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Abstract

Background: As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a
lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org),
SPARQL - a W3C recommendation query for RDF databases - has become an important query language for
querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting
information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the
RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data.
To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in
SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for
querying a text corpus, or only for supporting the matching over the paths in an RDF graph.

Results: In this paper, we propose a novel framework for supporting regular expression processing in SPARQL
query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing
SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt
the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in
C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique.

Conclusions: Experiments with a full-blown RDF engine show that our framework outperforms the existing ones
by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

Background
Introduction
In recent years, the Resource Description Framework
(RDF) has become the most popular sematic web tech-
nology for modeling large collections of data over the
web. As a W3C standard model for exchanging data
among web data repositories, RDF has been used in a
large number of applications such as DBpedia [1], a
knowledge-management community of structured infor-
mation extracted from Wikipedia, or freebase [2], an
online social database collected from thousands of
sources. In the domain of life sciences as well as bioin-
formatics, RDF is the common data model for a lot of

public online bioinformatics resources [3] such as Uni-
prot (Universal Protein Resource) [4] or Bio2RDF [5].
An RDF can be considered as a collection of facts in

the form of triples (subject, predicate, object) that repre-
sent the relationship, indicated by the triple pattern pre-
dicate, between the subject and the object. An RDF
database can also be represented as a directed labeled
graph, called RDF graph, in which the subjects and the
objects are the nodes of the graph and the predicates
are the edges connecting these nodes. In company with
the popular availability of the RDF stores, SPARQL [6],
the W3C recommendation query language for RDF, has
played an important role in searching and extracting the
data from various web knowledge-bases. A SPARQL
query is a SQL-like RDF query which mainly consists of
two clauses - the SELECT clause and the WHERE
clause. The SELECT clause specifies triple patterns that
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need to be returned as the answer for the query, and the
WHERE clause consists of series of triple patterns which
can also form a query RDF graph pattern. An example
of a SPARQL query for finding a chemical compound
that has the name “Tryptophan Synthetase” is:
SELECT ?x WHERE {?x <hasName> “Tryptophan

Synthetase”; ?x <hasSubstrate> “Chemical”}.
Figure 1 shows an example of the graph representa-

tion format of an RDF database, a SPARQL query, and
the answer for this SPARQL query.
In order to express diverse requests on extracting

information from RDF data, SPARQL needs to be able
to efficiently support regular expression processing. We
consider an example where a researcher wants to find
all proteins related with the ‘MOUSE.’ While it is hard
to express this query without the regular expression, it

is desirable and easy to represent this request by using
the following SPARQL query with a regular expression.
SELECT ?protein WHERE {
?protein a <Protein>.
?protein <mnemonic> ?m.filter(?m,“.*MOUSE.*”)
}
Moreover, since users usually do not know the exact

matching values of an RDF triple pattern, this example
presents a common kind of request over RDF data and
thus shows the necessity of supporting regular expres-
sion processing in SPARQL. It therefore motivates us to
study the regular expression processing in RDF systems
which, to the best of our knowledge, has not been effi-
ciently supported by any of the existing RDF systems.
The regular expression processing has been studied in

many existing literatures [7-12]; however, most of the

Figure 1 An example of RDF data and SPARQL query. Example of the graph representation format of an RDF database, a SPARQL query, and
the answer for this SPARQL query.
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existing techniques are developed for a given regular
expression over a text corpus, not RDF data. Recently,
there have been several works dealing with regular
expression processing [13-16] in RDF data. However,
they merely consider processing the regular expression
along the paths between two nodes in an RDF graph,
but do not consider processing regular expressions over
each RDF triple pattern in a SPARQL query.
In this paper, we propose an efficient framework for

efficiently processing the regular expression in the stan-
dard SPARQL over an RDF database. Our framework
contains two main steps: index building and query pro-
cessing. In the index building step, we exploit the
approach which uses grams (i.e., a sequence of charac-
ters of a specific length) in a text corpus [12] for build-
ing the index of an RDF data. Specifically, we first
extract all the “useful” grams appearing in all the triples
of the RDF data. Then, we index all the extracted grams
with their occurrence information by using an inverted
index structure. In the query processing step, we find all
indexed grams in the input regular expression, and then,
construct an execution plan using these grams. In order
to construct an efficient plan, we propose a cost model
for evaluating the plan. To demonstrate the efficiency
and effectiveness of our proposed framework, we proto-
type the framework in C++. Then, by conducting exten-
sive experiments with the real dataset such as
GeneOntology [17], we show that our framework can
have significant performance improvement over multiple
kinds of SPARQL queries supporting regular expression
processing.

