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Abstract

Background: Automated classification of histopathology involves identification of multiple classes, including
benign, cancerous, and confounder categories. The confounder tissue classes can often mimic and share attributes
with both the diseased and normal tissue classes, and can be particularly difficult to identify, both manually and by
automated classifiers. In the case of prostate cancer, they may be several confounding tissue types present in a biopsy
sample, posing as major sources of diagnostic error for pathologists. Two common multi-class approaches are
one-shot classification (OSC), where all classes are identified simultaneously, and one-versus-all (OVA), where a “target”
class is distinguished from all “non-target” classes. OSC is typically unable to handle discrimination of classes of varying
similarity (e.g. with images of prostate atrophy and high grade cancer), while OVA forces several heterogeneous
classes into a single “non-target” class. In this work, we present a cascaded (CAS) approach to classifying prostate
biopsy tissue samples, where images from different classes are grouped to maximize intra-group homogeneity while
maximizing inter-group heterogeneity.

Results: We apply the CAS approach to categorize 2000 tissue samples taken from 214 patient studies into seven
classes: epithelium, stroma, atrophy, prostatic intraepithelial neoplasia (PIN), and prostate cancer Gleason grades 3, 4,
and 5. A series of increasingly granular binary classifiers are used to split the different tissue classes until the images
have been categorized into a single unique class. Our automatically-extracted image feature set includes architectural
features based on location of the nuclei within the tissue sample as well as texture features extracted on a per-pixel
level. The CAS strategy yields a positive predictive value (PPV) of 0.86 in classifying the 2000 tissue images into one of 7
classes, compared with the OVA (0.77 PPV) and OSC approaches (0.76 PPV).

Conclusions: Use of the CAS strategy increases the PPV for a multi-category classification system over two common
alternative strategies. In classification problems such as histopathology, where multiple class groups exist with varying
degrees of heterogeneity, the CAS system can intelligently assign class labels to objects by performing multiple binary
classifications according to domain knowledge.

Background
Digital pathology (DP) has allowed for the development
of computerized image-based classification algorithms to
be applied to digitized tissue samples. Recent research
has focused on developing computer-aided diagnostic
(CAD) tools that can classify tissues into one of two
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classes, such as identifying “cancer” vs. “non-cancer” tis-
sues [1-5]. However, in the case of CaP, the “non-cancer”
class includes various heterogeneous tissue types such
as epithelium and stroma tissue as well as confounding
classes such as atrophy, PIN, and perineural invasion.
Ideally one would wish to employ a multi-class approach
to distinguish between several different tissue types
at once.
Over 240,000 new cases of prostate cancer (CaP) are

expected to be diagnosed in the US in 2011 [6]. Blinded
needle sextant biopsy is the current gold standard for
CaP diagnosis, each biopsy procedure typically yielding
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between 12-15 tissue cores, each of which is examined
under a microscope. If CaP is identified, a pathologist
will then use the Gleason grading scale to identify aggres-
siveness based primarily on tissue architecture [7]. Exam-
ples of prostate tissue obtained via biopsy are shown in
Figure 1; a single tissue core might comprise multiple tis-
sue classes (e.g. normal, different Gleason grades of CaP,
and confounders).Manual analysis of cancer is limited due
to several factors: (1) The subjective, qualitative nature of
Gleason grading leads to a high degree of inter-observer
variability [8]. (2) Confounders, or non-cancerous tissue
patterns that have attributes that are intermediate to nor-
mal and diseased processes can complicate diagnostic
identification of tumor areas [9,10]. Apart from being able
to discriminate confounders from disease, correct identi-
fication of confounders is important, as they may harbor
useful diagnostic information [11]. (3) Manual analysis
requires careful examination of each tissue sample; this
becomes prohibitive in the case of saturation biopsies
where between 32-48 tissue samples might be acquired
during a single prostate biopsy procedure. (4) Physical
tissue samples are not amenable to consultation by out-
side experts; transport of glass slides for second-opinion
reading is expensive and time-consuming.
Automated, computerized image analysis of histo-

pathology has the potential to greatly reduce the inter-
observer variability in diagnosis of biopsy samples [12-15],
and algorithms have been developed for detecting neu-
roblastoma [15], quantification of lymphocytic infiltration
on breast biopsy tissue [16], and grading astrocytomas
on brain tissue [17], to name a few. In the context of
CaP, researchers have used a variety of features to ana-
lyze tissue ranging from low-level image features (color,

texture, wavelets) [18], second-order co-occurrence fea-
tures [19], and morphometric attributes [1]. Farjam, et al.
[20] employed gland morphology to identify the malig-
nancy of biopsy tissues, while Diamond, et al. [21] used
morphological and texture features to identify 100-by-
100 pixel tissue regions as either stroma, epithelium,
or cancerous tissue (a three-class problem). Tabesh, et
al. [1] developed a CAD system that employs texture,
color, and morphometry on tissue microarrays to distin-
guish between cancer and non-cancer regions, as well as
between high and low Gleason grade prostate cancers
(both cases used binary classification).
There are two common approaches to the multi-

category classification problem, as illustrated in Figure 2.
The first is to perform one-shot classification (OSC) of
several classes at once. These typically involve classifiers
such as decision trees [22] that are inherently able to
deal with multiple classes simultaneously. This approach
is limited when dealing with multiple similar classes, since
all classes must be distinguished simultaneously using
the same classifier and the same set of features. Assign-
ing multiple decision boundaries can lead to classification
errors, particularly when some classes are similar (e.g. dif-
ferent types of cancerous tissue) and others are dissimilar
(cancerous and benign tissue). An illustration of this type
of classifier is shown in Figure 2(a), where each curve rep-
resents a probability density function, in turn reflecting
the likelihood of observing a particular class for a specific
image-derived attribute. Clearly, assigning a set of deci-
sion boundaries to separate out these classes would lead
to suboptimal results. An alternative is the one-versus-
all (OVA) approach, where each class is individually
distinguished from all non-target classes. Figure 2(b)

