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Abstract

Background: Protein-protein interaction (PPI) is an important biomedical phenomenon. Automatically detecting
PPI-relevant articles and identifying methods that are used to study PPI are important text mining tasks. In this
study, we have explored domain independent features to develop two open source machine learning frameworks.
One performs binary classification to determine whether the given article is PPI relevant or not, named “Simple
Classifier”, and the other one maps the PPI relevant articles with corresponding interaction method nodes in a
standardized PSI-MI (Proteomics Standards Initiative-Molecular Interactions) ontology, named “OntoNorm”.

Results: We evaluated our system in the context of BioCreative challenge competition using the standardized data
set. Our systems are amongst the top systems reported by the organizers, attaining 60.8% F1-score for identifying
relevant documents, and 52.3% F1-score for mapping articles to interaction method ontology.

Conclusion: Our results show that domain-independent machine learning frameworks can perform competitively
well at the tasks of detecting PPI relevant articles and identifying the methods that were used to study the
interaction in such articles.

Availability: Simple Classifier is available at http://sourceforge.net/p/simpleclassify/home/ and OntoNorm at http://
sourceforge.net/p/ontonorm/home/.

Introduction
Protein-protein interactions (PPI) are responsible for
many biological phenomena. Understanding these inter-
actions can greatly benefit biological research; for exam-
ple, it can help us understand causes of certain diseases
which can in turn lead to development of therapeutic
interventions. A case of significance of protein-protein
interactions can be seen for the BRCA1 and BARD1
proteins, which have been reported to interact with each
other and a mutation in BRCA1 can disrupt this interac-
tion, which can lead to breast cancer [1].

The importance of PPIs has led to the development of
several curated databases including IntAct [2], BioGRID
[3] and MINT [4]. These databases are generally curated
manually by humans and store information including
the proteins that interact with each other, the articles in
which these interactions were detected and the methods
that were used to discover these interactions. However,
manually curating articles for PPIs is a time consuming
process and due to the fast rate of research and rapid
increase in amount of published literature, the amount
of effort required to maintain such databases has
increased significantly. This has spurred the develop-
ment of text-mining approaches to automate identifica-
tion of such interactions and help the manual curation
process.

* Correspondence: agarwal@uwm.edu
1Medical Informatics, College of Engineering and Applied Sciences,
University of Wisconsin-Milwaukee, Milwaukee, WI, USA
Full list of author information is available at the end of the article

Agarwal et al. BMC Bioinformatics 2011, 12(Suppl 8):S10
http://www.biomedcentral.com/1471-2105/12/S8/S10

© 2011 Agarwal et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://sourceforge.net/p/simpleclassify/home/
http://sourceforge.net/p/ontonorm/home/
http://sourceforge.net/p/ontonorm/home/
mailto:agarwal@uwm.edu
http://creativecommons.org/licenses/by/2.0


One of the important tasks is to identifying the meth-
ods used to study PPIs, known as the interaction
method task (IMT). IMT helps database curators deter-
mine the validity of the reported interactions. Certain
methods give better evidence of an interaction than
others [5,6]. The methods sub-ontology in the PSI-MI
(Proteomics Standards Initiative-Molecular Interactions)
ontology is a controlled vocabulary to which interaction
methods can be mapped [7]. Annotating methods with
PSI-MI’s methods sub-ontology will help database cura-
tion efforts.
To efficiently identify PPI interaction methods,

another important task is to first determine if the given
article contains protein-protein interaction or not,
known as article classification task (ACT). ACT is indis-
pensable for other PPI related text mining applications,
such as interaction event detection.
Different approaches have been developed for the

