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Abstract

In this paper we study the problem of sorting unsigned genomes by double-cut-and-join operations, where
genomes allow a mix of linear and circular chromosomes to be present. First, we formulate an equivalent
optimization problem, called maximum cycle/path decomposition, which is aimed at finding a largest collection of
edge-disjoint cycles/AA-paths/AB-paths in a breakpoint graph. Then, we show that the problem of finding a largest
collection of edge-disjoint cycles/AA-paths/AB-paths of length no more than l can be reduced to the well-known
degree-bounded k-set packing problem with k = 2l. Finally, a polynomial-time approximation algorithm for the
problem of sorting unsigned genomes by double-cut-and-join operations is devised, which achieves the
approximation ratio 13

9 1 4444+ ≈ +e e. , for any positive ε. For the restricted variation where each genome
contains only one linear chromosome, the approximation ratio can be further improved to 69

49 1 4082+ ≈ +e e. .

Introduction
A fundamental problem in the study of genome rearran-
gements is to compute the genomic distance between
two genomes based on their gene orders, where the
genomic distance is generally defined as the minimum
number of evolutionary operations necessary to trans-
form one genome to another. This problem has been
extensively studied in the last two decades [1-4].
The choices of genome evolutionary operations include

reversals (also called inversions), translocations, fissions,
fusions, transpositions and block-interchanges. To unify
all these classical operations, Yancopoulos et al [4] intro-
duced a single operation, called double-cut-and-join
(DCJ). It basically cuts a genome in two places and then
joins the resulting four ends in a new way. Noticeably,
computing the genomic distance based on DCJ opera-
tions can be applied between two genomes that allow a
mix of linear and circular chromosomes to be present.
The complexity of computing the genomic distance

between two genomes seems to largely depend on the

availability of gene strand information rather than on
the choice of evolutionary operations. For instance, the
problem of sorting by reversals is tractable when gene
strand information is available [5,6], but becomes
intractable once gene strand information is not available
[7]. The same conclusion also applies to the problem of
sorting genomes by the double-cut-and-join operations.
The DCJ operation was initially introduced to sort two
signed genomes in [4,8], where a simple formula was
derived to compute the genomic distance in linear time.
It was recently used to sort two unsigned genomes in
[9,10]; in this case, one instead has to tackle an NP-hard
optimization problem.
To tackle an NP-hard optimization problem, it is of

highly practical interest to develop a polynomial-time
approximation algorithm with provable performance
guarantee. For the problem of sorting by double-cut-and-
join operations, in the case of unsigned uni-chromosome
genomes, Chen presented in [9] an approximation algo-

rithm with a performance ratio of 17
12 1 4167+ ≈ +e e. ,

for any positive ε. In the case of unsigned linear gen-
omes, Jiang et al [10] recently devised a 1.5-approxima-
tion algorithm.
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In this paper we study the problem of sorting unsigned
genomes by double-cut-and-join operations in the more
general case where genomes allow a mix of linear and
circular chromosomes to be present. The main goal is to
devise a polynomial-time approximation algorithm for
this NP-hard problem. To this end, we first formulate a
new and equivalent combinatorial optimization problem,
called maximum cycle/path decomposition, which is
aimed at finding a largest collection of edge-disjoint
cycles/AA-paths/AB-paths in the breakpoint graph con-
structed from two input genomes. Then, we show that
the problem of finding a largest collection of edge-dis-
joint cycles/AA-paths/AB-paths of length no more than l
in the breakpoint graph can be reduced to the well-
known degree-bounded k-set packing problem, where k =
2l. Finally, we present a polynomial-time approximation
algorithm for the problem of sorting unsigned genomes
by DCJ operations and then obtain its approximation
ratio 13

9 1 4444+ ≈ +e e. , for any positive ε. To our best
knowledge, it is the first polynomial-time approximation
algorithm of this kind.