Figure 1 Illustration of different prostate biopsy tissue types. Shown are regions of interest (ROIs) taken from the whole-slide images shown in
(a) and (b). The following tissue types are illustrated: (c) prostate cancer (CaP) Gleason grade 3, (d) CaP Gleason grade 4, and (e) CaP Gleason grade
5, normal tissue categories (f) benign epithelium and (g) benign stroma, and CaP confounders including (h) prostatic intraepithelial neoplasia (PIN)
and (i) tissue atrophy. Note that atrophy and PIN can sometimes be mistaken for CaP and hence pose a diagnostic problem.
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Figure 2 Probability density functions for OSC and OVA. Illustration of probability density functions, where the likelihood of observing a
particular class (dependent axis) is plotted against a feature value (independent axis). Shown are two different multi-class strategies: (a) OSC, where
all classes are plotted simultaneously, and (b) OVA, where a “Target” class is separated from a heterogeneous “Non-target” class. A heterogeneous
set of tissues in the non-target class can lead to multi-modal density functions, illustrated by the dotted line.

showcases this approach, where the “Target” class prob-
ability is plotted against the “Non-target” class. Since
the non-target encompasses a number of visually diverse
tissue classes, the non-target class distribution is multi-
modal, and assigning a single classification boundary in
this case would be sub-optimal.
A more strategic approach is to employ a cascaded

scheme (CAS), as illustrated in Figure 3. In this strat-
egy, successive binary classifications are performed where
at each level in the classifier cascade, similar-appearing
tissue classes are clustered together according to class
similarity and domain knowledge. Previous work has

shown that some classification tasks are more easily han-
dled by dividing the original problem into separate sub-
problems [23], which can then be tackled individually.
Each bifurcation in Figure 3 represents a binary classi-
fier that distinguishes dissimilar “class groups,” ensuring
that the classes within a group are relatively similar. Sub-
sequently, two new binary classifications are used to sep-
arate each of the class groups further, again grouping
similar sub-classes together. At each level in the cascade
the aggregated classes are broken down with increasing
granularity into constituent subclasses, until at the low-
est cascade level the individual constituent classes are

Figure 3 Illustration of the cascaded (CAS) approach. Each probability density function represents a single binary classification task. Beginning at
the left, all images in the dataset are classified into either cancer or non-cancer categories. A new binary classification is then performed: cancer
images are classified as Gleason grades 3/4 or grade 5, and non-cancer images are classified as confounder or normal images. The final set of binary
classifiers separates the Gleason grade 3+4 group into G3 and G4 separately, confounder images are identified as AT or PIN, and normal images are
identified as BS or BE .
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separated from each other. The CAS approach is par-
ticularly well-suited to supervised classification problems
in DP due to the existence of multiple nested categories
of tissue types, and confers two distinct advantages over
both OSC and OVA classification: (1) By utilizing multi-
ple independent binary classifiers, we avoid the problem
of having to identify multiple classes at once using the
same classifier, and are thus able to tailor the classi-
fiers to each pairwise classification problem by selecting
features and parameters that are optimized for each par-
ticular binary classification problem. (2) By determining
the class groupings based off domain knowledge, we are
able to minimize the class heterogeneity for each classifi-
cation task at each level in the cascade, thus avoiding the
problem of trying to discriminate between classes with
significant overlapping class distributions such as with the
OVA approach.
In this work, we apply the cascaded classifier in

the context of classifying regions of interest (ROIs)
of prostate tissue into one of seven classes: Gleason
grades 3, 4, and 5 (abbreviated G3, G4, and G5, respec-
tively), benign epithelium (BE), benign stroma (BS), tis-
sue atrophy (AT), and PIN. From each ROI, a set of
novel image features are extracted which quantify the
architecture (location and arrangement of cell nuclei)
and texture of the region. These feature vectors are
used in a cascaded classification approach whereby sim-
ilar classes are grouped according to domain knowl-
edge, and binary classification is performed at increasing
levels of granularity. We test our algorithm by compar-
ing the cascaded approach with two traditional multi-
class approaches: the OSC approach, where classification
algorithms attempt to distinguish all classes simultane-
ously, and the OVA approach, where individual classes
are classified independently from all other classes. We
show that by incorporating domain knowledge and utiliz-
ing the cascaded classifier, we canmore accurately identify
nested subclasses.
This work is an extension of our previous work in

identifying regions of cancer vs. non-cancer in prostate
biopsy images on a pixel-by-pixel basis using a hierar-
chical classifier [5]. Our previous approach was devel-
oped to identify suspicious regions on very large images,
using pyramidal decomposition until individual pixels
could be classified as cancer or non-cancer. The major
differences in the current work are the following: (1)
we are classifying tissue regions as opposed to individ-
ual pixels, so our analysis and feature extraction are
necessarily different, and (2) dealing with multiple cat-
egories of tissue types instead of the “cancer” vs. “non-
cancer” question. Additionally, an important objective
of this work is to illustrate the performance increase
obtained by the CAS approach compared with OVA
and OSC.

