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Abstract

Background: Structural variations in human genomes, such as insertions, deletion, or rearrangements, play an
important role in cancer development. Next-Generation Sequencing technologies have been central in providing
ways to detect such variations. Most existing methods however are limited to the analysis of a single genome, and it
is only recently that the comparison of closely related genomes has been considered. In particular, a few recent
works considered the analysis of data sets obtained by sequencing both tumor and healthy tissues of the same
cancer patient. In that context, the goal is to detect variations that are specific to exactly one of the genomes, for
example to differentiate between patient-specific and tumor-specific variations. This is a difficult task, especially when
facing the additional challenge of the possible contamination of healthy tissues by tumor cells and conversely.

Results: In the current work, we analyzed a data set of paired-end short-reads, obtained by sequencing tumor
tissues and healthy tissues, both from the same cancer patient. Based on a combinatorial notion of conflict
between deletions, we show that in the tumor data, more deletions are predicted than there could actually be in a
diploid genome. In contrast, the predictions for the data from normal tissues are almost conflict-free. We designed
and applied a method, specific to the analysis of such pooled and contaminated data sets, to detect potential
tumor-specific deletions. Our method takes the deletion calls from both data sets and assigns reads from the
mixed tumor/normal data to the normal one with the goal to minimize the number of reads that need to be
discarded to obtain a set of conflict-free deletion clusters. We observed that, on the specific data set we analyze,
only a very small fraction of the reads needs to be discarded to obtain a set of consistent deletions.

Conclusions: We present a framework based on a rigorous definition of consistency between deletions and the
assumption that the tumor sample also contains normal cells. A combined analysis of both data sets based on this
model allowed a consistent explanation of almost all data, providing a detailed picture of candidate patient- and
tumor-specific deletions.

Background
A fundamental goal of human genomics is to identify and
describe differences among human genomes. Besides the
detection of single nucleotide polymorphisms, larger
mutation events, such as deletions, insertions, inversions,

or inter-chromosomal rearrangements, can have a crucial
impact on genomes function. They can for instance result
in loss, mutation or fusion of genes that can be linked to
certain diseases such as cancer. The characterization of
structural variations can thus help shed some light on the
complex mechanisms in cancer biology [1-4].
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Structural variations discovery
Current sequencing technologies enable fast sequencing
of human genomes at high coverage and low cost.
Usually, multiple copies of a genome are randomly bro-
ken into small fragments which are then sequenced.
Most of these techniques allow to read DNA fragments
from both sides, resulting in a large set of paired-end
reads. Saving the time and cost intensive assembly and
finishing steps which would be necessary to determine
the full genome sequence, the read pairs can directly be
used to detect structural variations by paired-end map-
ping. The paired-end reads from a newly sequenced
donor genome are mapped onto a reference genome which
is already assembled to a complete DNA-sequence [5,6].
In a region where the two genomes do not differ, the
mapped reads have the correct orientation and their dis-
tance coincides with the fragment length in the donor
genome. Such a mapping is called concordant. However,
if a mapping is discordant, i.e. the orientation is incorrect
or the distance differs significantly from the expected
fragment length, this indicates a putative structural varia-
tion in the donor w.r.t. the reference. This concept was
fist introduced by Volik et al. [7] and Tuzun et al. [8]. In
recent years, many tools have been developed that follow
this approach to identify putative structural variations
(reviewed in [9-11]).
Another approach is to actually assemble all reads to

obtain the exact sequence. To avoid the computational
expense of full de novo assembly [12], one can restrict
the process to only reads from regions suspect to harbor
a variation, as for instance done in [13].

Tumor genomes analysis
Besides problems in the accurate prediction of variations
due to ambiguous mappings, mappings in repeat regions
etc. [6], these approaches have a fundamental shortcoming
for the analysis of cancer data: They do not differentiate
between inherent, patient-specific variations and those
which are tumor-specific. Even if the data of both a tumor
sample and a normal sample (i.e. from a tissue not affected
by cancer) from the same individual is available, this is not
a trivial task [3,4,14-16]. In particular, considering any
discordant mapping from the tumor data overlapping a
structural variation found in the normal data as non-
tumor-specific could result in missing tumor-specific
variations since different structural variations can be over-
lapping or very closely located. Another difficulty in ana-
lyzing cancer data is that a cancer sample is most likely a
mixed sample: Although taken from tumor tissue, it
usually contains also normal cells [2,6,17]. Hence, we have
to tackle the “need to simultaneously analyze data from
tumor and patient-matched normal tissue … and the abil-
ity to handle samples with unknown levels of non-tumor
contamination” [17].

To our knowledge, very few methods allow a combined
analysis of pooled data sets, such as a normal and a
tumor sample, to detect deletions of arbitrary length indi-
cated by discordant mappings. BreakDancer [18] was
used in [16], although it was not designed explicitly for
such a task. In [19], it was proposed to cluster together
only mappings from the tumor data set which do not
overlap any discordant mapping from the normal data
set. This might result in discarding tumor-specific varia-
tions that overlap or are close to normal variations, a
problem we address in the present work. They also sug-
gest pooling the mappings obtained from both samples
into one data set and to assemble them into clusters call-
ing for the same structural variations. Clusters containing
no mappings from the normal data set are then consid-
ered being tumor-specific. Recently, Hormozdiari et al.
[20] introduced an approach to detect common varia-
tions among several genomes (The program described in
[20] was not publicly available at the time of submission).
However, their method focuses on ambiguously mapped
read pairs and does not consider concordant mapped
pairs. Other methods that consider pooled data sets are
for analyzing only small scale deletions of a few base
pairs in size [14,21,22].