Methods
Preliminaries
Genes, chromosomes, and genomes
A gene is a stretch of DNA with two ends: the 3′ end and
the 5′ end. Both are called the extremities of a gene. A
chromosome is a single double-stranded DNA molecule
that contains a sequence of genes. It can be either a linear
molecule or a circular molecule. For a linear chromo-
some, there is a telomere marker located at each of its
two ends. A genome is the whole collection of chromo-
somes in a cell. For example, the following gives a gen-
ome containing two linear chromosomes and one
circular chromosome.
Genome A = {(o, a, c, d, o), (b, e), (o, f, g, o)}
Here we use the symbol ‘o’ to represent a telomere

marker, further indicating that the corresponding chro-
mosome is linear. An unsigned alphabetical symbol is
used to represent a gene for which the 3′ end and 5′ end
are not yet identified. Accordingly, a genome in this
representation is called unsigned. On the other hand, if
every gene is represented as a signed symbol where the
sign indicates which extremity is the 3′ end (and the
other extremity must be the 5′ end), then the corre-
sponding genome is called signed. For a signed genome,
Bergeron et al [8] introduced a new and equivalent repre-
sentation, which is a set of adjacencies between extremi-
ties from different genes or between telomeres and
extremities. For example, we may represent a signed gen-
ome

A o a c d o b e o f g o= − + + + + + +{( , , , , ),( , ),( , , , )}

as

A o a a c c d d o b e e b o f ft h h t h t t h t h h= {{ , },{ , },{ , },{ , },{ , },{ , },{ , },{ tt h tg g o, },{ , }}

where ah and at represents the 5′ end and 3′ ends of
gene a, respectively.
Sorting by double-cut-and-joins
The double-cut-and-join (DCJ) is an operation that cuts a
genome in two places and joins the resulting four ends in
a new way. Specifically, the cuts are applied between two
adjacent extremities from different genes, between a telo-
mere and its adjacent gene extremity, or between the two
extremities of a null chromosome if necessary. The DCJ
operation was first introduced by Yancopoulos et al [4]
and later refined by Bergeron et al [8] to unify all the
classical genome rearrangement events including inver-
sions, translocations, fissions, fusions, transpositions,
block-interchanges, circularization and linearization.
Given two unsigned genomes A and B on the same set

of genes, the problem of sorting unsigned genomes by
DCJ operations (UDCJ) is defined to find a shortest
sequence of DCJ operations that transform one genome
into the other. The length of such a sequence is called
the double-cut-and-join distance between two genomes
A and B, and denoted by dDCJ(A, B).
Example 1. Let two unsigned genomes be

A o a c d o b e o f g o

B a b o c d o o e o

=
=

{( , , , , ),( , ),( , , , )},

{( , ),( , , , ),( , , ),,( , )}.f g

Genome A has two linear chromosomes and one circu-
lar chromosome, while genome B has two linear chromo-
somes and two circular chromosomes. Sorting A into B
can, for example, be done in the following four DCJ
operations, where the places to be cut are underlined:

A o a c d o b e o f g o

o e b a c d o o

= {( , , , , ),( , ),( , , , )}

{( , , , , , , ),( ,

 

      ff g o

a b o e c d o o f g o

a b o

, , )}

{( , ),( , , , , ),( , , , )}

{( , ),(

       

     ,, , , , ),( , ),( , )}

{( , ),( , , , ),( , , ),( , )}

e c d o f g o o

B a b o c d o o e o f g

  

= ..

We will see later that at least four DCJ operations are
needed to transform one genome into the other. Therefore,
the DCJ distance between A and B is dDCJ(A, B) = 4.
The degree-bounded k-set packing problem
Given a base set S and a collection S of subsets of S, the
set packing problem asks for the maximum number of
pairwise disjoint subsets in S. The k-set packing problem
is a restricted variant of the set packing problem where
every subset in S has size at most k. If in addition the
number of occurrences in S of any element is upper
bounded by a constant Δ, then it reduces to the degree-
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bounded k-set packing problem. The following theorem
states the best-to-date approximability and its detailed
proof can be found in [11].
Theorem 2 ([12]). The degree-bounded k-set packing

problem can be approximated within ratio 3
1k+ − e in

polynomial time, for any positive ε.
This algorithm is denoted by APPROX-SP(k, Δ) and

will be used in our approximation for computing the DCJ
distance between two unsigned genomes. Its running
time complexity is no k( log ).

,e − Δ2 6 2 as shown in [11].

