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Abstract

Background: Some single nucleotide polymorphisms (SNPs) are known to modify the risk of developing certain
diseases or the reaction to drugs. Due to next generation sequencing methods the number of known human SNPs
has grown. Not all SNPs lead to a modified protein, which may be the origin of a disease. Therefore, the
recognition of functional SNPs is needed. Because most SNP annotation tools look for SNPs which lead to an
amino acid exchange or a premature stop, we designed a new tool called AASsites which searches for SNPs which
modify splicing.

Results: AASsites uses several gene prediction programs and open reading frame prediction to compare the wild
type (wt) and the variant gene sequence. The results of the comparison are combined by a handmade rule system
to classify a change in splicing as “likely, probable, unlikely”. Having received good results from tests with SNPs
known for changing the splicing pattern we checked 80,000 SNPs from the human genome which are located
near splice sites for their ability to change the splicing pattern of the gene and hereby result in a different protein.
We identified 301 “likely” and 985 “probable” classified SNPs with such characteristics. Within this set 33 SNPs are
described in the ssSNP Target database to cause modified splicing.

Conclusions: With AASsites single SNPs can be checked for those causing splice modifications. Screening 80,000
known human SNPs we detected about 1,200 SNPs which probably modify splicing. AASsites is available at http://
genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar using any web browser.

Background
Approximately 6.5 million SNPs have been identified in
human genes and have been deposited in the dbSNP
database (http://www.ncbi.nlm.nih.gov/projects/SNP/)
and are used by the EnsEMBL database (http://www.
ensembl.org/). SNP does not only mean exchange of a
nucleotide but also a deletion or insertion of one base in
the dbSNP database (indels). For many SNPs located in
genes the effects on the genes are not known. Application
of the new sequencing technologies 454 and Solexa will
allow the discovery of many more SNPs which need

elucidation of their effects. It is important to know the
effect as SNPs can be relevant for diseases e.g. a SNP in
the APOE gene increases the risk for developing Alzhei-
mer disease [1]. SNPs account for differences in cancer
risk (Dong et al., 2008; Chen et al., 2009) and drug meta-
bolism [2]. Available prediction tools for SNPs like LS-
SNP [3] mostly evaluate if the SNP is within a coding
region and changes or abolishes the protein. Others con-
tain a collection of previously evaluated SNPs which can
be queried by SNP id, disease or chromosomal region
[4,5](http://compbio.cs.queensu.ca/F-SNP/). Those SNPs
are analysed and scored according to location of the SNP
(splice site, ESE, TFBS, coding region) and known effects
in diseases. A further list with more than ten web servers
which analyze SNPs can be found in Karchin, 2009[6]. In
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contrast, our tool AASsites looks at the potential of the
SNPs to modify the splicing pattern of a gene and does
not depend on the annotation of known SNPs. Modified
splicing is likely to have a profound effect on the pheno-
type with relevance to disease risk or drug metabolism. A
change in splicing can be caused by modifying any of the
components of the splicing machinery such as splice sites
or splice enhancers or silencers. Those are evaluated
separately to predict a score for modulated splicing by
“Skippy” [7]. A new tool called SpliceScanII [8] is looking
at all those elements for predicting splice changes in
genetic variants and has proven to work in the context of
disease-linked variations. AASsites uses the power of
gene prediction programs which are trained to evaluate
the splice relevant components in order to predict
changes in splicing patterns caused by SNPs. Addition-
ally, ESEdetector [9] for discovering changes in ESEs, and
programs to detect changes in the open reading frame
(ORF) are used. A handmade rule system combines the
results and classifies the SNP as “likely”, “probably” or
“unlikely” to lead to modified splicing of the gene.

