσii = σ 2
i ,sii’ = si’i and sii’ is the pooled

covariance estimate of gene i and gene i’ for sample
groups A and B. Therefore, when

∑̂
is a block-diagonal

structure, we have

∑̂
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∑̂
1 0 0 . . . 0

0
∑̂

2 0 . . . 0
0 0

∑̂
3 . . . 0

...
...

...
...

...
0 0 0 . . .

∑̂
C

⎤
⎥⎥⎥⎥⎥⎥⎦

p∗p

where C is the number of blocks (gene modules) and∑̂
c
is the estimated covariance matrix for block c(c =

1,2,...,C).

The linear predictor (LP) with block-diagonal covar-
iance structure is given by

LP =
C∑
c=1

[
xc − 1

2

(
μc
A + μc

B

)]T∑̂−1

c

(
μc
A − μc

B

)
(2)

Where xTc is the expression measurements of the
genes in module c for a new sample to be predicted and
μc
k(k ∈ {A,B} is the mean vector of the genes in module

c. Obviously, linear discriminant analysis (LDA) and
diagonal linear discriminant analysis (DLDA) [3] are the
special cases of MLDA. That is, when C = 1,

LP =
[
x − 1

2
(μA + μB)

]T∑̂−1

(μA − μB), where xT is

the expression measurements of p genes for a new sam-
ple to be predicted, so MLDA is simplified to LDA;
when C = p (that is, each module has only one gene),

LP =
p∑
i=1

[
x − 1

2
(μ̂i

A + μ̂i
B)

]T

{(μ̂i
A − μ̂i

B)/σ
2
i } , where xi is

the expression measurement of gene i for a new sample
to be predicted, so MLDA is simplified to DLDA.
We estimate the mean vector μc

k of the genes in
module c as x̄ck and use the pooled estimate of the com-
mon covariance matrix in each module c

∑̂
C
=
(nA − 1)ScA + (nB − 1)ScB

nA + nB − 2
(3)

Where Sck = {σ̂ c
ii′ } , i,i’ = 1,2...,pc and pc is the number

of genes in the module c. σ̂ c
ii′ is estimated as

σ̂ c
ii′ =

{
σ̂ 2
i for i = i′

σ̂iσ̂i′ r̂c for i �= i′
(4)

Where r̂c = median{r̂ii′ } i,i’ = 1,2...,pc and i ≠ i’, r̂ii′ is
the correlation estimate between gene i and gene i’ in
module c of sample group k.
∑c is inversible when n ≥ pc, that is,

∑−1
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∑−1
1 0 0 . . . 0

0
∑−1

2 0 . . . 0
0 0

∑−1
c . . . 0

...
...

...
...

...
0 0 0 . . .

∑−1
C

⎤
⎥⎥⎥⎥⎥⎥⎦

However, in some modules (say module c), it is possible
that n <pc. In this case, ∑c is not inversible. We apply sin-
gular value decomposition (SVD) technology [23] to
solve the problem. Assume ∑c is a pc ×pc covariance
matrix, which can be discomposed uniquely as ∑c =
UDVT, where U and V are orthogonal, and
D = diag(σ1, σ2, ..., σp

c
) with σ1 ≥ σ1 ≥, ...,≥ σpc ≥ 0 . If
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∑c is a pc × pc nonsingular matrix (iff si ≠ 0 for all i(i =

1,2,...,pc)), then its inverse is given by
∑−1

c = VD−1UT

where D−1 = diag(1/σ1, 1/σ2, ..., 1/σpc) .
The rule to assign a new sample j to group k is, thus,

based on:LP >= log
(
nB
nA

)
, sample j is assigned to

group A; otherwise, it is assigned to group B.

MPCLR algorithm
In order to compare MLDA with other super-gens
based classification approaches, we also implement a
variant of super-gene based regression models [10].
MPCLR classification algorithm includes three stages: 1)
construct correlation-sharing based gene network mod-
ules; 2) extract meta-gene expression profiles from the
constructed modules using principal component analysis
(PCA); 3) classify samples using PCA-based logistic
regression model. Here we briefly described each of the
three stages:
Stage 1: Construct seed-based gene network modules.