Basic facts
The breakpoint graph
The breakpoint graph (also called edge graph or compari-
son graph) is first introduced in [1] and widely used to
compute the genomic rearrangement distances. Let A and
B be two unsigned genomes defined on the same set of n
genes containing;lA and lB linear chromosomes, respec-
tively. We construct the breakpoint graph G(A, B) = (V, E
= Eb ∪ Eg) as follows. Each vertex in |V| corresponds to a
distinct gene or a telomere, so |V| = n + 2lA + 2lB. Every
adjacency in A forms a black edge belonging to Eb and
every adjacency in B forms a gray edge belonging to Eg. It
is easy to see that |Eb| = n + lA, |Eg| = n + IB, and |E| = 2n
+ lA + lB. Moreover, every telomere of genome A (resp.
genome B) has degree one and is incident to a black (resp.
gray) edge, whereas every gene has degree four and is inci-
dent to two black and two gray edges. For short, a telo-
mere of genome A is referred to as an A-telomere, and a
telomere of genome B as a B-telomere. Note that the
number of A-telomeres is not necessarily equal to the
number of B-telomeres in a breakpoint graph.
Example 3. Consider the two unsigned genomes A and B

given in Example 1, where lA = 2 and lB = 2. The break-
point graph G(A, B) = (V, E = Eb ∪ Eg) is depicted in
Figure1, in which |V| = 15, |Eb| = 9, |Eg| = 9, and |E| = 18.
The cycle/path decomposition
A cycle/path in the breakpoint graph G(A, B) is called
alternating if its edges are alternatively black and gray.
From now on, whenever we mention cycles/paths in a
breakpoint graph, they are alternating and edge-disjoint.
A path is called an AA-path (resp. BB-path) if it con-
nects two A-telomeres (resp. two B-telomeres) or an
AB-path if it connects an A-telomere and a B-telomere.
The length of a cycle/path is referred to as the number
of black edges that it contains.
Since every telomere vertex has degree one and every

gene vertex has two incident black edges and two inci-
dent gray edges, there always exists a cycle/path decom-
position of G(A, B) into edge-disjoint cycles, AA-paths,
AB-paths and BB-paths. A maximum cycle/path decom-
position refers to a cycle/path decomposition that con-
tains the maximum number of edge-disjoint cycles, AA-

paths and AB-paths. Note that this maximum number
does not take into account any BB-paths. The maximum
cycle/path decomposition problem is hence defined as the
problem of finding such a maximum cycle/path decom-
position of a breakpoint graph. See Figure 2 for an
example.
Sorting signed genomes
Before proceeding to study the problem of sorting
unsigned genomes by DCJ operations, we take a first
look at the case of signed genomes. Note that the above
concept of breakpoint graph extends naturally to two
signed genomes A and B It can be done by replacing

c d

f g

a

eb

Figure 1 A breakpoint graph between two genomes. The input
two genomes are A = {(o, a, c, d, o), (b, e), (o, f, g, o)} and B = {(a,
b), (o, c, d, o), (o, e, o), (f, g)}. The solid dots, hollow circles and
squares are vertices representing genes, the telomere markers of
genome A and of genome B, respectively. The solid and dashed
lines are used to represent black and gray edges, respectively.

b

d

f g

a

e

c

Figure 2 A maximum cycle/path decomposition of the
breakpoint graph depicted in Figure1. It consists of two cycles,
one AA-path, two AB-paths and one BB-path. Hence, we obtain c =
2, IAA = 1 and IAB = 2 so that dDCJ = 4.
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each signed gene by its two (unsigned) extremities in the
relative order. Yancopoulos, et al. [4] further proposed to
close each AA-path into a cycle by adding a gray edge
connecting two A-telomeres, close each BB-path into a
cycle by adding a black edge connecting two B-telomeres,
and close each AB-path into a cycle by identifying the A-
telomere and B-telomere (with the B-telomere elimi-
nated). As is customary, no edge is drawn between two
extremities of the same gene in the breakpoint graph.
Given a breakpoint graph for two signed genomes A

and B we note that its cycle/path decomposition is
unique and trivial because every vertex in G A B( , ) has
degree at most two. The following theorem implies that
computing the DCJ distance between two signed gen-
omes can be done in linear time.
Theorem 4 ([4]). Let A and B be two genomes defined

on the same set of n genes, then we have

d A B b cDCJ( , ) = −

where b is the number of black edges and c the number

of cycles in the breakpoint graphG A B( , )after closing all
the paths into cycles.
Sorting unsigned genomes
Theorem 7 that we will present below establishes the
connection between the cycle/path decomposition of a
breakpoint graph and the DCJ distance between two
unsigned genomes. Its proof uses the following two lem-
mas (i.e., Lemmas 5 and 6).
Lemma 5. For every cycle/path decomposition of G(A,