ACT task. A simple approach is to make use of n-gram
features to train supervised machine learning algorithms,
which have been deployed in many similar tasks [8-19].
Normalization and feature selection may be conducted
before training the classifiers. Domain-specific adapta-
tions of this approach have been used for this task as
well. An modification was proposed to make use of con-
textual bag-of-words [20]. The context information
included the number of protein names that appear in
the abstract of an article to be classified with the
assumption that the presence of more protein names in
the abstract indicates greater likelihood that the article
contains protein-protein interaction data. Support vector
machine (SVM) classifiers were trained on these contex-
tual bag-of-words features. Other extension work added
MeSH terms as features along with selected n-gram fea-
tures [21-24]. Grover et al. used a “bag-of-nlp” approach
where the output of a natural language processing pipe-
line was augmented with word features to classify arti-
cles [25]. Dogan et al. identified the 10-nearest
neighbors in the training data of the test article and
used the gold standard annotation of these 10-nearest
neighbors as features along with the n-gram features
[26].
Approaches that explore features beyond words for

classification training have also been proposed. A semi-
supervised approach was suggested by [27], where
dependency tree based patterns are automatically
learned from the training data. A set of eight patterns
were manually seeded for this approach. Another
approach made use of information retrieval techniques
to identify protein-protein extraction relevant docu-
ments [28]. A set of well-known protein interaction
related keywords is used as queries. An approach by
Kolchinsky et al. made use of features from citation net-
work of relevant literature to classify articles [15]. Kim

and Wilbur extracted automatically grammatical pat-
terns from the training corpus and used these patterns
for ACT [29]. They found that this approach performs
better than the machine learning approaches that were
based on bag-of-words representation.
Although a lot of research has been done for the

ACT, research for identifying interaction methods is
limited. Similar to our goal, most studies in this area
attempt to associate method nodes in the PSI-MI ontol-
ogy to articles. The OntoGene system developed by
Rinaldi et al. [23,30] makes use of pattern matching
techniques to identify interaction methods. The system
makes use of handcrafted patterns to improve perfor-
mance. Pattern matching approach has be employed by
Lourenco et al. [31] as well. Dogan et al. combined pat-
tern matching and k-nearest neighbors’ annotations for
this task [26]. They also mapped the article’s MeSH
terms to PSI-MI nodes to identify relevant method
nodes. Use of machine learning-based approaches that
view IMT as a document-level classification problem
have been reported [24,32]. They expanded the syno-
nyms for PSI-MI nodes by adding synonyms from
UMLS Metathesaurus. Matos et al. approached IMT as
an information retrieval problem [19]. The documents
were indexed using Lucene and retrieved using method
names.
In this study, we report on the development of

machine learning frameworks to identify articles that
contain protein-protein interaction data and then pro-
cess these articles to identify the methods that were
used to discover protein-protein interactions. Unlike
previous approaches many of which rely on human
curated data or domain-specific features, our goal is to
develop an adaptable framework by exploring domain
independent features, which can be generalized to other
text mining applications with no or minimum adapta-
tion. For example, our ACT framework can be applied
to train and classify any type of text documents, regard-
less of the domain they belong to. Similarly, our IMT
framework can be used to map terms from any ontology
to any text. As a result, we explored machine learning-
based approaches using features that are domain
independent.
The BioCreative (Critical Assessment of Information

Extraction systems in Biology) challenge is a community
effort to promote the development of biomedical text
mining applications. Till date, four BioCreative chal-
lenges have been organized. Interaction methods fea-
tured in two of these challenges while article
classification task featured in the last three challenges
[33-37]. The latest BioCreative challenge, BioCreative
III, includes both ACT and IMT. We used the data and
evaluation provided through BioCreative III to develop
and evaluate our machine learning frameworks.
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Methods
We explored supervised machine learning approaches
for both ACT and IMT. The data we used for training
is described below, followed by the ACT classification
and IMT classification tasks.