Results
The analysis tool AASsites
The tool was designed to analyse one SNP provided
within the context of a DNA sequence together with the
EnsEMBL gene id (Ensembl53) of the SNP origin. If the
input sequence contains more than one SNP belonging
to one gene, the different SNPs will be analysed sepa-
rately. AASsites uses those gene prediction programs
capable of correctly predicting the wt intron/exon struc-
ture to compare the intron/exon structure of the wt
sequence with that of the sequence containing the SNP
(see figure 1). Additionally, a change in ESEs and changes
in the ORF or amino acid content are checked and
reported. Based on the distance of the SNP to the splice
site, the predicted changes in the intron/exon structure
and the result of the ORF analysis a classification of the
SNP into 3 classes is given : likely, probable and unlikely.
In the output, details about the gene predictions, ESE
changes, ORF and amino acid changes are also given (see
figure 2). The tool is available at http://genius.embnet.
dkfz-heidelberg.de/menu/biounit/open-husar. It has an
average runtime of approximately 3 minutes.

Test of AASsites using known SNPs
We tested the pipeline AASsites with known example
SNPs to evaluate the performance. The database DBASS
(database for aberrant splicing, first release, http://www.
dbass.org.uk) contains mutations and their experimen-
tally revealed effects on splicing. As described in Meth-
ods, 37 SNPs with manually checked and exactly
described effects on splicing (positive set 1) and 19 ran-
domly selected mutations from DBASS3 (positive set 2),

23 SNPs causing only an amino acid exchange, and 30
randomly selected SNPs from dbSNP were used for test-
ing AASsites. 66% of the positive SNPs were classified as
likely or probable to cause a change in splicing, whereas
100% of all the negative SNPs were classified as unlikely
(see Table 1). Overall, 83% of all cases were classified
correctly. Looking at the positive set 1 with 37
sequences, in 43% of the cases not only the change in
splicing, but also the documented exon/intron modifica-
tion was predicted correctly. In the negative set, 79% of
the cases were predicted as documented. Because of the
lack of SNP data with experimentally proven splice
changes at that time, the dataset was quite small and
cannot be used to provide significant values for sensitiv-
ity and specificity. But the test showed that AASsites
appears to have a reasonable prediction rate. The com-
parison with SplicescanII checking for modified or addi-
tional/skipped exons showed a better classification rate
for AASsites, mainly because it is better in the classifica-
tion of negative examples.

Genome-wide analysis of SNPs near splice sites
Since some SNPs are known to be linked with diseases
like cancer and play a role in metastasis and resistance
of the tumours to drugs, we wanted to screen human
genes for SNPs capable of causing changes in splicing of
genes. In such a set there should be candidates which
can cause a disease by creating a modified protein. Due
to the high number of all SNPs which would take up
too much computing time we had to reduce the number
of SNPs to screen. Because SNPs with low frequencies
in the population are not relevant for common diseases
we selected SNPs that have a prevalence of over 10% in
the population. To raise the chance for identification of
splice modifying SNPs we limited the distance to the
splice site. Therefore, we selected 82,838 SNPs near
splice sites (only intronic SNPs located within 10 bases
of the exon-intron boundary and exonic SNPs within
100 bases were considered) with a population frequency
above 0.1 in CEU. Those SNPs were run through our
AASsites pipeline and the XML output files were parsed
via a Perl script. The whole run took about 5 weeks on
our linux server (8processors, 16GB RAM). 79,913 SNPs
(96% of the selected SNPs) could be analysed by AAS-
sites. 89% of the analysed SNPs were located in an exon,
11 % were located in an intron. The results of the classi-
fication are shown in Table 2. 2925 SNPs (4%) could not
be analysed, either because the gene was longer than
350kb or because no gene prediction was available.

Identification of SNPs with known splice changes
We compared the SNPs classified as likely or probable
to impact the gene’s splicing pattern with SNPs found
in the ssSNP target database [10]. In this database SNPs
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at splice sites with known changes affecting splicing and
of relevance for diseases are listed. 33 SNPs identified
by AASsites are listed in the ssSNP target database with
annotated and experimentally proven changes in splicing
and the associated diseases in OMIM, GAD or HGMD
(see Additional file 1, Table 2). In 8 cases out of the 33
the splice change predicted by one of the gene predic-
tion programs is exactly the one annotated in the ssSNP

entry (see Table 3). The associated diseases are lung
cancer [11], renal cell carcinoma [12], tuberous sclerosis
[13], hyperglyciaemia [14], prostate cancer [15] and cutis
laxa [16] (see Table 3).