B), there exists a signed version A and B of genomes A
and B such that

d A B b c I IDCJ AA AB( , ) ( ).= − + +

where b is the number of black edges in the breakpoint
graph G(A, B) and c (resp. IAA and IAB) is the number of
cycles (resp. AA-paths and AB-paths) in the given cycle/
path decomposition of G(A, B).
Proof. Note that every gene vertex would be visited

twice if we traverse all the cycles/paths in a fixed cycle/
path decomposition of G(A, B). When a gene vertex
(e.g., gene a) is visited for the first time, we may assume
that we are visiting the 5′ end of the gene (denoted as
ah). When it is visited for the second time, we may
assume that we are visiting the 3′ end of the gene
(denoted as at). To obtain a signed genome A (repre-
sented as a set of adjacencies), we form an adjacency for
every two extremities (or one extremity and one A-telo-
mere) that are connected by a black edge in the given
cycle/path decomposition. Similarly, to obtain a signed
genome B, we form an adjacency for every two extre-
mities (or one extremity and one B-telomere) that are

connected by a gray edge in the given cycle/path
decomposition. It is easy to see that the resulting gen-
omes A and B are the signed version of genomes A
and B, respectively.
Moreover, the breakpoint graph G A B( , ), before clos-

ing its paths into cycles, preserves all the cycles/paths
from the given cycle/path decomposition of G(A, B)—
that is, there are still b black edges, IAA AA-paths, IAB
AB-paths and IBB BB-paths. After closing paths into
cycles, the breakpoint graph G A B( , ) would have
b b IBB= + black edges (as we close each BB-path into
a cycle by adding one black edge) and
c c I I IAA AB BB= + + + cycles. It hence follows from
Theorem 4 that

d A B b c b I c I I I b c I IDCJ BB AA AB BB AA AB( , ) ( ) ( ).= − = + − + + + = − + +

Lemma 6. For every signed version A and B of genomes
A and B, there exists a cycle/path decomposition of G(A,
B) such that

d A B b c I IDCJ AA AB( , ) ( ).= − + +

where b is the number of black edges in the breakpoint
graph G(A, B) and c (resp. IAA and IAB) is the number of
cycles (resp. AA-paths and AB-paths) in this cycle/path
decomposition of G(A, B).
Proof. Observe that we would obtain the breakpoint

graph G(A, B) if we combine two extremity vertices of a
same gene into a single vertex in the breakpoint graph
G A B( , ) (before closing paths into cycles).
Therefore, the trivial cycle/path decomposition of

G A B( , ) naturally gives rise to a cycle/path decomposition
of G(A, B) which preserves the same numbers of black
edges/cycles/AA-paths/AB-paths/BB-paths (denoted as b,
c, IAA, IAB and IBB, respectively). After closing paths into
cycles, the breakpoint graph G A B( , ) would have
b b IBB= + black edges and c c I I IAA AB BB= + + +
cycles, as justified in the preceding lemma. By Theorem 4,
we then have d A B b c b c I IDCJ AA AB( , ) ( ).= − = − + +
Theorem 7. Let A and B be two unsigned genomes

defined on the same set of genes. Then, we have
dDCJ(A, B) = b – (c + IAA + IAB)
where b is the number of black edges in G(A, B) and c

(resp., IAA and IAB) is the number of cycles (resp., AA-
paths and AB-paths) in a maximum cycle/path decompo-
sition of G(A, B).
Proof. Let us consider a maximum cycle/path decom-

position of G(A, B). By Lemma 5, we would obtain a
signed version A and B of genomes A and B such that
d A B b c I IDCJ AA AB( , ) ( ).= − + + It means that genome