Contribution
The goal of the present paper is to address a very specific
problem in the analysis of matched tumor/normal gen-
omes: the detection of putative tumor-specific deletions
that overlap or are closely located to normal deletions.
The motivation for this question stems from the preli-

minary analysis of data from an adenocarcinoma patient
[23], obtained by sequencing both normal cells and tumor
cells. We found that, for the tumor data, many overlapping
deletions were called. Moreover we observed that, in some
regions, more deletions were called than there could actu-
ally be on a diploid genome. Especially in regions where the
normal data indicate a possible deletion, we found a high
signal of inconsistency for the deletions in the tumor sam-
ple, whereas in the normal data this signal was very low.
To detect such regions, we rely on a combinatorial

notion of conflicting deletions that represents deletions,
defined by clusters of discordant mappings which over-
lap significantly and could then not happen together on
the same diploid genome. The notion of conflicting
structural variations was introduced in [24] to handle in
particular reads that can be mapped to several locations.
We extend the work of [24] by describing a rigorous
definition of conflicts that accounts for the difference
between deletions and breakpoint region, and by show-
ing that conflicts in an haploid genome are limited to
sets of two or three deletion clusters.
In order to extract from these data putative tumor-

specific deletions that would be consistent with the
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conflict-free deletions detected in the normal sample, we
designed a method based on the combined analysis of
both the tumor and normal data. Our approach assumes
a mixture of normal and cancer cells in the tumor sam-
ple, i.e., four copies of each chromosome (two from
diploid normal genomes and two from diploid tumor
genome). Our combinatorial objective is to find a parti-
tion of the mappings from the tumor data set into four
sets (each one assigned to one specific chromosome
copy) that corresponds to a consistent set of deletions.
If not all mappings can be incorporated into a consis-
tent deletion call, we aim at minimizing the number of
mappings required to be discarded to reach consistency.
This approach allowed us to consistently explain most
of the data we analyzed: very few mappings needed to
be discarded to be able to both refine normal deletions
and detect putative tumor-specific deletions that were
both conflict-free and consistent with the normal dele-
tions. An implementation of our method can be found
in Additional file 1.

Methods
Mappings and deletion clusters
We first recall the standard combinatorial approach to
detect deletions in a set of mapped paired-end short-
reads, based on clustering together pairs of reads that
indicate a similar deletion. We assume here that the
sequenced short reads were first mapped onto the refer-
ence genome, resulting in a unique location for each
read; several tools exist for this task, including some that
can handle reads that map in several locations of the
reference genome [24,25].
A deletion is a segment of the reference genome that is

not present in the donor genome. The precise location of
the deletion in the donor genome is called its breakpoint.
A pair of reads spanning the breakpoint in the donor gen-
ome will be mapped to the reference with a distance
increased by the size of the deletion, and with proper
orientation of its two reads. For such a mapping m, let
span(m) be the interval from the left end of the left read to
the right end of the right read. We assume the size range
(including the reads) of the sequenced fragments (called
the insert size) is known and comprised between minLen
(at least) and maxLen (at most). A deletion has then to be
of size at least delMin(m) := |span(m)| – maxLen and at
most delMax(m) := |span(m)| – minLen. Obviously, the
deleted segment has to be between the right end of the left
read and the left end of the right read—we call this the
breakpoint region, br(m), of the mapping. See Figure 1(left)
for an illustration. Note that the approach described above
does not aim at detecting very small deletions (typically of
size 10 bases or less), which can be done by analyzing
directly the read mappings [21,22].

If the coverage of the sequenced genome by the reads
is high, one can expect that a deletion breakpoint is cov-
ered by several pairs of reads. A large number of map-
pings indicating the same deletion increases naturally
the confidence in this potential deletion. Furthermore,
the specification of the deletion, its location and length,
will generally be more precise if it is based on more
observations. Therefore, it is common to cluster map-
pings that can be explained by the same event. More
precisely, in the case of a deletion, a set c = {m1,…, mn}
is a valid cluster of mappings if there is a possible dele-
tion length compatible with all mappings. Let
span c span mm c( ) ( )= ∈ and br c br mm c( ) ( )= ∈ .
Then there exists delLen ≤ |br(c)| such that for each m
Î c : delMin(m) ≤ delLen ≤ delMax(m). For a valid clus-
ter c, we can infer the size range of the deletion:
delMin(c) := max {delMin(m) | m Î c} and
delMax(c) := min {delMax(m) | m Î c} .
A cluster c is called maximal if it is valid and there is

no mapping m ∉ c such that c ∪ {m} is valid. Figure 1
(right) shows an illustration of a cluster.