Training, development and test data
The organizers of BioCreative III provided training data,
development data and test data for both tasks [38]. The
size of the data provided for ACT and IMT is men-
tioned in Table 1 and Table 2, respectively. Note that
the data provided for ACT and IMT are independent of
each other. For ACT, the distribution of positive and
negative instances in the development data reflected the
true distribution of positive and negative instances, i.e.
approximately 16% of the articles contained protein-pro-
tein interactions data. For ACT training data, equal
number of positive and negative instances were pro-
vided. The distribution of instances in the test data was
similar to the distribution of instances in the develop-
ment data. The article’s title and abstract were used for
training and testing.
For IMT, the task was to identify interaction methods

at a document level and not at interaction or mention
level. The methods sub-ontology of the PSI-MI ontology
was used to obtain the collection of possible methods.
From this sub-ontology, 115 nodes were allowed for
IMT. Four nodes from the 115 allowed nodes accounted
for roughly half of all annotations; these were (in order
of highest to lowest frequency): “anti-bait coimmunopre-
cipitation”, “anti-tag coimmunoprecipitation”, “pull
down” and “two hybrid”. “Anti-bait coimmunoprecipita-
tion” and “anti-tag coimmunoprecipitation” accounted
for one third of all annotations. Within the test data,
222 articles out of the 305 articles were annotation-rele-
vant; hence the remaining 83 articles had no annota-
tions assigned to them. The full-text of the article was
used for training and testing. Although the full-text arti-
cles were originally in PDF format, the organizers of
BioCreative III also provided the corresponding files in

text format, which were used for training and testing in
our experiments.

ACT Classification
As noted earlier, the distribution of data in the develop-
ment data is similar to the distribution of test data.
Hence, for tuning, we trained models on the develop-
ment data and tested them on the training data. We
trained two different classifier models – Support Vector
Machines (SVM) with polynomial kernel [39] and Naïve
Bayes Multinomial (NBM). We used the implementation
provided in the Weka data mining library [40] (down-
loaded from: http://www.cs.waikato.ac.nz/ml/weka/).
We normalized all text by lowercasing all characters,

removing punctuations, stemming all words (using Por-
ter stemming algorithm [41,42]) and removing numbers.
We then extracted unigrams (individual words) and
bigrams (two consecutive words) as features. As this led
to a large number of features, we conducted feature
selection with two feature scoring algorithms: mutual
information and chi-square score. All features were
scored with these algorithms and we used the top 20,
50, 100, 400 and 1000 features to train the classifier.
We explored various combinations of different classi-

fier algorithms, feature selection methods and feature
numbers mentioned above. We tried using unigrams
only as well as using both unigrams and bigrams. All
features were uniformly weighted when provided to the
machine learning classifiers. For the BioCreative III chal-
lenge, we were allowed to submit 10 runs for ACT. The
runs are listed in Table 3. For six of the ten runs, we
combined the training and development data to train
the classifier, as we expected larger training data to per-
form better. At the same time, the distribution of the
development data was similar to that in the test data;
hence, for the remaining four runs, we trained the clas-
sifier on development data only.
For ACT, we developed a framework that can apply

the feature selection methods described above with dif-
ferent classifier algorithms. The framework is called
SimpleClassifier and is available online at http://

Table 1 ACT Data

ACT Data (article abstracts)

Training Data Total 2280

Training Data Positive 1140

Training Data Negative 1140

Development Data Total 4000

Development Data Positive 682

Development Data Negative 3318

Test Data Total 6000

The organizers of BioCreative III provided training, development and test data
for ACT. The size of the data is shown in this table.

Table 2 IMT Data

IMT Data (article full-texts)

Training Number of Articles 2035

Training Number of Annotations 4347

Training Annotations per Article 2.14

Development Number of Articles 587

Development Number of Annotations 1379

Development Annotations per Article 2.35

Test Number of Articles 305

The organizers of BioCreative III provided training, development and test data
for IMT. The size of the data is shown in this table.
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sourceforge.net/p/simpleclassify/home/. It can be used
to train classifiers for any text collection.

IMT Classification
The IMT involved mapping nodes in PSI-MI ontology
to articles. For each ontology node, we obtained the
concept name and its synonyms. We manually added
synonyms for some ontology nodes, such as “anti bait
immunoprecipitation” for “anti bait coimmunoprecipita-
tion” and “radioligand binding” for “saturation binding”.
A keyword for each ontology node was manually
extracted by the first author, for example, “coimmuno-
precipitation” for “anti bait coimmunoprecipitation”.
The keywords were selected based on the author’s judg-
ment of the most informative word in the concept. We
extracted unigrams and bigrams from each node’s con-
cept name and synonyms. For each unigram and bigram,
we calculated the mutual information score and chi-
square value using the training data. The top 10 uni-
grams and bigrams by mutual information score and
chi-square value are displayed in Table 4.