A can be transformed into genome B with a sequence
of d A BDCJ( , ) DCJ operations. Observe that this same
sequence of DCJ operations can be also used to
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transform genome A into genome B. It hence follows that
d A B d A B b c I IDCJ DCJ AA AB( , ) ( , ) ( ).≤ = − + +
Assume now that a sequence of dDCJ(A, B) DCJ opera-

tions can be applied to transform genome A into gen-
ome B. Let A be a signed version of genome A in
which all genes are positive. We then apply the same
sequence of dDCJ(A, B) DCJ operations to the signed
genome A. The resulting genome B would be genome
B if we disregard all the gene signs; in other words, B
shall be a signed version of genome B. Thus,
d A B d A BDCJ DCJ( , ) ( , ).≥ On the other hand, by Lemma
6, there exists a cycle/path decomposition of G(A, B)
such that d A B b c I IDCJ AA AB( , ) ( ).≥ − + + Thus, dDCJ

(A, B) ≥ b – (c + IAA + IAB).

Results
The approximation algorithm
Note that, for a given pair of genomes, the number of
black edges is fixed without regard to any cycle/path
decomposition. Theorem 7 hence suggests a way to
approximate the DCJ distance between two unsigned
genomes via maximizing the number of cycles/AA-
paths/AB-paths in a cycle/decomposition of the break-
point graph. To do so, our proposed approximation
algorithm performs three subroutines to find edge-dis-
joint cycles/paths of length one, of length two, and of
length no more than three, respectively.
Finding edge-disjoint cycles/paths of length one
Lemma 8. There exists a maximum cycle/path decompo-
sition of G(A, B) which contains a largest collection of
edge-disjoint cycles/AA-paths/AB-paths of length one.
Proof. Let C be a maximum cycle/path decomposition of

G(A, B) and C1 a largest collection of edge-disjoint cycles/
AA-paths/AB-paths of length one in G(A, B). If C3 is a
cycle/AA-path/AB-path contained in C1 but not in C
(please refer to Figure 3), then the maximum cycle/path
decomposition C shall contain the cycles/paths C1 and C2

(note that they are not necessarily distinct). In this case,
we would modify the maximum cycle/path decomposition

C as follows: take one gene vertex of the only black edge
of C3 and re-connect its incident black edges and gray
edges in a new way. Consequently, C1 and C2 would be
replaced by the two distinct cycles/paths C3 and C4 in C.
Suppose by contradiction that the above modification
decreases the number of cycles/AA-paths/AB-paths so
that the new C is no longer a maximum cycle/path
decomposition. Note first that this would happen only
when C1 and C2 are two distinct cycles/AA-paths/AB-
paths but C4 is a BB-path. Since no AA-path in G(A, B)
could be of length one, C3 is either a cycle or an AB-path.
Hence, C3 and C4 together use at least two B-telomeres
and at most one A-telomere, and so do C1 and C2

together. Since neither C1 nor C2 is a BB-path, they
together shall use A-telomeres no less than B-telomeres,
contrasting the previously established fact that they
together use at least two B-telomeres and at most one A-
telomere. Continue this process with the remaining
cycles/AA-paths/AB-paths that are contained in C1 but
not in C. It would necessarily end up with a maximum
cycle/path decomposition that contains a largest collection
of edge-disjoint cycles/AA-paths/AB-paths of length one.
It is worth noticing that there might be no maximum

cycle/path decomposition of G(A, B) which could con-
tain all the cycles/AA-paths/AB-paths of length one.
Lemma 9. The problem of finding a largest collection

of edge-disjoint cycles, AA-paths and AB-paths of length
one in the breakpoint graph G(A, B) is solvable in poly-
nomial time.
Proof. We can transform a problem instance of finding

a largest collection of edge-disjoint cycles/AA-paths/AB-
paths of length one into an instance of the 2-set packing
problem, where the base set S contains all the edges of
G(A, B) and each subset of the collection S is comprised
of edges of a cycle/AA-path/AB-path of length one in G
(A, B). The 2-set packing problem can be reduced to
the maximal matching problem which is well-known to
be solvable in polynomial time by a simple greedy algo-
rithm [13].