Related work
RDF systems
Along with the growth of Semantic-Web research, there
are increasing numbers of studies on RDF - one of the
most popular frameworks for representing semantic-web
ontologies and knowledge bases. As an RDF database
can be considered as a collection of data items in the
form of triples (subject, predicate, object), most of the
existing RDF systems store the knowledge bases by
creating relational tables over these RDF triples [18-26].
They either store all the triples in a giant relational
table having three attributes subject, predicate, and
object [19], or store each group of triples having the
same predicate in a so-called property table [22-25].
Early and popular open-source RDF systems such as
Sesame [22,23] and [24,25] use the latter method for
storing RDF triples. However, these systems have been
empirically shown to be unsuitable for large scale data-
sets [18,19]. The current best performance RDF systems
in the approach using property tables, such as Oracle
[27] and C-Store-based RDF engine [18], exploit the
materialized join views and the indexes on them, and

thus, incur the challenge of a physical design problem
due to the diversity of predicates and the lack of a glo-
bal schema. Recently, Neumann et al. [19] has developed
a novel RDF system, called RDF-3X, that stores all tri-
ples in a huge table indexed by using six compressed
clustered B+-Trees. By following a RISC-style architec-
ture [28] for indexing as well as query processing, RDF-
3X can avoid the problem of physical-design and
achieve efficient performance on large join queries - the
inherent performance challenge in large RDF dataset. As
RDF-3X outperforms other existing systems by a large
margin, it can be considered as the-state-of-the-art RDF
system. However, as far as we know, there is no RDF
system designed for efficiently supporting SPARQL with
regular expression pattern.

Regular expression processing
There is a lot of literature studying the regular expres-
sion processing problem [29] which finds the matching
strings in a text for a given regular expression (i.e.,
regex). The most common approach uses the finite
automata, in which the given regex is converted to an
equivalent DFA, and then, all the strings accepted by
the DFA are returned as the results for the regex [7-10].
For efficiently searching the matching strings of the
regex in a large amount of documents, many techniques
using pre-build indexes for the regex have been pro-
posed. Baeza-Yates and Gonnet [11] construct a suffix
trie for indexing all the suffixes of the text and directly
simulate the minimal DFA corresponding to the given
regex over all paths of the trie in order to find the
matching strings. This solution can answer the queries
in logarithmic average time; however, since the size of
the constructed suffix trie is several times larger than
the text corpus, this solution is not suitable for the large
databases. In [12], Cho and Rajagopalan speed up regu-
lar-expression matching on a large database by propos-
ing an inverted index structure called multigram index.
In this index, the most “useful” grams such as the most
selective grams from the text corpus will be indexed,
associating with the posting lists of document IDs con-
taining those grams. Then, a physical access plan con-
taining the indexed grams in the given regex will be
generated for facilitating the query processing. However,
in contrast to our framework, these regular expression
processing techniques are developed for searching over
the text corpus, not for querying the RDF data. In the
domain of RDF databases, there have been several
efforts considering the regular expression processing in
RDF queries. However, the existing works concentrate
on extending SPARQL queries to process the regular
expression over the paths of RDF graphs (i.e., regular
paths), while our proposed framework supports the reg-
ular expression pattern in the standard SPARQL which
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is able to process a matching RDF triple pattern for a
given regex. Alkhateeb et al. [13,14] adopt a new query
language, called PSPARQL, that extends from SPARQL
by allowing regular expressions to be used for the labels
of the arcs in the query graph. In this query language,
the regular expression is used for capturing the relation-
ship information along the paths between two nodes in
the RDF graph. Similar to this approach, Kochut et al.
[15] propose another extension of SPARQL, called
SPARQLer, by using the path variables in the query
graph pattern. Here, the path variables are simple paths
between two nodes in an RDF graph that contain con-
straints based on regular expressions. For querying the
knowledge graph such as RDF graph in a search engine,
NAGA search engine [16] introduces a graph-based
query language which is akin to SPARQL that also
allows regular expression matching over the paths in the
RDF graph, in which the regular expression is placed at
the edge label in the query graph.
To the best of our knowledge, there is no work fully

supporting SPARQL with regular expression patterns in
RDF databases.

Methods
Index building
To process regular expressions efficiently, we need to
construct an efficient index structure. In this section, we
will explain our index structure, and the algorithm for
constructing the index.
First, we formally present some related concepts. Each

data item in RDF data is represented as a triple, with
the form of (subject, predicate, object). This triple is also
called as an RDF triple. An RDF database is a database
storing the RDF data. For a given RDF data, an RDF
database D = {t1, t2, …, tn} is a set of all triples in the
RDF data, where ti is an RDF triple whose ID is i. Each
RDF triple ti in D contains subject, predicate, and object
parts, represented as ti.s, ti.p, and ti.o, respectively. For
example, an RDF database for the RDF data in Figure 2
can be represented as
D = {t1 = (〈Gpr64〉, 〈mnemonic〉, “GPR64_MOUSE”),

t2 = (〈Ccdc80〉, 〈mnemonic〉, “CCD80_MOUSE”), …}.
Because our index uses the gram as a basic indexing

unit, we also need to know the concept of the gram. For
a given string S, an n-gram is a substring of S whose
length is n, and Ξn is a set of all n-grams of S. For
example, for the string S = “MOUSE”, the set of all 3-
grams is represented as Ξ3 = {MOU, OUS, USE}. In our
index building algorithm, for given constants a and b,
we index a subset of  i i=