This can be done using the same approach as used in
MLDA algorithm described above.
Stage 2: Principal component analysis of correlation-

shared expression profiles: To do this, for each of the seed-
based gene network modules, we perform principal com-
ponent analysis. Specifically, for a given gene module with
pc genes, we assume xj =

(
x1j, x2,j, ..., xpcj

)
be expression

indices of pc genes in the jth sample. Let ∑ be covariance
matrix of x with dimension pcxpc. All positive eigenvalue
of ∑ are denoted by λ1 > λ2 > ... > λpc . The first PC

score of the jth sample is given by x∗
j = et1xj , where e1 is

the eigenvector associated with l1. Therefore, we can
define the super-gene expression profile for n samples in a
seed-based gene module as x∗ =

(
x∗
1, x

∗
2, ..., x

∗
n

)
. The esti-

mated values for the coefficient et1 (eigenvector) of the first
PC can be computed using singular value decomposition
(SVD) [23]. Briefly, assume E be an nxpc matrix with nor-
malized gene expression values of pc genes in a given
module, so we can express the SVD of E as E = UDAT,
where U = {u1,u2,...,ud} is a nxd matrix (d = rank(E)),

D = diag{d1/21 , d1/22 , ..., d1/2d } is a d × d diagonal matrix

where dk is kth eigenvalue of Et E, A = {e1,e2,...,ed} is a pcxd
matrix where ek is eigenvector of associated with lk and
coefficients for defining PC scores. Magnitude of loadings
for the first principal component score can be viewed
as an estimate of the amount of contribution from the
module genes.
Stage 3: Classification using PCA-based logistic regres-

sion model: Assume Y is a categorical variable indicating
the disease status (such as cancer or no cancer). Here

we only focus on binary classification and suppose that
Y = 1 denotes the presence and Y = 0 indicates the
absence of the disease. Therefore, we can have the fol-
lowing supervised PCA-based logistic regression model:

log
(

pj
1 − pj

)
= β0 +

C∑
i

βi ∗ PC1i∗j + εj (5)

Where pj = −Pr
(
Yj = 1|PC1i∗j, i∗ = 1, 2, ...,C

)
. PC1i*j

is the first principal component score estimated from
the seed gene module i* for sample j and represents the
latent variable for the underlying biological process
associated with this group of genes. The model was
fitted using GLM function in stats R package.

Comparisons of different supervised classification
methods
We compared the prediction performances of MLDA
with other established supervised classification methods,
which include diagonal quadratic discriminant analysis
(DQDA), DLDA, one nearest neighbor method (1NN),
support vector machines (SVM) with linear kernel and
recursive partitioning and regression trees (Trees). We
used the implementation of these methods in different
R packages http://cran.r-project.org/, which are sma for
DQDA and DLDA, class for 1NN, e1071 for SVM and
rpart for Trees. Default parameters in e1071 and rpart
for SVM and Tree were used, respectively. For other
methods (DQDA, DLDA, 1NN, MPCLR and MLDA),
there are no tuning parameters to be selected. In the
comparisons, seed genes were selected using t-test and
SAM, respectively. We evaluated the performances of
DQDA, DLDA, 1NN, SVM and Trees based on different
number of the selected seed genes and those of MPCLR
and MLDA based on different number of gene modules,
which were built on the selected seed genes.