Methods
Cascadedmulti-category classification
Notation and definitions used
An example of an annotated digital biopsy sample is
shown in Figure 1, with zoomed in exemplars of each
tissue class. Mathematically, we denote an ROI as R =
(R, g), where R is a 2D set of pixels r ∈ R and g(r) is an
intensity function that assigns a triplet of intensity values
to each pixel (corresponding to the red, green, and blue
color channels of the image). The class of R is denoted
as ωi for i ∈ {1, · · · , k} classes, and we use the notation
R ↪→ ωi to indicate that R belongs to class ωi. In this
work, k = 7.

Class groupings in cascaded classifier
To classify R, we employ the cascaded approach illus-
trated in Figure 3. The cascaded setup consists of a series
of binary classifications, which divides the multi-category
classification into multiple two-category problems. Each
bifurcation in Figure 3 represents a separate, independent
task with an independently-trained classifier, amounting
to six binary divisions. The motivation for the chosen
class groups is based on domain knowledge. The first
bifurcation handles all the samples in the database, clas-
sifying them as “cancer” or “non-cancer” images. Within
the cancer group, we further classify samples into either
G5 or a class group containing G3 plus G4; this is done
because within the cancer group, G3 and G4 are more
similar to one another than either is to G5. (Note that
in this paper, when we refer to “Gleason grades 3+4”, we
are referring to the group of images that are members of
either primary Gleason grade 3 or primary grade 4 CaP
as opposed to images representing a Gleason pattern of
3+4, i.e. Gleason sum 7. All ROIs are considered to be
homogeneous regions of a single tissue pattern.) Similarly,
non-cancer samples are identified as either “confounder”
classes, which contain abnormal but non-cancerous tis-
sue, or “normal” class groups. Finally, each of the remain-
ing class groups is further classified to obtain the final
classification for all samples: the Gleason grade 3+4 group
is separated into G3 and G4, the confounder images are
classified as AT or PIN, and normal tissues are classified
as BE or BS.

Cascaded decision tree classifier
For each binary classification task in the cascade, we use
a decision tree classifier [22]. Decision trees use a train-
ing set of labeled samples to learn a series of rules or
“branches” based on feature values. These rules attempt
to optimally distinguish between each of the class labels,
which are represented by “leaves” at the end of the tree.
Classification can then be performed on a testing set,
using the features of each testing sample to traverse the
tree and arrive at the leaf representing the correct class
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of the sample. While any classification algorithm may
be used in the framework of the cascaded classification,
we chose to decision trees for a number of reasons: (1)
Decision trees can inherently deal with several classes
by creating multiple different class leaves, allowing us
to implement the OSC classification strategy directly for
comparison. (2) The structure of the tree can be exam-
ined to determine which features appear closest to the
top of the tree, which are typically the most discriminat-
ing features for that classification task. Additionally, these
features are selected independently for each of the classi-
fication tasks, allowing us to use an optimal set of features
for each level of the cascade.

Detection and segmentation of nuclei
Color deconvolution for nuclei region detection
To isolate nuclear regions we use a color deconvolution
process detailed in [24]. The optical density (OD) of a
material is given by a = − log I

I0 , where I is the inten-
sity of light transmitted through the material (i.e. the
light detected by the microscope or scanning hardware),
and I0 is the intensity of light incident on the material
[25]. The value of a can be found empirically by measur-
ing the incident and transmitted light for each channel
(red, green, and blue) and each stain of an image. We
obtain a normalized three-by-three matrix M where the
rows indicate the materials in the sample (hematoxylin,
eosin, and background) and the columns denote the red,
green, and blue channels of the image. We denote by
C the three-element vector representing the amount of
each stain at a pixel r, then g(r) = CM represents the
three-element intensity vector at r. We can then solve
C = g(r)M−1 to obtain the amount of each stain present

at pixel r [24]. Shown in Figures 4(a), (f ) are tissue sam-
ples, followed by the result of color deconvolution in
Figure 4(b), (g) where the intensity of the pixels is propor-
tional to the amount of hematoxylin stain present. Shown
is the channel corresponding to the hematoxylin stain (the
nuclear material).

Finding nuclear centroids via watershed segmentation
The deconvolved image shows the relative amount of stain
at each pixel. To obtain the nuclear centroids, denoted
v ∈ V , we employ a watershed algorithm [26] to segment
the nuclear region, and find the centroids of the result-
ing connected components. The watershed algorithm is
a method of segmenting an object by assuming that high
values of D are “valleys” that can be filled with water, and
local maxima are point sources [27]. The points where
two pools merge are considered the segmentation of the
region, and the set of nuclear centroids V is then derived
from the geometric center of the segmented nuclei. We
perform the following steps:

1. Binarize the image using Otsu’s thresholding method
[28] to yield the set of pixels within the nuclear
region, denoted N .

2. The set of pixels on the boundary of N (immediately
adjacent) are denoted C, N ∪ C = ∅.

3. The Euclidean distance transform is applied to the
binarized image to generate a distance map
D = (R, d), where d(r) is the distance from pixel r to
the closest point on C.

4. Local maxima in D are identified as the start points
for the watershed algorithm, which iterates until all
pixels in N are segmented.