Haploid conflicts
To introduce the notion of conflict, we first consider that
all deletions may have taken place on a haploid genome.
We discuss the diploid case in the next section.
The notion of conflicting clusters was introduced in [24]

and we refine it here. First, as discussed previously, we
assume that a deletion is associated to a cluster (possibly
of size 1) of discordant mappings. The deletion associated
to a cluster is then located within the breakpoint region of
the cluster. Further, if any read—belonging to either a con-
cordant or a discordant pair—is mapped onto a segment
in the reference sequence, this segment can obviously not
be part of a deletion. Our last assumption is that each
deletion is covered by exactly one cluster. Hence, our
model does not allow scenarios as shown in Figure 2, and
considers such overlapping clusters as conflicting. This
approach is motivated by several reasons. First, such con-
figurations, where two overlapping clusters can be neither
combined into one valid cluster nor consistently explained
by two separate deletions within each cluster, require very
specific combinations of fragment length, read length and
deletion sizes, and are then quite unlikely to be observed.
Also, from a computational point of view, deciding if such
overlapping clusters are not conflicting require to investi-
gate splitting the deletion indicated by a cluster into sev-
eral smaller deletions. As far as we know, this splitting
deletion problem has not been considered and there does
not seem to be an obvious algorithm to address it. Finally,
the additional conflicts stemming from our assumption
did not impact the analysis of the data we considered. So
disregarding these pathological exceptions leads to a
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simpler combinatorial model, that proves to be sufficient
to explain the data set we analyzed.
Definition 1. Let C be a set of maximal deletion clus-

ters. Then C is consistent if for all c Î C,
br c span c c C c c( ) \ { ( ) | , }′ ′ ∈ ′ ≠ contains an interval of
size delMin(c). Otherwise it is conflicting.
If a set of clusters is conflicting, any set containing all

these clusters is also conflicting. To detect all conflicts, it
is sufficient to find the minimal conflicting sets, a general
notion that was used to deal with inconsistency in recon-
structing ancestral genomes [26,27].
Definition 2. A set of maximal deletion clusters C is

minimal conflicting if and only if it is conflicting and,
for all c Î C, the set C\{c} is consistent.
Lemma 1. A minimal conflicting set in a haploid gen-

ome contains exactly two or exactly three maximal dele-
tion clusters.
Proof. First, it is not difficult to see that there can be

minimal conflicting sets containing exactly two or
exactly three maximal clusters (See Figure 3). It then
remains to be shown that there is no minimal conflict-
ing set that contains more than three clusters.
To prove this fact, we rely on the following observation:

If the breakpoint region of a maximal cluster c is covered
completely by other maximal clusters c1, …, ck, i.e.,
br c span c i ki( ) { ( ) | }⊆ ≤ ≤1 , then {c, c1,…, ck} is
conflicting.
Now, assume there exists a minimal conflicting set of

clusters C = {c1,…, ck} with k > 3 which are all assigned
to one chromosome copy. As they are in conflict, they
overlap. According to the above observation, if any clus-
ter overlaps with two clusters on one side, these three
clusters would create a conflicting set, which contradicts
the assumption that C is minimal conflicting. Thus, they
can only overlap according to a chain structure: Each

cluster can overlap with at most one cluster on each
side. Without loss of generality, assume that each ci
overlaps with ci+1 for 1 ≤ i ≤ k.
If C is minimal conflicting, {c1,…, ck–1} is consistent.

Since the remaining cluster ck only overlaps ck–1, there
are only two possibilities that result in C being
conflicting:
Either there is not enough space for the deletion

called by ck–1 within its breakpoint region in between
the spans of ck–2 and ck: |br(ck–1)\{span(ck–2) ∪ span(ck)}
| <delMin(ck–1). In this case, {ck–2, ck–1, ck} is conflicting,
which contradicts the assumption that C is minimal
conflicting.
Or, there is not enough space for the deletion called

by ck within its breakpoint region to the right of the end
of ck–1: |br(ck\span(ck–1)| <delMin(ck). In this case, {ck–1,
ck} is conflicting, which again contradicts the assump-
tion that C is minimal conflicting.
Since concordant mappings define segments in which

no variation occurred, they also restrict the space for
putative deletions and can thus be involved in conflicts.
We can simply extend the above definition of consis-
tency by considering a concordant mapping as a cluster
with minimal deletion length zero. Any follow-up defini-
tion can be extended analogously.
Definition 3. Let C be a set of maximal deletion clusters

and M be a set of concordant mappings. Then C and M
are consistent if for all c Î C, the remaining positions
in br c span c c C c c span m m M( ) \ { ( ) | , } ( ( ) | }′ ′ ∈ ′ ≠ ∪ ∈ co-
ntain an interval of size delMin(c), otherwise they are
conflicting.
In summary, we can identify all haploid conflicts by

testing each pair and each triplet of overlapping clusters
or mappings. These combinatorial results refine [24],
where (1) conflicts were defined only in terms of the
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Figure 1 Mappings. Illustration of (left) a mapping and (right) a valid cluster.

/// / /// /

Figure 2 Overlapping clusters. We assume that each cluster describes exactly one deletion. Therefore, clusters overlapping as shown in this
figure are not consistent. Only the surrounding shape of the mappings in the cluster, and the position and size of the deleted segments are
indicated.
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length of the breakpoint regions and not of the deletions
included in these regions and (2) only conflicts between
pairs of clusters were considered.