We approached IMT as a classification task, where we
try to determine if an article-ontology node pair is posi-
tive or negative. We identified 21 features (as listed in
Table 5) and scored those features for each article-
ontology node pair. We then trained machine learning
classifiers Random Forest [43], Random Committee [44],
Naive Bayes Tree [45] and J48 [46] to predict the label
for each article-ontology node pair. All features were
uniformly weighted when provided to the machine
learning classifiers.
We then conducted feature selection using the chi-

square measure which comes with Weka’s built-in fea-
ture selection module. To identify the best feature set,
we tuned the classifiers by training on training data and
testing on development data. We counted the number
of true positives, false positives, false negatives and true
negatives. An article-node pair was considered to be
true positive if both gold-standard and the classifier
identified the pair to be positive. A pair was considered
to be false positive if the gold standard did not consider
the pair to be positive, but the classifier did. A pair was
considered to be false negative if the gold standard con-
sidered the pair to be positive, but the classifier did not.
A true negative was marked if both the gold standard
and the classifier considered the pair to be negative.
Using these counts, we calculated the precision and
recall with the following formulae -

Precision =
+

True positive count

True positive count False pos

  

   iitive count

call
True positive count

True positive count

 

  

  
Re =

+ FFalse negative count  

From the recall and precision, the F1-Score was calcu-
lated by taking their harmonic mean. The F1-Score
obtained was used as a measure of performance during
the parameter tuning process, by which we obtained the
best number of features for each classifier.

Table 3 Runs submitted for ACT

Run number Label Classifier Algorithm Type of features used Number of features Training data

1 NBM-12-1k-td NBM Unigrams and Bigrams 1000 Training+Development

2 NBM-12-400-td NBM Unigrams and Bigrams 400 Training+Development

3 NBM-12-1k-d NBM Unigrams and Bigrams 1000 Development

4 SVM-12-400-d SVM Unigrams and Bigrams 400 Development

5 SVM-12-400-td SVM Unigrams and Bigrams 400 Training+Development

6 NBM-1-1k-td NBM Unigrams 1000 Training+Development

7 NBM-1-400-td NBM Unigrams 400 Training+Development

8 NBM-1-1k-d NBM Unigrams 1000 Development

9 SVM-1-400-d SVM Unigrams 400 Development

10 SVM-1-400-td SVM Unigrams 400 Training+Development

For the BioCreative III challenge, each participating team was allowed to submit 10 runs for ACT. Five runs could be submitted offline and the other five runs
could be submitted online, using XML-RPC. Runs 1-5 were submitted offline, while runs 6-10 were submitted online. For all runs, we used mutual information
feature selection algorithm, as it gave better performance than chi-square score. We submitted 10 runs, listed here.

Table 4 Top 10 Unigrams and Bigrams for IMT

Term Mutual information score Chi-square value

two hybrid 0.439 1225.574

immunoprecipitation 0.437 1110.124103

hybrid 0.398 1041.587496

yeast two 0.348 1061.789

diffraction 0.263 1142.337

resonance 0.236 969.286

crystallography 0.182 751.011

x ray 0.176 622.764

yeast 0.173 402.283

gal4 0.168 576.122

The top 10 unigrams and bigrams by mutual information score and their
corresponding chi-square values. The terms are sorted by their mutual
information score.
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For each article, we identified the evidence sentence
from which each interaction method was identified. For
this, we calculated a score for each sentence, and the
sentence with the highest score was considered to be
associated with the interaction method. To calculate the
score, the unigrams in the interaction method’s name
were looked for in each sentence. If a unigram was pre-
sent in the sentence, then the unigram’s chi-square
value was added to the sentence’s score. If no unigrams
were present in the sentence, then a score of 0 was
assigned to the sentence. If multiple sentences had the
same score, the longest sentence was associated with the
interaction method.
As a result, we developed a framework for IMT that

can make use of the features mentioned above and con-
duct feature selection. The framework is called Onto-
Norm and is available online at http://sourceforge.net/p/
ontonorm/home/. It can be used to train models with
any ontology and text collection.
Similar to ACT, we were allowed to submit 10 runs

for IMT. The runs are listed in Table 6. We trained the
classifier on the combination of both training and devel-
opment data for the runs.