Figure 4 Overview of automatic nuclei detection. Shown are: (a), (f) the original tissue image, (b), (g) the result of color deconvolution to isolate
the nuclear stain, (c), (h) the result of thresholding to get nuclear regions, (d), (i), the result of the Euclidean distance transform on the thresholded
image, and (e), (j) the result of watershed segmentation of the nuclear boundaries. In (j) the different regions have been marked in color, and the
nuclear centroids have been labeled.
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Table 1 List of features

Feature type Feature subtype Features Total

Architecture Voronoi Diagram Area, chord length, perimeter 12

Delaunay Triangulation Area, perimeter 8

Minimum Spanning Tree Branch Length 4

Nuclear Density Nearest Neighbors, distance to neighbors 24

Texture First-Order Statistics, Sobel and Kirsch filters, Gradients 135

Co-occurrence Autocorrelation, Contrast, Correlation, Cluster 189

Prominence, Cluster Shade, Dissimilarity,

Energy, Entropy, Homogeneity, Maximum

probability, Variance, Sum average, Sum

variance, Sum entropy, Difference variance,

Difference entropy, two information measures

of correlation, Inverse difference, Normalized

inverse difference, inverse difference moment

Steerable Filter Frequency and Orientation Parameters 216

List of the features used in this study, broken into architectural and texture features.

Shown in Figure 4 are examples of the watershed algo-
rithm’s steps, including the binarized image (Figures 4(c)
and 4(h)), the distance map D (Figures 4(d) and 4 (i)),
and the resulting watershed contours (Figures 4(e) and
4(j)). Different colors in Figures 4(e) and (j) indicate dif-
ferent pools or segmentations, and black dots indicate the
centroids of the detected regions.

Quantitative image feature extraction
From each image, we extract a set of nuclear architec-
ture features as well as image texture features, described
in detail in the following sections. A summary list of the
features used in this study can be found in Table 1.

Nuclear architecture feature extraction
Wedenote a graph as G = (V ,E,W ), whereV are vertices,
E are edges, andW are weights of the edges, proportional

to length. The set of vertices, edges, and weights make up
a unique graph on R. Examples of the graphs are shown
in Figure 5, while Figure 6 illustrates the graphs as they
appear on tissue images. Details of graph construction are
given below.

Voronoi diagram (GVor)
The Voronoi Diagram partitions R into a set of non-
overlapping polygons, denoted P1,P2, · · · ,Pm. Vertices in
V represent the centroids of the polygons; thus v1 ∈ V
is the centroid for polygon P1. Non-centroid pixel r ∈ R
is included in polygon Pa if the following condition is
satisfied:

||r − va|| = min
j

{||r − vj||}, (1)

where a, j ∈ {1, 2, · · · ,m} and || · || is the Euclidean dis-
tance between two points. That is, pixels are assigned to

Figure 5 Architectural pattern graphs. Examples of the graphs used to quantify architectural patterns in digital tissue. From a series of nuclear
centroids (represented by black circles), we create (a) the Voronoi Diagram (red), (b) the Delaunay Triangulation (black), and (c) the Minimum
Spanning Tree (green), as well as (d) density statistics of a neighborhood represented by the thick black circle. Red lines in (d) represent the distance
from the point of interest (upon which the neighborhood is centered) to all other points in the neighborhood.
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Figure 6 Architectural features. Examples of the architectural feature extraction performed in this study. Shown are (a) the Voronoi Diagram, (b)
Delaunay Triangulation, (c) Minimum Spanning Tree, and (d) nuclear density calculation.

the polygon of the nearest centroid. This yields a tessella-
tion of the image, as shown in Figure 5(a). Pixels that are
equidistant from exactly two centroids make up E (edges
of the graph, shown in red), while pixels equidistant from
three or more centroids make up the intersections of mul-
tiple edges. Note that in this case V are not the endpoints
of the edges in the graph, but are the centroids around
which the polygons are constructed. The perimeter, area,
and chord lengths of each polygon in GVor are computed,
and the average, standard deviation, disordera, and mini-
mum to maximum ratio of each are calculated for a total
of 12 Voronoi-based features perR.

Delaunay triangulation (GDel)
The Delaunay Triangulation is a triangulation of vertices
V such that the circumcircle of each triangle contains
no other vertices. This corresponds to the dual graph
of the Voronoi Diagram, meaning that centroid points
va and vb are connected in GDel if and only if poly-
gons Pa and Pb share an edge in GVor. An example of
GDel is given in Figure 5(b); shown faded is GVor to illus-
trate the relationship between the two. In this graph, the

vertices V constitute the endpoints of the edges E. From
this graph, we compute the area and perimeter of each tri-
angle, and the average, standard deviation, disorder, and
minimum to maximum ratio of these are calculated to
yield 8 Delaunay-based features perR.
An example illustrating the Delaunay graphs of two

different tissue types is shown in Figure 7, where 7(a)
illustrates a benign epithelium tissue image with 7(b) its
Delaunay triangulation, where the color of each triangle
corresponds to an area value (blue represents low area,
while red represents high). When compared with 7(c)
a Gleason grade 5 tissue sample, and 7(d) its Delaunay
graph, there is a clear difference in overall triangle size
throughout the images.

Minimum spanning tree (GMST)
A spanning tree is an undirected, fully connected graph
on V . The weight W of the graph is the sum total of all
edges E, and the Minimum Spanning Tree is the spanning
tree with the lowest overall W . The Minimum Spanning
Tree (MST), denoted GMST, is a subgraph of the GDel.
An example of GMST is given in Figure 5(c); again, we

Figure 7 Illustrated differences in feature values. Illustration of the difference in feature values between two different tissue class images. Shown
are (a) a benign epithelium tissue image with (b) its Delaunay triangulation, where the color of each triangle corresponds to an area value (blue
represents low area, while red represents high). There is a clear difference when compared with (c) a Gleason grade 5 tissue sample and (d) its
associated graph, indicating that architectural features are effective at discriminating tissue classes.
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superimpose GDel to show the relationship between the
two. We calculate the average, standard deviation, disor-
der, and minimum to maximum ratio of the weightsW to
yield 4 MST-based features perR.