Diploid conflicts
A normal human genome is diploid, i.e., there are two
copies of each chromosome. If a structural variation
affects both copies identically, it is homozygous. But a
variation might also affect only one of the copies, in
which case it is heterozygous. If a set of clusters is con-
flicting as defined in the previous section, it is not
necessarily conflicting when we consider heterozygous
deletions. The conflicting clusters could be assigned to
separate chromosome copies and thus be explained by
independent, consistent deletions. However, in some
cases, even such a separation is impossible. To check
consistency for a given set of clusters on a diploid gen-
ome, a graph-theoretic approach can be used, that was
introduced in [24].
A hypergraph model
We define a hypergraph containing each cluster as a
node and each minimal conflicting set (as defined in the
previous section) as a hyper-edge. A set of clusters is
consistent if and only if the corresponding graph is two-
colorable, i.e., we can assign one of two colors to each
node such that each hyper-edge contains at least one
node of each color. In this case, each cluster can be
assigned to one of the two chromosome copies such
that none of the two copies contains a complete con-
flicting set. Analogously to the definition of consistency,
we can include concordant mappings into this frame-
work by adding a node for each mapping and further
edges corresponding to the minimal conflicting sets
containing this concordant mapping.
Although this model is a natural and simple way to

formally define the consistency problem, it does not
provide a simple solution for it right away. In fact, the
hypergraph two-colorability problem is known to be
NP-hard. The hardness result also holds in our case,
where each minimal conflicting set and thus each
hyper-edge is of size two or three [28].
A heuristic approach to detect diploid conflicts
Therefore, we relied on the following straightforward
observation to detect at least a certain type of conflict in
polynomial time: A set of three maximal clusters, or two
clusters and one concordant mapping, which are pair-
wise in conflict with respect to one chromosome copy
(i.e., they form pairwise haploid conflicts) cannot be

conflict-free in a diploid genome. Hence, to get an
approximation of the amount of inconsistency in our
data, and in particular a lower bound on the number of
clusters involved in at least one conflict, we computed
all triplets of three clusters, and those containing two
clusters and one concordant mapping where the three
elements are pairwise in conflict. We are aware that
these are not all possible conflicts. Actually, there are
other configurations of overlapping clusters causing a
diploid conflict which could theoretically exist. However,
these configurations require a quite large number of
clusters (at least six) overlapping in a very specific way,
and we expect these combinations being less likely to
occur in real data.

Analyzing matched normal/tumor data sets
We now turn to our specific problem: Given a deletion
cluster detected in the normal data set and one or sev-
eral deletion clusters detected in the contaminated
tumor data set, involved in some conflict, how can we
provide, if possible, a consistent explanation of the reads
(both concordant and discordant) obtained from this
genome region?
In the following, we describe a framework designed to

analyze the tumor-subset, whose goal is to provide a set
of conflict-free deletion clusters while discarding as few
reads as possible.
Overlapping component of a normal deletion cluster
To analyze these regions, we define the following subset
of the tumor data set, denoted from now as “tumor-sub-
set”: First, we collect all discordant mappings from the
tumor data set overlapping a normal deletion (more pre-
cisely overlapping the breakpoint region of a maximal
valid cluster of mappings indicating a deletion). We
then iteratively add further deletion mappings which
overlap those already added to the subset, which we say
are indirectly overlapping the initial normal deletion
cluster. We call all mappings which (directly or indir-
ectly) overlap the same normal deletion an overlapping
component.
In all generality, the overlapping components are not

necessarily disjoint and could thus not be treated inde-
pendently. However, in the considered data set (see
Results section) the majority (97.4%) of the overlapping
components were disjoint, and we discarded the few
remaining components.
As we will see in Results section , the maximal valid

clusters in the tumor data and tumor-subset are highly

/// / /// / //

Figure 3 Minimal Conflicting Sets. Examples for minimal conflicting sets of two and three deletion clusters.
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conflicting. When we consider only tumor-specific dele-
tions found by pooling, i.e., a combined processing of
the normal and tumor data, the ratio of conflicting clus-
ters increases significantly.
A general framework to clear conflicts: assumptions
A central assumption in our approach is that the tumor
data originated from a mixed sample containing tumor as
well as normal cells, hence two sets of diploid chromo-
somes. This implies that the read pairs have actually been
obtained from four chromosome copies. This assumption
is natural for tumor cell sequencing [17]. It is well known
that tumor genomes can be affected by ploidy abnormal-
ity, such as loss of heterozygosity (LOH) [29] or increased
copy number of some chromosomes. Such information
can naturally be integrated in our model if known, but
they were not available for the data we analyzed, which
justified our choice to assume four copies of each chro-
mosome. This proved to be sufficient, as we show later in
the Results section.
Next, a deletion can be either heterozygous (i.e., it affects

only one of the two chromosome copies), or homozygous
(i.e., the same chromosomal segment is deleted from both
copies). In general, deciding if a deletion is heterozygous
or homozygous from paired-end mappings is difficult.
Probabilistic methods have been designed [30-32], requir-
ing certain parameters, a-priori probabilities or other
assumptions. To actually verify the nature of deletions,
further experiments, like PCR-analyzes, need to be carried
out [33]. Here we assume that all deletions are heterozy-
gous. Our framework could be expanded appropriately by
assuming that some deletions are located on all four chro-
mosome copies in the mixed data set. Preliminary investi-
gations showed that this would only slightly increase the
number of mappings which cannot be explained by our
approach.
A general framework to clear conflicts: description
Hence, the problem can be generally described as assign-
ing the largest set of mapping from the tumor data set to
one of the four chromosome copies in such a way that no
conflict between deletion clusters occur. More precisely,
for each overlapping component of a normal deletion
cluster c and its overlapping mappings M = {m1, …, mn}
in the tumor data set, we solve the following optimization
problem.
Problem 1 (Consistent assignment to four chromo-

some copies). Given a set M of mappings and a valid
cluster c, find a partition of M into disjoint sets T1, …,Tl,
Nc, Tc, c , D such that:
• Nc ∪ Tc contains exactly the concordant mappings