 Ξ to minimize the index size
and maximize the pruning power.
Algorithm 1 shows our index building method Index-

Build. This algorithm returns three constructed indexes
IS, IP, IO using three input parameters, D, a, and b. The

first parameter D is an RDF database which stores all
triples. The other parameters, a and b are the minimum
and maximum size of the grams to be indexed. The
algorithm first extracts three strings (SS, SP, and SO),
presented in the tree part of the triple (Line 2). Then,
for each string, it extracts all grams in the string and
stores the selective grams among them by calling the
ExtractAndInsertGrams function (Line 3-5). Note that,
we build three separate indexes for each subject, predi-
cate, and object parts of triples. The ExtractAndInsert-
Grams function first finds all n-grams, a ≤ n ≤ b, and
assigns them to the set G (Line 7). Then, for each gram
g in G, if g is a selective gram, g is inserted into the
index I with its occurrence information (Lines 9-10).
We will explain the concept of the selective gram later.
By using this concept, we can reduce the number of the
grams to be indexed. Finally, IndexBuild returns the
constructed indexes IS, IP, IO (Line 6).
Selecting indexing grams
In this section, we explain how we select the grams to
be indexed. We use the gram selecting technique
described in [12], where there are two goals for selecting
grams: 1) maximizing the pruning power, and 2) mini-
mizing the size of the index. To maximize the pruning
power, the authors select infrequent grams that prune
as many of the candidate strings as possible. To mini-
mize the index size, they use the concept of the selective
gram set. With this concept, they can further reduce the
number of the grams to be indexed by removing redun-
dant grams.
Algorithm 1 IndexBuild
Require:D; a set of triples
Require:a, b; minimum and maximum size of a gram
Ensure: a set of indexes constructed {IS, IP, IO}
1: for each triple t in D
2: {SS, SP, SO} ¬ ExtractStrings(t);
3: ExtractAndInsertGrams(IS, SS, a, b);
4: ExtractAndInsertGrams(IP, SP, a, b);
5: ExtractAndInsertGrams(IO, SO, a, b);
6: return {IS, IP, IO};
Function ExtractAndInsertGrams
Require:I; an index that extracted grams will be
inserted
Require:S; a string that grams will be extracted
Require:a, b; minimum and maximum size of a gram
7: G ¬ FindAllGrams(S, a, b);
8: for each gram g in G
9: ifg is a selective gramthen
10: insert g into the index I with its occurrence
information;
To maximize the pruning power, [12] selects the

grams which appear infrequently among all documents.
The selectivity of the gram g, denoted as Sel(g), is
defined as C(g)/N, where N is the total number of
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documents, and C(g) is the number of documents that
contain the gram g. If the selectivity Sel(g) is low, the
gram g appears infrequently. Thus, [12] can prune many
candidates by using the gram g that has low selectivities.
For example, for given grams g1 and g2, assume that the
selectivities of these two grams are 0.1 and 0.9. They
can prune 90% of documents using g1, while they can
only prune 10% of documents using g2. To find the
infrequent gram, for a given threshold c, they select
grams where the selectivity of a selected gram is less
than or equal to c, among all possible grams in all
documents.
Even if only infrequent grams are selected, the num-

ber of grams remains large. Thus, [12] reduces the num-
ber of grams to be indexed further by removing the
redundant grams. Assume that, for the string
“GPR64_MOUSE”, the 3-gram “MOU” is an infrequent
gram. Then, all the grams containing “MOU” are also
infrequent grams. For example, “4_MOU”, “_MOU”,
“MOUS”, and “MOUSE” are infrequent grams, because

the selectivities of these grams are either less than or
equal to c. Because these grams are redundant, it isn’t
necessary to index all of them. Thus, they remove these
redundant grams — the grams which contain another
infrequent grams — in all infrequent grams. In this
paper, we call the remaining grams selective grams.