Nuclear density
Finally, we calculate a set of features that quantify the den-
sity of the nuclei without reliance on graph structures.
Nuclear density features are calculated in two different
ways: (1) We construct a circle around each point in V
with a fixed radius (black circle in Figure 5(d)), and count
the number of neighboring points inV that fall within that
circle. This is done for radii of 10, 20, 30, 40, and 50 pixels,
and for each point in V . The average, standard deviation,
and disorder is computed across all points in V to yield 15
features for each R. (2) We calculate the distance from a
point in V to the nearest 3, 5, and 7 neighbors (red lines
in Figure 5(d)). This is done for each point in V , and the
average, standard deviation, and disorder is computed to
yield 9 additional features, for a total of 24 features based
on nuclear density.

Image texture feature extraction
The proliferation of nuclei, difference in size and shape
of lumen area, and breakdown of typical glandular struc-
ture (see Figure 1) leads to a change in overall textural
characteristics in an ROI. To quantify this change in tissue
texture characteristics, we calculate a number of low-level
image statistics from each ROI. These statistics can be
broadly characterized into three groups: first-order statis-
tics, second-order co-occurrence features, and steerable
filter features. Each of these is calculated in a pixel-
wise fashion and are computed independently for each
of the hue, saturation, and intensity channels of the orig-
inal scanned image, generating a set of feature images
(Figures 8(a)-(d)). The average, standard deviation, and
mode of each of these feature images is calculated, yielding
a texture feature vector to quantify the image. In total, 540
texture features are calculated in this manner. The details
of each feature type are given below.

First-order statistics
We calculate 15 different first-order statistics from each
image, including average, median, standard deviation, and
range of the image intensities within the sliding neighbor-
hood, as well as the Sobel filters in the vertical, horizontal,
and both diagonal axes, 3 Kirsch filter features, gradients
in the vertical and horizontal axes, difference of gradients,
and diagonal derivative. By calculating these 15 features
for each channel in the image, and then calculating the
mean, standard deviation, andmode of the feature images,
we obtain a total of 135 first-order statistics for R. An
example of the average hue feature image is shown in
Figure 8(a).

Co-occurrence features
Co-occurrence features [29] are computed by construct-
ing a symmetric 256 × 256 co-occurrence matrix which
describes the frequency with which two different pixel
intensities appear together within a fixed neighborhood.
The number of rows and columns in the matrix are deter-
mined by the maximum possible value in a channel of R;
for 8-bit images, this corresponds to 28 = 256. Element
(a, b) in the matrix is equal to the number of times pixel
value a occurs adjacent to pixel value b in R. From the
co-occurrence matrix, a set of 21 features are calculated:
autocorrelation, contrast, correlation, cluster prominence,
cluster shade, dissimilarity, energy, entropy, homogeneity,
maximum probability, variance, sum average, sum vari-
ance, Sum entropy, difference variance, difference entropy,
two information measures of correlation, inverse differ-
ence, normalized inverse difference, and inverse moment
[29,30]. Extracting these values from each channel and
taking the mean, standard deviation, and mode of each
feature image yields a total of 189 co-occurrence features.
An example of the contrast entropy image is shown in
Figure 8(b).

Steerable filters
A steerable filter refers to a filter which is parameterized
by orientation. One such filter is the Gabor filter [31,32],

Figure 8 Examples of texture features. Examples of the texture feature images generated during feature extraction. Shown are (a) the original
image, (b) first-order statistics (average intensity), (c) co-occurrence feature values (contrast entropy), and (d), (e) two steerable Gabor filters (κ = 5,
θ = 5·π

6 ) illustrating the real and imaginary response, respectively).
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which is a Gaussian functionmodulated by a sinusoid. The
response of a Gabor filter at a given image coordinate is
given as:

G(x, y, θ , κ) = e−
1
2 (( x′

σx )2+(
y′
σy )2) cos(2πκx′), (2)

where x′ = x cos(θ) + y sin(θ), y′ = y cos(θ) + x sin(θ),
κ is the filter’s frequency shift, θ is the filter phase, σx
and σy are the standard deviations along the horizontal
and vertical axes. We utilize a filter bank consisting of two
different frequency-shift values κ ∈ {5, 9} and six orienta-
tion parameter values (θ = ε·π

6 where ε ∈ {0, 1, · · · , 5}),
generating 12 different filters. Each filter yields a real and
imaginary response, which is calculated for each of the
three channels. An example of two Gabor-filtered images
is shown in Figures 8(c) and (d), illustrating the real and
imaginary response, respectively, for a filter with κ = 5
and θ = 5·π

6 . Taking the mean, standard deviation, and
mode of each feature image yields a total of 216 steerable
filter texture features.