from M,
• c c c:= ∪ is a valid cluster,
• T1,…, Tlare valid clusters,
• {c′, T1, …, Tl} and Tc are consistent w.r.t. two chro-

mosome copies, and

• D is of minimal size, possibly empty.
In the description above, each Tj denotes a cluster of

mapping assigned to a tumor chromosome, Nc and Tc

denote subsets of concordant mappings from M, c
denotes a set of mappings from M added to cluster c,
and D is the set of mappings which could not be
assigned to any of the four chromosomes without creat-
ing a conflict.
The method we designed to solve this problem is

summarized in Algorithm 1.
We start from the overlapping components of the

tumor-subset, and for each component, we proceed
according to the following steps.
1) Any concordant mapping can be explained by

assuming that the read pair was sequenced from the
normal chromosome copy not carrying the deletion.
Since no other mapping can stem from this copy, this
will not influence the assignment of the discordant
mappings.
2) We say that a set of mappings supports the normal

deletion if, together with the deletion cluster from the
normal data set, they call for a single deletion. We assign
a maximal supporting subset of the discordant mappings
to the normal chromosome. Note that, instead, we could
also assign it to the respective tumor chromosome, but,
in order to minimize the number of discarded mappings,
it is better to leave as much space for further deletions
on the tumor chromosomes as possible, as adding further
mappings to a cluster refines the location and range of
the deletion it indicates.

Algorithm 1 Consistent assignment to four chromosome copiess.

Given: Set  of mappings, valid cluster .

1. Assign the

M c

  deletion to the first copy of the diploid normal chromosoome and to the first copy of the tumor chromosome.

2. Assiggn all concordant mappings  to the second copy of theN Mc ⊆   normal chromosome ( ).

3. Find a maximal set of disco

Tc := ∅
rrdant mappings  which supports the deletion, i.e., c M Nc⊆ \ cc c

c

∪  is a valid cluster.

4. Assign  to the first copy of thhe normal chromosome and refine the normal deletion clusteer  to .

5. Find a partition of the remaining mappi

c c c S′ = ∪

nngs  into disjoint sets ,  sucM N S T T T T Dc k l\ ( ) , , , ,∪ 1
1 1

1
2 2 hh that:

         are valid clusters,

   

T T T Tk l1
1 1

1
2 2, , , ,

      {  is consistent w.r.t. one chromosome ′c T Tk, , , }1
1 1 ccopy, and

        {  is consistent w.r.t. one chT Tl1
2 2, , } rromosome copy, and

  is of minimal size, possibly empty.D

3) The remaining mappings have to be assigned to the
two tumor chromosome copies, thus defining tumor-
specific deletion clusters lying close to the refined nor-
mal deletion or on the other chromosome copy. In
some cases, not all mappings can be embedded into a
consistent assignment. We compute a partitioning with
a minimal number of discarded mappings.
The result is a refined normal deletion c′, a set of

tumor-specific deletions T T T Tk l1
1 1

1
2 2, , , , and, in

some cases, a set of discarded mappings.
Obviously, steps 1 and 2 are only stated for reasons of

completeness and have not really to be carried out. Step
3 could be computed efficiently using a geometric
approach [19]. Here, we relied on a simple exhaustive
search. For step 5, we implemented a branch-and-bound
search, which finds an optimal solution in general but
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only reports the best solution found so far if the search
takes more than ten minutes. Experiments showed that
this bounding has only a minor impact on the results.
Finally, note that, instead of building on maximal valid

clusters, one could also use other models or methods,
or a pre-filtered or manually curated set of normal dele-
tions, provided that they correspond to proper deletion
clusters.

Results
The Genome Science Centre of the British Columbia
Cancer Agency generated and provided paired-end map-
ping data from different samples taken from one adeno-
carcinoma patient [23]. Genome sequence data have been
deposited at the European Genome-Phenome Archive
(EGA) [34], accession number [EBI:EGAS00000000074].
We analyzed data from a blood sample, from now

referred to as the normal data set, and from a skin
metastasis sample, referred to as the tumor data set.
The normal data set contained about 70-million concor-
dant mappings (corresponding to a 4.5-fold physical
coverage) and about 100-thousand discordant mappings
indicating a deletion in the donor. Sequenced at higher
coverage, the tumor sample contained about 160-million
concordant (16.5-fold physical coverage) and about 310-
thousand deletion mappings.

Data
Sequencing was done using the Illumina Genome Analy-
zer II, and mapping the paired-end reads onto the human
reference genome HG18 was done with the software
MAQ version 0.7.1 [25].
The lengths of the fragments obtained and processed in

a sequencing procedure are usually not all the same but
distributed around a certain value. The distribution of
the mapping lengths was used to estimate cutoffs to dif-
ferentiate between discordant mappings and concordant
mappings. We filtered for a minimum quality value of 20
(thresholds about 10-30 are commonly applied) and used
the MAQ-preprocessor provided by the GASV software
package [19] to determine the minimum (minLen) and
maximum length (maxLen) for concordant mappings.
Using the default options and parameters, minLen was
defined as the 0.1%-quantile, and maxLen as the 99.9%-
quantile. The results are summarized in Table 1.