(II)

(I) C1

C2

C1

C2

C3

C4

C3
C4

Figure 3 Two possible cases of the cycles/paths C3 of length one. (I) a cycle, and (II) an AB-path.
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Following Lemma 9, we assume from now on that
there does not exist any cycle/AA-path/AB-path of
length one in the breakpoint graph G(A, B).
Finding edge-disjoint cycles/paths of length two or three
The following lemma gives an upper bound on the num-
ber of distinct cycles/paths of length less than or equal to
l that traverse a common edge. Although this upper
bound is no way the tight one, it is already enough for
our purpose to devise an approximation algorithm.
Lemma 10. Every edge in the breakpoint graph G(A, B)

belongs to at most (22l+1 × l2) distinct cycles/AA-paths/
AB-paths of length less than or equal to l.
Proof. Let us consider a breadth-first traversal of edges

in the breakpoint graph G(A, B) that starts at a given
edge e, and then count all the cycles/AA-paths/AB-paths
of length less than or equal to l that use the edge e. Note
that every vertex is incident to at most two black edges
and at most two gray edges and also that every edge is at
distance at most (2l – 1) from another edge of the same
cyle/path of length less than or equal to l. The traversal
of every such cycle/path will end at two edges at distance
i and j from the root edge e, respectively, such that i ,j ≥
0 and i + j ≤ 2l – 1. If we fix values for i and j, there are
at most 2i × 2j = 2i+j ≤ 22l–1 cycles/paths whose traversals
end at two edges in distance i and j from the root edge e,
respectively. For all the combinations of values i and j
such that i ≤ 2l – 1 and j ≤ 2l – 1, there are at most 2l ×
2l × 22l–1 = 22l+1 × l2 cycles/paths to be reached; in other
words, there are at most 22l+1 × l2 cycles/paths of length
less than or equal to l that use the edge e.
To find a largest collection of edge-disjoint cycles/

paths of length no more than l, we may construct a col-
lection S of subsets of the base set S, where S is com-
prised of all the edges in G(A, B) and each subset of S is
comprised of edges of a distinct cycle/AA-path/AB-path
of length no more than l in G(A, B). Then, we obtain an
instance (S, S) of the k-set packing problem where k =
2l. Further by the above lemma, we obtain the following
observations.
Corollary 11. Finding a largest collection of edge-disjoint

cycles/AA-paths/AB-paths of length two can he trans-
formed into an instance of the degree-bounded 4-set pack-
ing problem.
Corollary 12. Finding a largest collection of edge-disjoint

cycles/AA-paths/AB-paths of length no more than three
can he transformed into an instance of the degree-bounded
6-set packing problem.
It is worth noting that, if, as previously done in [10]

on the breakpoint graph, all the paths are closed into
cycles to make a maximum cycle decomposition instead
of a maximum cycle/path decomposition, we would not
know whether the above corollaries (and hence our
approximation algorithm proposed later) are still valid.
Two lemmas below further follow from Theorem 2.

Lemma 13. The problem of finding a largest collection
of edge-disjoint cycles/AA-paths/AB-paths of length two
in the breakpoint graph G(A, B) can be approximated
with ratio 3

5 − e in polynomial time, for any positive ε.
Lemma 14. The problem of finding a largest collection

of edge-disjoint cycles/AA-paths/AB-paths of length no
more than three in the breakpoint graph G(A, B) can be
approximated with ratio 3

7 − e in polynomial time, for
any positive ε.
Algorithm details
Let A and B be two unsigned genomes defined on the
same set of genes. Given a breakpoint graph G(A,B), our
proposed algorithm for the cycle/path decomposition is
summarized below:
1. Find a largest collection C1 of cycles/AA-paths/AB-

paths of length one by a greedy algorithm;
2. Remove from the breakpoint graph all the edges

used by the cycles/AA-paths/AB-paths of C1;
3. Find a collection C2 of cycles/AA-paths/AB-paths of

length two by Algorithm APPROX-SP(k, Δ);
4. Find a collection C3 of cycles/AA-paths/AB-paths of

length no more than three by Algorithm APPROX-SP(k,
Δ);
5. Decompose the remaining edges arbitrarily into a