Experimental setup
Prostate biopsy tissue preparation, Digitization,
and ROI Identification
Prostate biopsy samples were acquired from 214 patients
at the Department of Surgical Pathology at the University
of Pennsylvania in the course of normal clinical treatment.
Tissue samples were stained with hematoxylin and eosin
(H&E) to highlight nuclear and cytoplasmic material in
the cells. Following fixation, the slides were scanned into a
computer workstation at 40x optical magnification using
an Aperio whole-slide digital scanner (Aperio, Vista, CA).
The acquisition was performed following an automated
focusing procedure as per the recommended software set-
tings, and the resulting files were saved as ScanScope
Virtual Slide (SVS) file format, which are similar to multi-
image tagged image file format (TIFF) files. Each patient
study resulted in a single image (214 images total), which
contained between 2-3 tissue samples each. In terms of
pixel size, each image measures from 10,000 to 100,000
pixels in a dimension, depending on the amount of tissue
on the slide. Uncompressed images range from 1 gigabyte
(GB) to over 20 GB in hard drive space. At the time of
scanning, images were compressed using the JPEG stan-
dard to a quality of 70 (compression ratio of approximately
1:15); at the image magnification that was captured, this
compression did not result in a significant loss of quality
of the acquired images.
ROIs corresponding to each class of interest are man-

ually delineated by an expert pathologist, with the goal
of obtaining relatively homogeneous tissue patches (i.e.
patches that express only a single tissue type). Due to the
widely varied presentation of the target classes on patient
biopsy, the number of ROIs obtained per patient was

greatly varied (between a minimum of 5 and a maximum
of 30). It should be noted that the annotation of individ-
ual tissue types on pathology is not a common practice
within clinical diagnosis and prognosis of prostate biopsy
samples. Thus, there are no generally-accepted guidelines
for drawing exact boundaries for regions of cancer, PIN,
or atrophy; however, the annotating pathologists were
only told to try and ensure that the majority of each ROI
was from the same tissue class. Following annotation,
the images are down-sampled to a resolution equivalent
to 20x optical magnification. A total of 2,256 ROIs were
obtained.

Experiment 1: classifier comparison
Our main hypothesis is that for multi-category classifica-
tion, the CAS methodology will provide increased perfor-
mance when compared with the OSC and OVA strategies.
The differences between each of the three strategies are
summarized below:

Cascade (CAS): The cascaded strategy is our proposed
method, described in the Methods section above.
One-Shot Classification (OSC): For the OSC strategy,
the entire dataset is classified into seven classes simul-
taneously. This is handled implicitly by the decision tree
construction, where rule branches terminate at several
different class labels.
One-Versus-All (OVA): For the OVA strategy, a binary
classifier is used to identify a single target class apart from
a single non-target class made up of the remaining classes.
Each class is classified independently of the others, mean-
ing that errors in one class do not affect the performance
of the others.

For the binary classifier, we employed the C5.0 decision
tree (DT) algorithm [22], which is an efficient update to
the popular C4.5 algorithm. The motivation for using the
C5.0 DT algorithm as opposed to other classifiers such
as support vector machines [33], Bayesian estimators, or
k-nearest neighbor algorithms, is its inherent ability to
deal with multiple classes (by creating labeled nodes for
each class), allowing us to directly compare the perfor-
mance of each of the approaches described above. While
other tree-based algorithms such as probabilistic boosting
trees [34] possess this property as well, C5.0 is signif-
icantly faster and easier to train. We performed three-
fold cross-validation for twenty trials, using approximately
two-thirds of the dataset for training and one-third for
testing. The output of each of the strategies consists of
the number of samples from each class, and the resulting
classification of those samples. This enables us to calcu-
late the accuracy (ACC), positive predictive value (PPV),
and negative predictive value (NPV) in terms of true pos-
itives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), where:
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ACC = TP + TN
TP + TN + FP + FN

, PPV = TP
TP + FP

,

NPV = TN
TN + FN

. (3)

Evaluation is done on a per-class basis, to ensure that
comparisons between different classification strategies
were standardized.

Experiment 2: feature ranking
Because of the range of classes being analyzed in this
work, we are interested in the discriminating power of the
individual features for each classification task. This exper-
iment is intended to provide insight into which features
are contributing to the performance of each classifica-
tion task. We employed the AdaBoost algorithm [35] to
implicitly weight features according to their discriminat-
ing power. AdaBoost is an iterative algorithm that deter-
mines the ability of each feature to discriminate between
target classes. The algorithm takes as input a parameter,
T , which indicates how many iterations are run (and thus,
how many weak learners are selected and weighted), and
performs the following steps:

1. At iteration t, each feature is evaluated in terms of its
discriminative power for the current classification
task.

2. The feature that provides the highest accuracy is
selected as the tth iteration returned by the
algorithm.

3. A weight αt is assigned to the selected feature, which
is proportional to the feature’s discriminative power.

4. αt is used to modulate the performance of feature t
in subsequent iterations, forcing the algorithm to
select features which focus on correctly classifying
difficult samples.

5. When t = T , the algorithm returns the set of
selected features and their corresponding weights.

As the algorithm progresses, learners are selected which
correctly classify samples which were misclassified by
previously-selected learners. Based on the weights, we
obtain a ranking of the ten most discriminating weak
learners for each task, with αt > αt+1. The obtained
weights are summed across the twenty trials to obtain a
final weight and ranking for the learner.