Evaluation
As mentioned earlier, we participated in the BioCreative
III challenge for evaluation. The evaluation of the runs
was conducted by the organizers. Micro-averaged F1-
score, Matthew’s Correlation Coefficient and AUC iP/R
were used as evaluation metrics. Matthew’s Correlation
Coefficient is a measure of binary classification and is
based on the chi-squared statistic obtained for a 2x2 con-
tingency table. It is measured by the following formula -

MCC
n

= c 2

where n is the total number of observations. The area
under the curve (AUC iP/R) was measured by drawing
the precision/recall curve and interpolating the curve.
The area under this curve is the AUC iP/R.
For ACT, the accuracy, sensitivity and specificity of

the system were also measured. The accuracy is the
ratio of correctly classified instances and all instances,
sensitivity is the ratio of true positive instances and all
positive instances and specificity is the ratio of true
negative instances and all negative instances.

Results
When tuning, we observed that for ACT, the best F1-
Scores were obtained when using 400 or 1000 features
with Naïve Bayes Multinomial (NBM) and 400 features
with Support Vector Machines (SVM) (Additional File
1). The top 10 features (unigrams and bigrams) were:
‘interact’, ‘interact with’, ‘bind’, ‘protein’, ‘domain’, ‘bind
to’, ‘phosphoryl’, ‘regul’, ‘complex’ and ‘activ’. Similarly,

Table 5 Features used for IMT

Feature Feature
type

Description

Perfect match (2 features) Binary For each node, checks if (1) the concept name or (2) any synonym name appears in the article

Term match (4 features) Binary For each node, checks if any unigram/bigram in the node’s (1, 2) concept name or (3, 4)
synonyms appears in the article

Term match ratio (4 features) Continuous For each node, the ratio unigram/bigram in the node’s (1, 2) concept name or (3, 4) synonyms
that appears in the article

Matched terms mutual
information sum (4 features)

Continuous Sum of mutual information score of each matching uni-gram/bigram in the node’s (1, 2) concept
name or (3, 4) any synonym.

Matched term chi-squared sum (4
features)

Continuous Sum of chi-squared value of each matching unigram/bigram in the node’s (1, 2) concept name or
(3, 4) any synonym.

Node popularity Integer The number of times this node is annotated in the training data

Regex annotation Binary Checks if the regular expression-based annotator that was provided by the organizers of
BioCreative III annotates the current article-ontology node pair

Keyword presence Binary Checks if the keyword for the ontology node appears in the article

Table 6 Runs submitted for IMT

Run number Label Algorithm Number of features

1 j48-21 J48 All (21 features)

2 rc-21 Random Committee All (21 features)

3 rf-21 Random Forest All (21 features)