Inconsistency of Predicted Deletions
For the different data sets under consideration, we com-
puted all maximal clusters, as defined in Methods section ,
for the given discordant mappings using GASV [19].
The normal and the tumor data were processed sepa-

rately as well as pooled. In the normal data set, we found
3,928 deletion clusters. For the tumor and the pooled
data set, the computation of the maximal clusters for

chromosomes 1, 6, 7, 10, 18 and 19 did not finish within
reasonable time due to a combinatorial explosion of the
number of maximal clusters. On the remaining chromo-
somes, we found 46,146 (tumor) and 50,887 (pooled)
deletion clusters, respectively. Deletions found in the
normal data set were assumed to be patient-specific. The
pooling results contained 44,276 clusters solely com-
posed of mappings from the tumor data set, thus indicat-
ing a candidate tumor-specific deletion. We found that
only 44 (1.1%) of the deletion clusters in the whole nor-
mal data set were involved in conflicts. In the tumor data
set and among the candidate tumor-specific deletions in
the pooled data, we found a higher level of inconsistency,
as can be seen in Table 2. Note that the very large num-
ber of overlapping clusters in the disregarded chromo-
somes in the tumor and pooled data set comprise a high
amount of conflicts, confirming this observation.
Further analysis revealed that in the tumor-subset, i.e.,

regions with closely located patient-specific and tumor-
specific deletion clusters, the level of inconsistency was
especially high: More than 70% of all putatively tumor-
specific deletions were conflicting. In general, filtering
for large deletions had no significant effect on the ratio
of conflicting clusters. This indicates that there are
inherent conflicts, not just caused by false positives can-
didate deletions.
To confirm these observations, we repeated the analysis

on the deletion clusters obtained by BreakDancer [18].
The clusters reported by this tool are not necessarily
valid according to our definition. Thus, a single cluster
can be self-conflicting, i.e., a minimal conflicting set of
size one. In Table 3, we report the number of self-con-
flicting clusters, and of those clusters contained in con-
flicting subsets of valid clusters. Again, we observe that
there are very few conflicts in the normal data, a signal of
inconsistency in the tumor data, and a higher ratio of
conflicts in the tumor-subset. In general, the number of
conflicts is lower compared to the analysis of the maxi-
mal valid clusters. This is because invalid clusters cannot
pair with other clusters and thus increase the level of
inconsistency by one. In contrast, at the same spot, sev-
eral overlapping maximal valid clusters could constitute
to larger conflicting sets, yielding a larger increase.

Consistent Explanation of the Data
We applied the method described in Algorithm 1 to the
tumor data. As our approach does not rely on computing

Table 1 Results of the preprocessing of the mapping
data (min. quality 20)

Data Set minLen maxLen conc. mappings mappings ind. a deletion

Normal 126 263 69,996,907 99,880

Tumor 90 530 158,694,096 309,134
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maximal clusters from these data (we only need to pre-
compute the maximal clusters from the normal data), all
23 chromosomes could be processed. Only 25 of the
7,579 discordant mappings in the tumor-subset had to be
discarded to remove all conflicts. From the remaining
mappings (99.7% of the total), a large majority (93.4%)
supported and refined 928 normal deletions. The remain-
ing 526 mappings defined 238 candidate tumor-specific
deletions. As can be seen in Figure 4, the range of dele-
tion length for these 238 deletion clusters lies in the
order of a few hundred bases.
In Figure 5, we show a histogram of the sizes of the clus-

ter (number of mappings) supporting these candidate
tumor-specific deletions. We can notice a large number of
small size clusters. It is however important to note that a
tumor-specific deletion might be supported by further
mappings which have been assigned to the normal dele-
tion by our greedy approach. That is why we refrained
from filtering the obtained tumor-specific clusters for a
minimal size. This raises the interesting problem to refine
and increase the support for potential tumor-specific dele-
tions by re-assigning to the tumor chromosomes map-
pings assigned to the normal chromosome.
Figure 6 illustrates the result of our method, GAS V

and BreakDancer on chromosome 2. We can notice that
Algorithm 1 agrees when both GASV and BreakDancer
call for a potential tumor-specific deletion, but detects
additional candidates that are supported by one or none
of the two other methods. Generally, Algorithm 1 agrees
more with GASV, which can be explained by the fact

that they both rely on the notion of valid clusters, unlike
BreakDancer. More precisely, any potential tumor-speci-
fic deletion found by analyzing the pooled data set with
GASV is also called by our approach. Indeed, for a given
overlapping component, if all mappings from the tumor
sample can be consistently added to the normal deletion
by Algorithm 1, then there is exactly one maximal valid
cluster found by GASV that contains all tumor and all
normal mappings, and is thus not considered as a tumor-
specific deletion. Illustrations for all chromosomes can be
found in Additional file 2.
We also looked at the refined normal deletions, i.e.,

the clusters of mappings from both the normal and
tumor data sets that agreed with a normal deletion clus-
ter. Figure 7 below shows how the deletion length and
breakpoint region were modified by including possible
mappings from the mixed data into the normal clusters.
We can observe a significant refinement of the charac-
teristics of normal deletions.
For 2,896 (75.7%) normal deletions, we did not find any

supporting mapping in the tumor data set. Further inves-
tigations revealed that almost all of these were either very
small deletions (minimal deletion size < 50), or were
defined by only two mappings in the normal data set, or
overlapped segmental duplicated regions of a chromo-
some. This suggests that they might be false positives or
that the region in the tumor data set was not sufficiently
covered (<2 overlapping concordant mappings).
However, a closer look at the many normal deletions

which were defined by only a small number of mappings

Table 3 Deletion clusters determined by BreakDancer and resulting conflicts. The numbers are obtained as described
in Table 2. We account for two types of conflicts: Invalid (and thus self-conflicting) clusters and clusters contained in
conflicting subsets of the valid clusters