Localization of the SNPs modifying splicing
The positions of all the SNPs and those of SNPs which
were classified as likely or probable are shown in Figure

Figure 1 Overview of the dataflow of the pipeline AASsites. The different analysis steps performed with the SNP containing input sequence
are displayed.
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3 for intronic SNPs and in Figure 4 for exonic SNPs. In
the intron (Fig. 3), it is mainly the first two positions
starting from the splice site that account for splice varia-
tions. In the exon (Fig. 4), the number of splice-modify-
ing SNPs is much lower than in the intron due to the
mutation restrictions of the coding sequence. The num-
ber of splice relevant SNPs decreases with an increase of
the distance to the splice site and shows a steep decline
during the first 10 positions in introns and exons, but
even at a greater distance some splice modifying SNPs
are found. Because of the possible bias of the database
towards disease-related gene sequencing, the numbers
are likely to be an underestimate.

Pathway distribution of the genes with SNPs modifying
splicing
We have analyzed the genes according to their anno-
tated pathways with the DAVID tools (http://david.abcc.
ncifcrf.gov/). Of originally 1300 SNPs on 971 genes, the
DAVID database recognized 711 genes according to
their EnsEMBL identifiers. The analysis produced a
table of 187 genes with their pathways. The over-repre-
sented pathways are shown in Table 4. Among the top
over-represented pathways ones like “Focal adhesion”,
“Metabolism of xenobiotics by cytochrome P450”, and
“ABC transporters general” can be found. These path-
ways are very often disturbed in cancer cells.

Discussion
To identify SNPs which modify the protein by changing
the splicing pattern the pipeline AASsites was devel-
oped. This pipeline is available through its web interface
at http://genius.embnet.dkfz-heidelberg.de/menu/biou-
nit/open-husar. Unlike many other SNP analysis tools
our tool predicts the effect of SNPs on splicing. Not
only SNPs localized at splice sites can modify the spli-
cing of a gene, but also SNPs near splice sites can have
the same effect due to other regulatory sequences
involved. Gene prediction programs take these regula-
tory sequences into account by using HMM models or
similar algorithms. Still, we could not predict 433 genes
because in these cases none of the five gene prediction
programs worked correctly on the wt sequence. This
minor problem could be solved by the implementation
of one or two more prediction tools. A second problem
is the prediction of SNPs in alternatively spliced pro-
ducts. Most gene prediction programs do not predict
alternative splice sites. The only exception is Augustus
[17](http://augustus.gobics.de) which should be imple-
mented. Then also the different alternatively spliced
wild type forms of the gene have to be considered.
We have shown with a set of SNPs known to affect or

not to affect splicing, that the pipeline was able to cor-
rectly predict the change in splicing caused by the SNP
in 83% of 109 cases. The problem of testing and
improving the rule system for combining the results lies
in the small number of experimentally proven SNP-
derived modifications in splicing. With more experimen-
tal data available we could replace the rule system by a
knowledge system based on machine learning algorithms
or we could optimize the rules. The comparison with
SpliceScanII [8] shows that AASsites performs better on
our small test set. But the number of examples is much
too small for a final evaluation.
New tools could be implemented to assist AASsites by

selecting the correct splice change if different changes
are predicted by the different gene prediction tools. A
further analysis of the predicted splice sites with tools

Figure 2 Example output of pipeline AASsites. The part of the
output with the final classification, the gene predictions and the
ORF analysis is shown. The part with the enhancer analysis and the
scoring information is omitted.