Experiment 3: evaluation of automated nuclei
detection algorithm
Our final experiment is performed to determine whether
our automated nuclear detection algorithm is accurately
identifying nuclear centroids. To do this, we consider
that we are not interested in perfect segmentation of
nuclei, but rather a segmentation that is accurate enough
to generate useful and descriptive feature values. Since
exact delineation of each nuclear centroid in the image
is not our main goal, traditional methods of segmenta-
tion evaluation (such as percentage overlap, Hausdorff
distance, and Dice coefficients) are not appropriate for
evaluating this task. To ensure that our feature extrac-
tion is performing appropriately, a subset of images from
four classes (epithelium, stroma, and Gleason grades 3
and 4) had nuclear centroids manually annotated. We
compared the features obtained through our automated
detection algorithm, using color deconvolution andwater-
shed segmentation, with the features obtained using
manual annotation. Comparison was performed using a
Student’s t-test to determine how many features had no
statistically significant difference between the two sets of
feature values.
The research was conducted with approval from the

Institutional Review Boards at both the University of
Pennsylvania and Rutgers University.

Results and discussion
Experiment 1: classifier comparison
Figure 9 illustrates the performance values for each of
the classification strategies. Shown are the ACC and PPV

Figure 9 Classifier performance for OSC, OVA, and CAS. Average performance measures from the three different classification strategies: OSC
(one-shot classification), OVA (one-versus-all classification), and CAS (our cascaded approach). Shown are the values for (a) accuracy, (b) positive
predictive value (PPV), and (c) negative predictive value (NPV) with each group representing a separate tissue class. Error bars represent standard error
over 20 trials. In terms of accuracy, the different algorithms perform similarly, with CAS showing a small advantage for most tissue classes; however, in
terms of PPV, the cascaded approach out-performs both OSC and OVA in the majority of tasks, particularly with Gleason grade 3 and grade 4 tissue.
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Table 2 Quantiative classification results

BE BS G3 G4 G5 AT PN

Accuracy

OVA 0.90 0.98 0.74 0.83 0.97 0.92 0.96

OSC 0.89 0.97 0.75 0.83 0.97 0.92 0.97

CAS 0.98 0.98 0.77 0.76 0.95 0.88 0.89

PPV

OVA 0.71 0.90 0.68 0.73 0.78 0.79 0.79

OSC 0.67 0.87 0.69 0.71 0.81 0.76 0.81

CAS 0.99 0.97 0.79 0.73 0.76 0.91 0.88

NPV

OVA 0.92 0.98 0.78 0.84 0.97 0.93 0.96

OSC 0.93 0.98 0.79 0.85 0.97 0.93 0.97

CAS 0.96 0.98 0.72 0.78 0.96 0.85 0.89

Summary of quantitative results for classification according to individual classes and classifier strategies.

values for each of the three strategies, averaged over
20 trials (error bars represent the standard error). The
average ACC across all classes is 0.90 for OSC, 0.90
for OVA, and 0.89 for CAS, while the average PPV is
0.76 for OSC, 0.77 for OVA, and 0.86 for CAS. The
average NPV across all classes is 0.92 for OSC, 0.91
for OVA, and 0.88 for CAS. The quantiative results
for each individual class across all strategies are given
in Table 2.
The CAS strategy does not out-perform the OSC or

OVA strategies with respect to ACC or NPV, but there is

a modest improvement in terms of PPV. The majority of
errors when using the CAS approach are false positives;
that is, images are more likely to identify a non-target
class as the target class. However, this leads to a trade-
off in NPV, which is lower for CAS than for the alternate
strategies by a small amount.
In terms of PPV, there are only two classes in which

CAS is not the top-performing classification strategy: G4,
which yields the same PPV as the OVA strategy, and G5,
where it under-performs both strategies. These represent
two very similar classes of CaP on the grading scale and

Figure 10 Results of feature selection - BE vs. BS and G5 vs. G3/G4. Results of feature selection when distinguishing between Benign
Epithelium (BE) vs. Benign Stroma (BS) on the left, and Gleason grade 5 (G5) vs. Gleason grades 3 and 4 (G3/G4) on the right. Shown are: (a), (d) the
plots of the cumulative weights as a function of feature rank, (b), (e) scatter plots of the first and second features along with the optimal
discriminating hyperplane, and (c), (f) a list of the feature names associated with each rank.
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are difficult to distinguish automatically [8,10]. Despite
not yielding the highest PPV, the difference in the G5 class
between CAS and OSC (the top-performing strategy)
is 0.05.

Experiment 2: feature ranking
The results of feature ranking via AdaBoost are shown
in Figure 10 for BE vs. BS and G5 vs. G3/G4 tasks,
and in Figure 11 for the G3 vs. G4 and AT vs. PN
tasks. Figures 10(a), (d) and 11(a), (d) contain the cumu-
lative weights plotted as a function of rank. As more
weak learners are selected, each subsequent learner has
a lower weight and hence the discriminative power of
each feature and its influence on the classifier decreases.
Figures 10(b), (e) and 11(b), (e) illustrate a scatter plot of
the data points where the horizontal and vertical axes are
the feature values of the first- and second-ranked features,
respectively. For each classification task, points represent-
ing the two classes are plotted with a decision boundary
that optimally separates the classes. These plots illus-
trate the separation between each set of classes using only
the features used in the first two selected weak learners.
Figures 10(c), (f ) and 11(c) and (f ) show the names of the
features used in the top five ranked weak learners. The
weights for all classification tasks drop rapidly and level off
after approximately 10 features are chosen, indicating that
a small subset of the entire feature set is able to perform
adequately in discriminating between each class.