Data Set Deletions Confl. Deletions Del. ≥ 20 Confl. Del. ≥ 20

Normal 949 7 + 0 (0.7%) 851 6 + 0 (0.7%)

Tumor 27,054 1,312 +102 (5.2%) 21,770 1,312 +102 (6.5%)

Tumor-Subset 476 33 + 15 (10.1%) 333 14 + 14 (8.4%)

Pooled Tumor-spec. 20,698 101 + 363 (2.2%) 16,578 50 + 250 (1.8%)

Pooled-Subset Tumor-spec. 203 1 + 12 (6.4%) 146 1 + 7 (5.5%)

Table 2 Characteristics of deletion clusters and conflicts. For each considered data set as described in the text with
the parameters given in Table 1, the number of maximal deletion clusters (found by GASV) and the number and
percentage of clusters involved in conflicts is given. Chromosomes 1, 6, 7, 10, 18 and 19 are not included this table.
(In the complete normal data set, 44 of 3,928 deletions, i.e., 1.1% were conflicting.) “Tumor-spec.” denotes the set of
putatively tumor-specific deletions extracted from a pooled analysis. A precise description of the notion of conflicts
and the method used to detect them is given in Sections ‘Haploid Conflicts’ and ‘Diploid Conflicts’

Data Set Deletions Confl. Deletions Del. ≥ 20 Confl. Del. ≥ 20

Normal 2,765 29 (1.0%) 1,338 23 (1.7%)

Tumor 46,146 14,234 (30.8%) 15,644 5,990 (38.3%)

Tumor-Subset 680 217 (31.9%) 628 206 (32.8%)

Pooled Tumor-spec. 44,276 13,644 (30.8%) 14,377 5,541 (38.5%)

Pooled-Subset Tumor-spec. 137 97 (70.8%) 125 92 (73.6%)
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from the normal data set showed that many of them are
supported by mappings from the tumor data set. For
example, Figure 8 shows that a significant number of
normal singletons (clusters of size one) are well sup-
ported by mappings from the tumor data set (that was
sequenced with a much higher coverage). This indicates
that many singletons might be true positive rather than
false positive normal deletions.

To some extent, this can be a result of the roughly
four times higher coverage of the tumor sample.
Another possible explanation for the observation of
many singletons with a significantly high support by the
tumor data might be a contaminated normal sample: If
the normal sample contained only very few tumor cells,
then, in the sequencing process, some tumor-specific
deletions might have been sequenced with very low
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coverage, resulting in only a few or even single discor-
dant read pairs calling these deletions. In contrast, the
cancer sample contained many more tumor cells, yield-
ing a high coverage and thus high support for the same
deletions. Recall that the tumor sample was actually
taken from a skin metastasis. Since cancer spreads via
the lymphatic system or the bloodstream, this also sup-
ports the hypothesis. In all cases, this points to candi-
date tumor-specific deletions and specific cases that
might require improved detection methods. So here
again, the question of assigning the mappings from a
contaminated (by non-tumor cells) tumor sample
between the normal and tumor chromosomes copies
comes naturally to mind.

Conclusion
We analyzed two data sets obtained from different tis-
sues of the same patient: A tumor and a normal sample.
Paired-end reads were mapped to a reference genome
and discordant mappings were assembled to maximal

valid clusters calling for deletions (using GASV [19]).
These deletions were then analyzed in terms of consis-
tency: Can all mappings and deletions be explained by
assuming that all read pairs were read from the mapped
positions in a diploid set of chromosomes? We
described a simple combinatorial model of deletion con-
sistency that refines the previous work of [24]. We
found that, in this model, the deletions predicted for the
normal data are almost consistent. In contrast, the
tumor data set showed a higher level of inconsistency.
For those regions of the genome harboring a normal
deletion, we found the highest rate of conflicting dele-
tions among putatively tumor-specific deletions. We
thus focused our study on this tumor-subset.
Usually a tumor sample also contains normal cells.

Thus, instead of a diploid set of chromosomes, we expect
four copies of each chromosome (diploid normal and
diploid tumor genome). Based on this assumption, and
our consistency model, we described the problem of con-
sistent explanation of the data as an optimization
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problem and described a method to solve it. Applying
this method on our data, we were able to explain almost
all the considered mapping data in a consistent way.
Only very few mappings could not be explained (0.3%),
most of the mappings supported inherent normal dele-
tions (92.7%), and 6.9% were clustered to 238 tumor-spe-
cific deletions.
Summarized, we revealed that deletion calls obtained

by standard methods possess a high rate of inconsistency,
and we present a model that, even though built on strict
assumptions, such as diploidy of the genomes and each
deletion cluster spanning exactly one deletion, allows for
an almost consistent explanation of the data.
Although these results look promising, they raise some

questions. Possible reasons for false positive deletion calls
and thus inconsistencies are misleading pairs of reads, for
instance caused by chimeric fragments in the sequencing
procedure, or erroneous mappings, for instance caused
by repeated regions in the genome. Even though we fil-
tered for unambiguous mappings of high quality, some
wrong mappings were probably left. Introducing read
error-correction in the general process of mapping
assignment is a natural extension. Next, it is not unlikely
to find polyploid chromosomes with three or more copies
in tumor cells. Furthermore, the sample could contain
cells from different tumor lineages—also indicating a
higher copy number. Certainly, assuming further chro-
mosome copies, all mappings could eventually be
assigned consistently. However, including copy number
information to refine the assumptions would be a first