Table 1 Test results of AASsites using SNPs with known changes

Set Number of SNPs Correct Classification Wrong Classification SpliceScan Correct SpliceScan Wrong

Positive 56 37 (66%) 19 (34%) 32 (57%) 24 (43%)

Negative 53 53 (100%) 0 (0%) 45 (85%) 8 (15%)

All 109 90 (83%) 19 (17%) 77 (71%) 32 (29%)

Table 2 Classification results of selected human SNPs

Location Likely Probable Unlikely

Exon 72 430 70444

Intron 239 555 8173

All 311 985 78617

Faber et al. BMC Bioinformatics 2011, 12(Suppl 4):S2
http://www.biomedcentral.com/1471-2105/12/S4/S2

Page 4 of 10

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar
http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar
http://augustus.gobics.de


Table 3 SNPs with known changes in splicing identified by AASsites

Protein SNP Change in splice pattern Associated disease Reference

GSTM4 rs41283498 Exon skipping Lung cancer [11]

PCTK3 rs55957903 Exon skipping -

VHL rs5030815 Exon skipping Renal cell carcinoma [12]

TSC2 rs45517091 Exon skipping Tuberous sclerosis [13]

GCSH rs62054483 Exon skipping Hyperglycinaemia [14]

NCAN rs61222528 Exon skipping -

EZH2 rs1140478 Exon extension Prostate cancer [15]

ATP6V0A2 rs1139788 Exon extension Cutis laxa [16]

Figure 3 Distribution of all SNPs and splice modifying SNPs in the intron. The distribution of all selected SNPs according to the distance to
the splice site is shown in panel A, the distribution of splice modifying SNPs in panel B.
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like the “Human Splicing Finder” [18] which predicts
the effect of mutations on the splice signals or “Skippy”
[7] which analyses ESEs and ESSs and the evolutionary
constraint of the region surrounding the variant could
complement our approach.
Another improvement could be the evaluation of dif-

ferent SNPs of the same haplotype together. At the

moment, AASsites treats all SNPs as being independent.
The analysis is done for only one SNP at a time, even if
the input sequence contains several SNPs. That is the
reason, that the combined effects of multiple SNPs are
missed.
The genome-wide analysis of known SNPs near splice

sites revealed 1300 SNPs which are probably capable of

Figure 4 Distribution of all SNPs and splice modifying SNPs in the exon. The distribution of all selected SNPs according to the distance to
the splice site is shown in panel A, the distribution of splice modifying SNPs in panel B.
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modifying the protein by changed splicing. It could be
shown, that not only SNPs directly at splice sites are
likely to modify splicing. Among the splice relevant
SNPs were 33 cases which were experimentally verified
and involved in the genesis of diseases according to the
ssSNP target database proving the functionality of the
pipeline. Other SNPs in genes which are related to dis-
eases were found and could be candidates for further
research.

Conclusions
To identify SNPs which modify the protein by changing
the splicing pattern the pipeline AASsites was devel-
oped. This pipeline uses gene prediction programs for
this purpose and is available through its web interface at
http://genius.embnet.dkfz-heidelberg.de/menu/biounit/
open-husar. The genome-wide analysis of human SNPs
near splice sites revealed 1300 SNPs which are probably
capable of modifying the protein by changed splicing.
Some already known SNPs were identified, but other
SNPs in genes related to diseases could be good candi-
date SNPs for further research.

Methods
AASsites Pipeline Design
An overview of the AASsites pipeline is outlined in Fig-
ure 1. Input is a DNA sequence containing the SNP and
the EnsEMBL gene id (EnsEMBL version 53) to which
the SNP belongs. The EnsEMBL gene id is used to
extract the wt genomic sequence and the wt protein as
well as to derive the real exon-intron structure. The dif-
ferent analysis steps which are outlined below are per-
formed with the SNP containing sequence. An HTML

report page with the classification and the single results
(see Figure 2) is produced as output.

Localization of the SNP
The input DNA sequence is compared to the wt
sequence by the FASTA program [19]. The position of
the SNP determines its location in an intron or an exon.
Depending on the location – intron or exon - a different
set of tools is run and different rules are applied.