Cross-validation
We performed 10-fold cross-validation to evaluate the per-
formance of these classification methods. The basic princi-
ple is that we split all samples in a study into 10 subsets of
(approximately) equal size, set aside one of the subsets
from training and carried out seed gene selection, gene
module construction and classifier fitting by the remaining
9 subsets. We then predicted the class label of the samples
in the omitted subset based on the constructed classifica-
tion rule. We repeated this process 10 times so that each
sample is predicted exactly once. We determined the clas-
sification error rate as the proportion of the number of
incorrectly predicted samples to the total number of sam-
ples in a given study. This 10-fold cross-validation proce-
dure was repeated 10 times and the averaged error rate
was reported.
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Results
Tables 2, 3 and 4 list the prediction performances of dif-
ferent classification methods applied to microarray gene
expression data sets for colon, prostate and lung can-
cers, respectively. Here the different number of top seed
genes (5, 10, 15, 20, 30, 40, 50) was selected by t-test.
Since it is generally time-consuming to search for genes
which are not only correlated with a given seed gene
but maximize their averaged test statistic value (Formula
1), in order to save time, we only tested 10 cutoffs of
correlation r from 0.5 to 0.95 with interval 0.05. We
observed that the averaged correlation of genes in the
identified modules is usually between 0.65 and 0.85 with
the number of genes in the modules from 2 to 56, sug-
gesting that the genes in the modules are highly co-
expressed.
As we can see, the proposed MLDA has relatively bet-

ter or comparable classification performances among all
being compared classification methods in the three data
sets. The performance of MPCLR is not consistent in
the three data sets. This is likely that the variation in
the given data captured by the first PC may be different.
Other methods with better classification performances
are DLDA and SVM. In general, all these methods
except Tree works well for both colon and lung cancer
data sets. The performances of these methods in pros-
tate cancer data are slightly worse than those in colon
and lung cancer data sets, which may be due to clinical
heterogeneity among samples.

We also used SAM to select seed genes and evaluated
their prediction performance using the same procedure
as described above. Similar prediction results are
observed as shown in Table 4. Overall, the MLDA has
slightly lower error rate than other being compared clas-
sification methods (Table 5).
In many cases, we found that the simple method

DLDA works well. Its performance is comparable with
the advanced methods, such as SVM. We also observed
that the performances of predictors with more genes are
not necessarily better than those of the predictors with
fewer genes. For example, when t-test was used to select
the seed genes, the best performance was obtained with
only 5 genes for MPCLR and MLDA predictors in colon
cancer data set (Table 2), 10 genes for SVM predictor in
prostate cancer data set (Table 3) and 30 genes for
MLDA predictor in lung cancer data set (Table 4).
When SAM was used to select the seed genes, the best
performance was also obtained with 30 genes for SVM,
MPCLR and MLDA predictors in lung cancer data set
(Table 5).

Discussion and conclusions
In this study we developed a network modular-based
approach for disease classification using microarray gene
expression data. The core idea of the methods is to
incorporate ‘essential’ correlation structure among genes
into a supervised classification procedure, which has
been neglected or inefficiently applied in many bench-
mark classifiers. Our method takes into account the fact

Table 2 Mean error rates of classification methods
applied to colon cancer data set

No. genes DQDA DLDA 1NN Tree SVM MPCLR MLDA

5 0.113 0.113 0.210 0.226 0.113 0.097 0.097

10 0.177 0.177 0.161 0.290 0.129 0.097 0.129

15 0.113 0.129 0.129 0.242 0.145 0.113 0.113

20 0.145 0.129 0.161 0.258 0.129 0.113 0.129

30 0.145 0.129 0.161 0.194 0.145 0.129 0.113

40 0.145 0.129 0.145 0.210 0.145 0.129 0.129

50 0.145 0.145 0.194 0.226 0.145 0.145 0.113

Table 4 Mean error rates of classification methods
applied to lung cancer data set

No. genes DQDA DLDA 1NN Tree SVM MPCLR MLDA

5 0.170 0.170 0.186 0.201 0.162 0.170 0.162

10 0.170 0.147 0.186 0.193 0.170 0.147 0.147

15 0.162 0.162 0.201 0.178 0.132 0.155 0.147

20 0.147 0.162 0.170 0.193 0.178 0.155 0.132

30 0.132 0.125 0.132 0.193 0.147 0.125 0.116

40 0.178 0.147 0.162 0.186 0.132 0.132 0.132

50 0.125 0.125 0.147 0.178 0.147 0.125 0.125

Table 5 Mean error rates of classification methods
applied to lung cancer data set