In distinguishing different grades of cancer (G5 vs.
G3/G4 and G3 vs. G4), all of the top five selected features
are texture-based features. The subtle differences between
Gleason grades of prostate tissue are not picked up by
quantitative architecture, as the biological variation in the
features likely eliminates any discriminating power these
features have. The more granular texture features, how-
ever, are capable of identifying these subtle changes in
nuclear proliferation and lumen area which are major
indicators of progressing disease.
For the non-cancer tasks – BE vs. BS, and AT vs. PN –

we find that both architectural and textural features are in
the top-ranked features. This can be appreciated by refer-
ring to the examples of tissue shown in Figure 1 as well as
the architectural heat map in Figure 7. In both sets of non-
cancer classification tasks, the target classes have either
large, well-organized glandular structures (BE and AT) or
sparse, less-structured tissue types with fewer arranged
nuclei (BS and PN). Architectural features are well-
suited to quantify the differences represented by these
large structures, and so we see these features receiving
higher weight than they do when distinguishing Gleason
grades.

Experiment 3: evaluation of automated nuclei
detection algorithm
The results of comparing the feature sets generated via
manual and automated nuclei detection are shown in

Figure 11 Results of feature selection - G3 vs. G4 and AT vs. PIN. Results of feature selection when distinguishing between Gleason grade 3 (G3)
vs. Gleason grade 4 (G4) on the left, and Atrophy (AT) vs. PIN on the right. Shown are: (a), (d) the plots of the cumulative weights as a function of
feature rank, (b), (e) scatter plots of the first and second features along with the optimal discriminating hyperplane, and (c), (f) a list of the feature
names associated with each rank.
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Table 3 Statistical differences between automatic and
manual architectural features

Class p > 0.05 p > 0.01

Epithelium 13 17

Stroma 24 26

Grade 3 6 9

Grade 4 11 15

Grade 5 28 29

Number of architectural features whose values were considered statistically
similar between automatically- and manually-detected nuclei by two different
criteria (p > 0.05 and p > 0.01). Stroma and Gleason grade 5 tissue yielded the
most similar features, while Gleason grade 3 had the lowest number of similar
features.

Table 3. For each of the four classes with manually-
annotated nuclei, we list how many features had p >

0.05 and p > 0.01, indicating that there was no
statistically significant difference between the manually-
and automatically-extracted features. We found that at
least 9 features (out of the 51 total architectural features)
were considered statistically similar in all classes, with

Gleason grade 5 and stroma having the most (over 20)
similar features. This is likely due to the lack of com-
plex structure (such as lumen and intra-luminal protein),
enabling the automated system to clearly single out the
nuclei in the image. In contrast, Gleason grade 3 had the
fewest similar features due to the high degree of prolif-
eration of cancer and the presence of gland structures,
which leads to a high number of adjacent and overlapping
nuclei. These centroids are difficult to correctly identify
both manually and algorithmically, so the greatest amount
of disagreement is seen in this class. In general, Voronoi
features tended to be significantly similar between the two
methods, while nuclear density features (which are highly
sensitive to false-positive nuclear segmentations) had the
least similarity.
Shown in Figure 12 are representative graph images of

G3 tissue obtained via automated nuclei detection (top
row, Figures 12(b)-(e)) and manual annotation (bottom
row, Figures 12(f )-(i)). The qualitative similarity between
the manual and automatically-extracted graphs indicates
that the automated method will result in feature values
similar to the manual method.

Figure 12 Graphs representing automated vs. manual nuclei detection. Examples of feature images obtained for a Gleason grade 3 image via
manual (b)-(e) and automated (f)-(i) nuclear annotations. Shown are the original image at left, followed by the nuclear locations ((b), (f)), Voronoi
diagrams ((c), (g)), Delaunay triangulation ((d), (h)), and minimum spanning trees ((e), (i)). Although the automated annotation tends to pick up
multiple false positives, the feature values listed in Table 3 indicate that the differences are not statistically significant for each image class.
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Conclusions
In this work, we have presented a cascaded multi-class
system that incorporates domain knowledge to accurately
classify cancer, non-cancer, and confounder tissue classes
on H&E stained prostate biopsy samples. By dividing the
classification into multiple class groups and performing
increasingly granular classifications, we can utilize a priori
domain knowledge to help tackle difficult classification
problems. This cascaded approach can be generalized to
any multi-class problem that involves classes which can
be grouped in a way that maximizes intra-group homo-
geneity while maximizing inter-group heterogeneity. We
have developed a set of quantitative features that can accu-
rately characterize the architecture and texture of prostate
biopsy tissues, and use this information to discriminate
between different tissue classes. We have shown that our
automated nuclei detection algorithm generates feature
values which are comparable to those obtained by man-
ual delineation of nuclei, a more appropriate evaluation
of detection than a point-by-point comparison between
the two methods. Finally, we analyzed the discriminating
power of each of our features with respect to each clas-
sification task in the cascade, and we found that for class
groups with highly structured tissues, architecture plays
an important role; however, in cases where tissue types
are very similar (i.e. distinguishing Gleason grade), tex-
ture is more important to capture the subtle differences in
tissue structure.
In our current implementation of the CAS approach,

we made the assumption that domain knowledge should
be the driving force behind the order of the cascaded
classifiers. However, this may not be optimal, and other
cascaded setups could also be used. For example, we
would calculate an image metric from the training data
that would allow us to divide the data into homogeneous
groups based on the feature values, thus further separat-
ing the classes in each task. Using a proper distancemetric
to drive the initial design of the system might increase
the classifier’s overall performance. In addition, we would
like to investigate the use of alternative classification algo-
rithms capable of performing one-shot classification, such
as neural networks.

Endnotes
aFor a feature with standard deviation A and mean B, the
disorder is calculated as: 1 − 1

1+ A
B
.
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