Gene prediction programs used
At the moment five different gene prediction programs
are implemented into the AASsites pipeline. They rely
on different models for prediction.
GenScan [20] is based on hidden markov models and

considers elementary signals like basic transcriptional,
translational and splicing signals as well as length distri-
butions and compositional features of exons, introns
and intergenic regions.
Class Hidden Markov models are used in HMMgene

[21] to predict the most probable gene structure based
directly on labelled sequences, using labels for coding
regions, introns and intergenic regions.
The program GeneID [22] uses a hierarchical

approach composed of three different steps to assemble
the gene structure. It starts out by scoring splice sites,
start and stop codon using so-called Position Weight
Matrices (PWMs). In the second step, exons are built
from the sites. Exons are scored as the sum of the
scores of the defining sites, plus the log-likelihood ratio
of a Markov Model for coding DNA. In the last step,
from the set of predicted exons, the gene structure is
assembled, maximizing the sum of the scores of the
assembled exons.
A generalised HMM is the basis of GlimmerHMM

[23], which also uses decision trees and the maximal
dependence decomposition method.
The last program, GrailEXP6 [24](http://grail.lsd.

ornl.gov/grailexp/index.html), is implemented as a
building block system consisting of three different
parts. It first uses statistical techniques to pinpoint
possible locations of exons. Then it brings in empiri-
cal evidence from nucleotide and protein databases
to create possible “pieces” of genes. Finally, an intelli-
gent algorithm constructs the genes from these
pieces.

Getting the information for the wt sequence
To determine possible changes due to the SNP, the wt
sequence and information about the structure have to
be determined. Using the EnsEMBL Perl API
(Ensembl53) the wildtype sequence, the intron-exon
structure and the protein sequence are extracted from
the EnsEMBL database.

Table 4 Pathways over-represented in genes with SNPs
modifying splicing

Pathway Count % P-Value

Focal adhesion 30 3.5 5.9E-6

ECM-receptor interaction 17 2.0 5.7E-5

Metabolism of xenobiotics by cytochrome P450 12 1.4 2.3E-3

ABC transporters - General 9 1.1 4.9E-3

Bladder cancer 7 0.8 3.1E-2

Regulation of actin cytoskeleton 21 2.5 3.3E-2

Adherens junction 10 1.2 3.3E-2

Phenylpropanoid biosynthesis 3 0.4 6.3E-2

Colorectal cancer 10 1.2 7.0E-2

Small cell lung cancer 10 1.2 7.8E-2

Cyanoamino acid metabolism 3 0.4 8.0E-2

Non-small cell lung cancer 7 0.8 9.2E-2

Pathogenic Escherichia coli infection - EPEC 7 0.8 9.8E-2

The overexpressed pathways are shown together with the number of genes
involved in the pathway (Count), the percentage of genes involved in the
pathway compared to all input genes (%), and the p value from the Fisher
test calculated by the DAVID tool.
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Selecting the gene prediction programs to be run
Five gene prediction programs are used to predict the
gene structure of the wildtype gene sequence. These
predictions are compared independently to the gene
structure derived from EnsEMBL. A given gene predic-
tion program is used for the prediction of the sequence
containing the mutation if the exon or intron, in which
the SNP is localised, was correctly predicted for the
wildtype sequence. This selection means that not all
prediction programs are used for each SNP. If no pre-
diction program can be found to predict the wt exon or
intron, the program will output “No prediction avail-
able”. The predicted gene structures for the SNP-con-
taining sequence are compared to the wildtype structure
to detect changes.

Analysis of the Open Reading Frame (ORF)
Using the GeneWise program [25] changes in the
Open Reading Frame are analysed. GeneWise com-
bines a gene structure model and a homology model
to predict the protein sequence for a genomic
sequence and to compare this sequence with a homo-
logous protein sequence. In AASsites 100 coding base-
pairs of the variant sequence around the SNP are
analysed with GeneWise.