No. genes DQDA DLDA 1NN Tree SVM MPCLR MLDA

5 0.178 0.170 0.193 0.225 0.162 0.178 0.170

10 0.170 0.170 0.209 0.193 0.178 0.155 0.147

15 0.186 0.147 0.201 0.225 0.146 0.132 0.116

20 0.147 0.162 0.186 0.178 0.186 0.155 0.132

30 0.147 0.178 0.132 0.193 0.101 0.101 0.101

40 0.178 0.132 0.178 0.186 0.132 0.132 0.132

50 0.162 0.132 0.162 0.186 0.132 0.155 0.147

Table 3 Mean error rates of classification methods
applied to prostate cancer data set

No. genes DQDA DLDA 1NN Tree SVM MPCLR MLDA

5 0.227 0.239 0.261 0.227 0.216 0.216 0.193

10 0.205 0.193 0.284 0.318 0.170 0.193 0.182

15 0.250 0.227 0.261 0.295 0.261 0.239 0.227

20 0.216 0.227 0.250 0.273 0.193 0.205 0.205

30 0.205 0.216 0.239 0.295 0.216 0.216 0.205

40 0.261 0.250 0.295 0.318 0.250 0.261 0.227

50 0.227 0.227 0.341 0.330 0.216 0.250 0.193
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that genes act in networks and the modules identified
from the networks act as the features in constructing a
classifier. The rationale is that we usually expect tightly
co-expressed genes to have a meaningful biological
explanation. For example, if gene A and gene B has high
correlation, which sometimes hints that the two genes
belong to the same pathway or functional module. The
advantage of the method over other methods has been
demonstrated by three real data sets. Our results show
that the algorithm MLDA works well for small sample
size classification. It performs relatively better than
DLDA, 1NN, SVM and other classifiers in many situa-
tions. The modular LDA approach induced in the study
have the potential to increase the power of discriminant
analysis for which sample sizes are small and there are
large number of genes in the microarray studies.
Our results are consistent with previous findings: The

simple methods have comparable or better classification
results than the more advanced or complicated methods
[3]. This is likely due to the fact that there are more
parameters to be estimated in the advanced methods
than in the simple methods, while our data sets usually
have much smaller number of samples than features/
genes. We also tried to use more top genes (up to 100)
in the classification models and similar result patterns
(results were not shown) were observed as shown in
Tables 2, 3, 4, 5. Although some previous studies
showed that better results can be obtained when the
number of top genes used in the prediction models are
much larger than the number of samples, the improved
performance may be due to over fitting effect. More-
over, for clinical purpose, it is better to include fewer
number of genes rather than larger number of genes in
the prediction models due to cost issues.
Previous studies have shown that the topological

structure of a node (gene product) in a protein network
is informative for functional module inference
[21,24,25]. Moreover, some useful approaches have been
developed to measure the topology similarity of pairs of
nodes in weighted networks [21]. It will be interesting
to explore the network topology-sharing based method
rather than the correlation-sharing approach to identify
seed-based gene network modules and place them into
our network-based classification framework. The MLDA
framework can be further extended in many ways. For
example, it is possible to directly incorporate the modu-
lar-specific features in other advanced discriminant
learning approaches (such as SVM). In the future we
will explore these ideas in details.

List of abbreviations
DLDA: diagonal linear discriminant analysis; DQDA: diagonal quadratic linear
discriminant analysis; KNN: k nearest neighbor; LDA: linear discriminant
analysis; LR: logistic regression; MLDA: modular-based linear discriminant

analysis; MPCLR: Modular-principal component based logistic regression; PC:
Principal component; RMA: robust multi-array average; SAM: significance of
microarrays; SVD: singular value decomposition; SVM: support vector
machines.
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