4 j48-14 J48 14 features

5 rf-12 Random Forest 12 features

6 rc-12 Random Committee 12 features

7 rc-14 Random Committee 14 features

8 rf-7 Random Forest 7 features

9 nbt-7 Naïve Bayes Tree 7 features

10 rf-15 Random Forest 15 features

For the BioCreative III challenge, each participating team was allowed to
submit 10 runs for IMT. Five runs could be submitted offline and the other
five runs could be submitted online, using XML-RPC. Runs 1-5 were submitted
offline, while runs 6-10 were submitted online. For all runs, we combined the
training and the development data. We submitted 10 runs, listed here.
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for IMT the best results were seen when using 14 fea-
tures with J48, 7 features with Naïve Bayes Tree, 12 fea-
tures with Random Forest and 12 features with
RandomCommittee (Additional File 2). The top five fea-
tures were: ‘unigram chi-square sum’, ‘unigram mutual
information sum’, ‘unigram chi-square sum concept
only’, ‘unigram mutual information sum concept only’
and ‘bigram mutual information sum’. Our runs try to
cover all algorithms and different feature combinations.
For ACT and IMT, the performance of our runs is
shown in Table 7 and Table 8, respectively. For ACT,
we found that performance of SVM-based classifiers was
better than NBM-based classifiers, although during tun-
ing we found that NBM-based classifiers performed bet-
ter. For IMT, the result of all classifiers were very close
to each other; F1-score difference between best and
worst runs was less than 2.5% points. We found that
runs for which feature selection was done performed
better than the runs for which all features were used,
indicating that certain features are not useful.

Results in relation to other systems
We compared the performance of our system with other
teams that participated in ACT and IMT tasks for the Bio-
Creative III challenge. Ten teams participated in ACT and
eight in IMT. For ACT, compared to other participants,
our system’s ranked 2nd when measured by F1-Score and
Matthew’s Correlation Coefficient vale, and 5th when
measured by AUC iP/R and accuracy. The best performing
systems from any team for these measures attained 89.15%
accuracy, 61.42% F1-Score, 0.553 Matthew’s Correlation
Coefficient value and 67.98% AUC iP/R. Our best perfor-
mance on these measures was: 87.73% accuracy, 60.80%
F1-Score, 0.533 Matthew’s correlation coefficient value
and 62.13% AUC iP/R. These results indicate that the per-
formance of our systems was very close to the perfor-
mance of the best performing system.
Similarly for IMT, our system ranked 3rd when mea-

sured by F1-Score, Matthew’s Correlation Coefficient

value and AUC iP/R. The best performing systems from
any team for these measures attained 55.12% F1-Score,
0.542 Matthew’s Correlation Coefficient value and
35.42% AUC iP/R. Our best performance on these mea-
sures was: 52.38% F1-Score, 0.514 Matthew’s Correlation
Coefficient value and 30.05 % AUC iP/R.

Discussion
We have developed supervised machine learning frame-
works to identify articles that contain protein-protein
interaction data and to map ontology nodes to text of
an article. Our goal was to develop these approaches
independent of domain knowledge and manual interven-
tion, such that they can be viewed as frameworks that
can be applied to other article classification task and
ontology mapping tasks. For ACT, our system, Simple
Classifier, meets these goals. For IMT, we did modify
the ontology by manually adding synonyms and key-
words, because of which we cannot claim that Onto-
Norm meets our goal of being free from manual
intervention; however, given an ontology with compre-
hensive list of synonyms, this manual intervention

Table 7 ACT Results

Run number Label Accuracy (%) Specificity (%) Sensitivity (%) F1-Score (%) MCC AUC iP/R (%)

1 NBM-12-1k-td 80.02 80.90 75.06 53.26 0.449 61.29

2 NBM-12-400-td 81.00 81.75 76.81 55.08 0.472 62.13

3 NBM-12-1k-d 82.40 83.85 74.29 56.15 0.482 60.48

4 SVM-12-400-d 87.73 94.79 48.24 54.40 0.480 43.76

5 SVM-12-400-td 87.27 91.81 61.87 59.58 0.521 48.47

6 NBM-1-1k-td 77.80 77.84 77.58 51.46 0.432 57.44

7 NBM-1-400-td 78.05 78.15 77.47 51.71 0.434 57.56

8 NBM-1-1k-d 79.90 81.00 73.74 52.67 0.441 54.97

9 SVM-1-400-d 86.25 92.06 53.74 54.24 0.462 41.58

10 SVM-1-400-td 86.87 90.39 67.14 60.80 0.533 47.40

The result of submitted ACT runs on the test data. Legend: MCC=Matthew’s correlation coefficient

Table 8 IMT Results

Run Label Precision
(%)

Recall
(%)

F1-Score
(%)

MCC AUC iP/R
(%)