Observation of the Exonic Splicing Enhancers (ESEs)
If a SNP is localised in an exon the ESEs are analysed
with ESEfinder [26] or ESEdetector [9]. The predic-
tion of putative ESEs in query sequences performed
by ESEfinder is based on weight matrices correspond-
ing to the motifs of four different human SR proteins.
The values that constitute the matrices are derived
from frequency values obtained from the alignment of
so called winner sequences of the SELEX experiments.
ESEdetector is based on a support vector machine and
uses a combined oligo-kernel to predict possible Exo-
nic Splicing Enhancers in an input-sequence. It has a
better prediction accuracy than ESEfinder but needs
exons >=100bp. AASsites uses ESEdetector to predict
ESE elements in the wildtype and in the variant exon
of at least 100bp, otherwise it uses ESEfinder. Up to
300bp of the exon are taken into account and ESE
elements in wildtype exon and variant exon are
compared.

Scoring and rule system for combining the different
predictions
The details of the scoring system are shown in Table
5. Low scores are given to the cases in which splice
changes would be expected e.g. by a variation at the
splice site, a high score if no change is expected. As
shown in Table 5 the distance of the SNP to the
splice site, the changes predicted by the gene predic-
tion programs and the ORF changes are scored.
Scores 1-4 are given according to the changes pre-
dicted by the gene prediction programs evaluating the
majority prediction (see Table 5). The distance of the
SNP to the splice site is also scored. In the case that
the SNP is located in an intron, those scores are com-
bined and determine the final prediction, the rules for
which can be seen in Table 6. If the SNP is located in
an exon, an additional score (ORF) takes the changes
to the ORF by the SNP into account (see Table 5).
The scores ORF 1 and ORF 2 are only for sequence
variations other than SNPs which only exchange one
nucleotide. The different scores are then combined
according to the rules given in Table 6. Those rules
combine different lower scores to ‘probable’ or ‘likely’,
the higher scores to ‘unlikely’. ORF and gene predic-
tion scores decide about the final classification in
most cases.

Test set of SNPs with known changes
The database DBASS (database for aberrant splicing,
first release, http://www.dbass.org.uk) contains muta-
tions and their experimentally revealed effects on spli-
cing. Using this database and the referred publications, a
set of 37 SNPs could be selected which affected the
splice pattern in a defined way (positive set 1). Added to
this set was a randomly chosen set of 19 SNPs of
DBASS3, not manually checked (positive set 2). As a
negative set 1 23 SNPs were chosen which cause an
amino acid exchange only. The SNPs of the positive set
1 and negative set 1 together with the described effects
and the publications are shown in Additional file 1,
Table 1. Additionally 30 SNPs randomly selected from
dbSNP were used as a negative set 2, as splice modifying
SNPs are rare and should not appear in a small ran-
domly selected set. In this set 17 intronic SNPs are
included. SpliceScanII [8] was run on all wt and variant

Table 5 Scoring table for combining the results of the AASsites analysis tools

Score 1 2 3 4 5 0

SNP distance to
splice site

<=2 nt >2 nt and <=4
nt

>4 nt - - -

Gene prediction Intron/ Exon disappared/
appeared

Intron/Exon
modified

No change No prediction
available

- -

ORF Indel with frameshift Indel without
frameshift

No frameshift no stop-
codon appeared

New Amino
Acid

No genewise
prediction

Stop-codon
appeared
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sequences with default parameters and compact output.
The differences in exon numbers or exon start/stop
sites were counted as a predicted splice modification of
the variant.

Selection of SNPs for the genome wide analysis
Approximately 5 million human SNPs located in protein
coding genes and found in EnsEMBL 53 (http://www.
ensembl.org) were the starting point. Assuming that
SNPs near splice sites are more likely to be involved in
splice changes, only intronic SNPs located within 10
bases of the exon-intron boundary and exonic SNPs
within 100 bases of the splice site were considered.
Additionally, a population frequency of the SNP of at
least 0.1 in the CEU population was required. According
to the described criteria 82,838 SNPs were selected by a
perl script which used the EnsEMBL API for extracting
the SNPs, the splice sites, the sequences and the popula-
tion frequencies.

Additional material

Additional file 1: This file contains two tables. Table 1 lists the SNPs
used in set 1 for benchmarking AASsites together with their
references. Table 2 displays the SNPs identified by the genome
wide analysis of AASsites that are listed in the ssSNP target
database together with their associated diseases.
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