way to bring our model closer to reality. And, as already
mentioned, our model does not include loss of heterozyg-
osity (LOH) so far. Regions which remain in conflict
might also be putative LOH sites.
Another approach to explain more mappings is to

relax the definition of consistency. In particular, the
assumption that each cluster only spans exactly one
deletion is mainly of technical origin and arguable. If we
would allow any deletion being split into any number of
smaller fragments, the problem complexity would
increase. However, we believe the problem might be
somewhat tractable for an intermediate model where at
most k splits are allowed.
One issue which is not addressed by our study so far is

the discrimination of heterozygous and homozygous dele-
tions. A deletion affecting only one copy of a chromosome
allows further deletions on the second copy. In contrast, a
homozygous deletion residing on both copies, might also
occur on both copies of the tumor chromosomes, leaving
only limited space for further, tumor-specific deletions.
This creates a higher potential for conflicts. Hence, any
mis-classification as homozygous could falsely increase the
number of discarded mappings dramatically. We currently
investigate how homozygosity can be securely included
into our method. A possible approach would be to first
consider normal deletions as heterozygous, as we do in
the present work, then to analyze each configuration pro-
duced by our method (a set of mappings defining a refined
normal deletion and possible closely located tumor-speci-
fic deletions) and to investigate the homozygous/
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heterozygous issue in a post-processing phase. Such a
post-processing could also address the issue of re-assign-
ing mappings from the normal chromosomes to the
tumor chromosomes that we raised in discussing our
results. More generally, our approach is more intended to
provide a first level of conflict clearing and to highlight
potential region where tumor-specific deletions could have
occurred close to a normal deletion. Post-processing the
results of our method to refine them, without re-creating
conflicts, would be a natural extension.
We also plan to extend our framework to cover over-

lapping normal deletions and other more complicated
cases which we discarded so far. Although these only
constitute a minority (2.9% of the normal deletions),
their complex structure might comprise a lot of conflicts
and is thus worth to study.
Next, the combinatorics of mappings, clusters and

conflicts is still very poorly understood and require
further investigation, in particular to find properties that
will lead to efficient algorithms to detect conflicts. Also,
several combinatorial optimization problems we consid-
ered in the present work still await for efficient algo-
rithms (formally stated in Appendix A).
In general, paired-end mapping approaches can be

used to analyze different types structural variations.
Deletions certainly belong to the simplest classes, well
suitable as a starting point to study structural variation,
but far from representing the whole spectrum of cancer
development. As a next step, we intend to include
further types of variations to approach a more complete
model, which will however require combinatorial
developments.

Appendix A: Statements of algorithmic and
combinatorial optimization problems
Problem 1: Detection of minimal conflicting sets.
Given: Set of mappings M, set of valid clusters C.
Task: Find all minimal conflicting subsets of M ∪ C w.

r.t. a diploid genome.
Remark: General, but exponential time, techniques

were described in [26,27], for the different problem of
reconstructing ancestral genomes and gene clusters, but
they can be applied for deletion clusters. As far as we
know, ad-hoc approaches for the specific case of dele-
tion clusters have not been investigated.
Problem 2: Test for consistency of clusters in the

haploid case allowing for splitting each given dele-
tion into k smaller deletions.
Given: Set of clusters C.
Task: Find (if existing) a set D of positions such that

for each cluster c Î C:
• delMin(c) ≤ |D ∩ br(c)| ≤ delMax(c), and
• D ∩ br(c) is a set of at most k intervals.

Remark: The set D represents the genomic positions
deleted in the donor genome. Strictly speaking, positions
onto which any read maps have to be excluded from D.
To simplify the verification one can simply discard all
these position in general and adjust delMin(c), delMax
(c) and br(c) for each cluster c correspondingly.
Problem 3: Finding a maximum set of concordant

mappings for a deletion cluster
Given: Set of discordant mappings Md, valid deletion

cluster c.
Task: Find a maximum subset c of Md such that

c c∪ is a valid cluster.
Remark: The geometric framework described in [19]

allows to solve this problem.
Problem 4: Consistent assignment to four chromo-

some copies.
Given: Set of mappings M, valid cluster c.
Task: Find a partition of M into disjoint sets

T T T Tk l1
1 1

1
2 2, , , , , D such that:

• T T T Tk l1
1 1

1
2 2, , , , are valid clusters,

• { , , , }c T Tk1
1 1 is consistent w.r.t. one chromosome

copy, and
• { , , }T Tl1

2 2 is consistent w.r.t. one chromosome
copy, and
• D is of minimal size, possibly empty.

Additional material

Additional file 1: Implementation of the method to find a
consistent explanation for a (mixed) tumor-subset under
consideration of associated normal data (Algorithm 1).
Implementation of the method to find a consistent explanation for
a (mixed) tumor-subset under consideration of associated normal
data (Algorithm 1). This ZIP-archive contains the main algorithm
and a converter as Java Archives (JARs), and a text file with
detailed instructions.

Additional file 2: Illustration of deletion clusters inferred by
Algorithm 1, GASV and BreakDancerIllustration of deletion clusters
inferred by Algorithm 1, GASV and BreakDancer. Note that many
deletions in close proximity may appear as a single dot, and the
size of a dot is in general larger than the respective deletion. For
some data sets, the computation of all maximal clusters was
infeasible. This ZIP-archive contains a PDF file for each
chromosome.

List of abbreviations
LOH: Loss of Heterozygosity.
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