collection C4 of cycles/AA-paths/AB-paths/BB-paths;
6. Output either C1 ∪ C2 ∪ C4 or C1 ∪ C3 ∪ C4,

depending on which one has the larger size.
For a maximum cycle/path decomposition, let r2

denote the number of cycles/AA-paths/AB-paths of
length two, r3 the number of cycles/AA-paths/AB-paths
of length three, and r′ the total number of cycles/AA-
paths/AB-paths. Let r be the total number of cycles/AA-
paths/AB-paths in the cycle/path decomposition
returned by our proposed algorithm. The cycles/AA-
paths/AB-paths of length one are all excluded from the
above counts since it would not affect the worst-case
algorithmic performance. We find the worst-case
approximation ratio of our algorithm by solving the fol-
lowing optimization problem:

max
’

,

,

( ) ’

b r
b r
r r r

r r r

r r

b r r

−
−
+ ≤

≤ + +

− ≤

− −

subject to 2 3

2 3
2 3

4

3
5 2

2 3

e ,,

( )( ) ’,

,
, .

3
5 2 3

2 3

1
0

− + ≤

≥
≥

e r r r

b
r r             

The second constraint is due to the fact that every
cycle/AA-path/AB-path of length four or larger uses at
least four black edges. The third and fourth constraints
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follow from Lemmas 13 and 14, respectively. By solving
the above fractional linear programming problem
(please refer to Lemma 2.3 of [14]), we would obtain the
maximum objective function value being 13

9 + e , which
indeed gives the performance ratio of our proposed
algorithm.
Theorem 15. The problem of sorting unsigned genomes

by DCJ operations can be approximated within
ratio 13

9 1 4444+ ≈ +e e. in polynomial time, for any
positive ε.
Sorting unsigned permutations
A genome can be represented as an unsigned permuta-
tion when it contains only one linear chromosome. For
this restricted case, we can improve the approximation
ratio further by applying the following result from [14]
in place of Lemma 13.
Lemma 16 ([14]). Let A and B be two unsigned uni-

chromosome genomes. The problem of finding a largest
collection of edge-disjoint cycles/AA-paths/AB-paths of
length two in the breakpoint graph G(A, B) can be
approximated with ratio 5

7 − e in polynomial time, for
any positive ε.
In view of this lemma, the third constraint in the

above fractional linear programming problem can be
replaced by the inequality ( ) ,5

7 2− ≤ ′e r r which hence
leads to the following theorem.
Theorem 17. The problem of sorting unsigned permu-

tations by DCJ operations can be approximated within
ratio 69

49 1 4082+ ≈ +e e. in polynomial time, for any
positive ε.

Conclusions
Since the introduction of the NP-hard problem of sort-
ing unsigned genomes by double-cut-and-join opera-
tions in [9], the polynomial-time approximation
algorithms have been developed only under two
restricted genome models. The first one is intended for
sorting uni-chromosome genomes and its best-to-date
performance ratio is 17

12 1 4167+ ≈ +e e. , for any posi-
tive ε [9]. The second one is intended for sorting linear
genomes and its best-to-date performance ratio is 1.5
[10]. In this paper, we have presented an approximation
algorithm for the problem of sorting unsigned genomes
by double-cut-and-join operations in the general case
where genomes allow a mix of linear and circular chro-
mosomes to be present. The performance ratio thus
achieved is 13

9 1 4444+ ≈ +e e. , for any positive ε. In
addition, for the first restricted genome model men-
tioned above, an improved performance ratio of
69
49 1 4082+ ≈ +e e. is also achieved. However, the pro-
posed algorithm is mainly of theoretical interest rather
than the practical use, due to its huge factor polynomial
running time no( ).

.e −2 6

Conceptually, our proposed algorithm operates in the
same spirit as many previous algorithms for approximat-
ing the genomic distance via genome rearrangement
operations [1,10,14,15]. However, when we began this
work, it was not clear whether the problem of finding a
largest collection of edge-disjoint cycles/AA-paths/AB-
paths of length two or three can be reduced to a degree-
bounded k-set packing problem (rather than a general k-
set packing problem). In this paper we established this
reduction, which then leads to the improved approxima-
tion ratios.
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