1 j48-
21

52.52 49.53 50.98 0.500 28.20

2 rc-21 52.02 48.96 50.44 0.495 28.59

3 rf-21 50.78 49.34 50.05 0.490 27.24

4 j48-
14

52.50 49.91 51.17 0.502 29.22

5 rf-12 52.58 52.18 52.38 0.514 29.98

6 rc-12 52.71 51.61 52.16 0.512 29.93

7 rc-14 52.28 50.10 51.16 0.502 30.05

8 rf-7 52.28 52.18 52.23 0.512 30.05

9 nbt-7 49.55 52.56 51.01 0.500 29.30

10 rf-15 51.76 50.29 51.01 0.500 29.80

The result of submitted IMT runs on the test data. Legend: MCC=Matthew’s
correlation coefficient
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would be unnecessary. In this sense, OntoNorm can be
used to map terms from any given ontologies to any
text articles.
For ACT, our approach was simpler than the

approach used by many other teams at the BioCreative
challenge. Despite the simplicity, our system ranked 2nd

amongst 10 teams, and the difference between the per-
formance of the team that ranked 1st and our system
was marginal, suggesting that the frameworks we
employed in this study are very efficient, competitive
and robust. Our SVM-based runs obtained poor AUC
iP/R, despite of obtaining good accuracy and F1-score.
This was because for most instances, the annotation
confidence assigned by the classifier was 100%, which
prevented the results to be ranked meaningfully. Except
for AUC iP/R, SVM-based models performed better
than NBM-based models on the test data, although
NBM-based models performed better during tuning.
This maybe because the NBM-based models overfit on
the training data.
On analyzing incorrectly classified ACT cases, we

observed that false positives were seen when an article
contained terms that usually indicate protein-protein
interaction, but were not used in that context; for exam-
ple, the article with PMID:19694809 uses the keyword
‘interaction’, but does not indicate protein-protein inter-
action in this context. At the same time, false negatives
were seen when such terms were missing, although the
article contained protein-protein interaction data; for
example, article with PMID:19724778. The error analysis
uncovers one disadvantage of our machine-learning fra-
mework that it is based only on lexical features, which
may not contain sufficient information and can cause
ambiguities in some cases. It also suggests that deep lin-
guistic analysis (e.g. syntactic and semantic analysis)
might be needed to further enhance the system’s
performance.
For IMT, we identified several domain independent

features to classify article-node pairs. We believe that
the approach works well, as our system was placed 3rd

amongst 8 teams at BioCreative III. We found that tree-
based classifier algorithms such as Random Forest and
J48 performed better at this task. Most of our errors
were seen when annotating nodes “anti-tag coimmuno-
precipitation” and “anti-bait coimmunoprecipitation” as
“coimmunoprecipitation” was usually mentioned in rele-
vant articles, but whether it was anti-tag or anti-bait
coimmunoprecipitation was not explicitly stated. For
example, article [47] was falsely annotated with anti tag
coimmunoprecipitation.
We found that unigram related features ranked

higher than bigram related features in the IMT task, as
4 out of 5 top features are from unigrams. We specu-
late that this is because of the high variance when

discussing different interactive methods in articles,
such that unigram features become more reliable than
bigrams.

Conclusion
We have developed machine learning frameworks that
make use of domain independent features to classify
text (Simple Classifier) and to map nodes in an ontology
to text (OntoNorm). These frameworks obtain competi-
tive performance compared with other participant teams
when applied on tasks to identify articles that contain
protein-protein interaction data and to identify methods
from an ontology that were used to study these
interactions.
In the future, we may apply our frameworks on other

text mining applications. In addition, our current
approach for OntoNorm does not make use of the hier-
archy of the ontology, which will be investigated and
evaluated in the future as well.

Additional material

Additional file 1: ACT Tuning data Results of various classifier
algorithms, feature selection algorithms and number of features
combinations when trained on ACT development data and tested on
ACT training data

Additional file 2: IMT Tuning data Results of various classifier
algorithms, feature selection algorithms and number of features
combinations when trained on ACT development data and tested on
ACT training data
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