Index structure
In this section, we explain how to store and manage the
selective grams. We use an inverted index for which the
grams are the keys. Each key in the inverted index is
associated with a posting list. The posting list contains
occurrence information about the gram in the RDF
database. Formally, for a given gram g and its occur-
rence information p, we insert a pair (g, p) into the
index as the key/value. The occurrence information p is
a set of (tid, offs), where tid is the ID of a triple contain-
ing the gram g, and offs is a set of offsets in the string
where the gram g appears. Note that, g can appear
many times in one string. The offsets in offs are used for

ID subject predicate object
1 Gpr64 <mnemonic> GPR64_MOUSE

2 Ccdc80 <mnemonic> CCD80_MOUSE

…

… … …

IS IP IO

{<1, {6}>, <2, {6}>, …}

{<1, {0}>, …}

GPR MOUSE

B+-tree

Posting lists

Triples in an RDF database

Figure 2 An example of the inverted index. There are three inverted indexes for subject, predicate, and object parts of the RDF triples.
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the query processing as we will explain later. We also
build a dictionary of all triples to convert a triple into
the three-part string IDs. Using this dictionary, a triple
ID in the posting list can be converted into a triple of
string IDs.
In our framework, we construct three indexes for sub-

ject, predicate, and object parts separately, because the
regular expressions for these three parts should be pro-
cessed independently. That is, we construct three
indexes, IS, IP , and IO for each part of the RDF triples.
Figure 2 shows an example of the inverted index that
we construct. As the figure illustrates, each index of IS,
IP, and IO has two data structures, a B+-tree and a post-
ing list. The B+-tree stores the gram and the reference
to the posting list as a key/value pair. Additionally, we
also store the number of pages of the posting list in the
value part. This information is used for the cost estima-
tion of the query. The posting list contains the occur-
rence information. For example, the gram “MOUSE”
appears in t1 and t2 at the sixth offset for both object
part strings.

Query processing
In this section, we explain the query processing algo-
rithm. We first discuss the query processing without
regular expressions for the background knowledge of
the query processing in Section. Then, we explain how
we process regular expression queries in Section.
Query processing without regular expressions
For a given SPARQL query Q, the query processor con-
verts query Q into an optimal query execution plan
(QEP), then executes the optimal QEP to get the results.
The QEP is a rooted tree of operators. The leaf nodes of
the QEP are scan operators associated with triples in the
query Q. These scan operators find the triples in a data-
base and return them to their parent nodes. The inter-
nal nodes of the QEP get the inputs from their child
nodes, and they do the appropriate operations according
to their operator types. QEP1 and QEP2 in Figure 3 are
QEPs for the example query in Figure 1. The query in
Figure 1 has two matching triples. The leaf operators of
QEP1 and QEP2 are associated with these matching tri-
ples. These operators find the associated triples from
the database, and return string IDs for the variable ?x to
the parent operator MGJN (merge join) or HSJN (hash
join). MGJN or HSJN operator gets the string IDs from
child nodes, and returns the joining results of both
inputs.
To find the optimal QEP, the query processor uses a

query optimizer. The query optimizer finds the optimal
QEP among all possible QEPs based on their costs com-
puted by using a cost model. That means, the query
optimizer enumerates all possible QEPs for a given
query, and then selects the minimal cost QEP as the

optimal QEP. For the query execution model, we use
the GetNext model [30] which is very simple to use and
has good scalability. Specifically, all operators in a QEP
have GetNext() functions. For each call of the GetNext()
function, the next results are returned one-by-one. To
obtain all final results, the query executor calls the Get-
Next() function of the root operator of the optimal QEP
until the function returns no more results. The GetNext
() function calls are propagated to the descendants. That
means the GetNext() function in the root operator calls
the GetNext() functions of its child operators in order
to get the results from them.
Query processing with regular expressions
To support regular expression queries, we develop a
new operator, called REGSCAN, and adapt it to the
query processing engine. For a triple pattern matching
with a regular expression in a SPARQL query, the
REGSCAN operator finds candidate triples which can be
matched with that pattern in a database. In this section,
we explain how this operator is created and implemen-
ted in a query execution.

Plan generation
REGSCAN has a regular expression sub-plan to evaluate
the regular expression. To generate this sub-plan, we
adapt the technique in [12], and we summarize the tech-
nique in the next sub-plan generation section. We
explain our technique using the example below. Here,
the results for the query triple should contain sub-
strings, in the object part, “GPR” or “CCD”, and follow-
ing these substrings, the substring “MOUSE” must
appear.
?protein <mnemonic> ?m. filter(?m,“(GPR|CCD).

*MOUSE.*”)
For the example above, we generate QEP with

REGSCAN as in Figure 4(a). The QEP has two opera-
tors, REGSCAN and FILTER. The REGSCAN operator
finds candidate triples for the matching triple pattern by
using the containing-regular-expression sub-plan.
Because the REGSCAN operator can find false positives,
we must verify the results of the REGSCAN operator.
The FILTER operator verifies the results from
REGSCAN. We explain how the regular expression sub-
plan in Figure 4(b) is constructed in the sub-plan gen-
eration part.

Plan execution
The execution model of the regular expression sub-plan
follows the GetNext model as well. Every sub-operator
in the sub-plan has the GetNext() function, and it
returns the results one-by-one for every GetNext() func-
tion call. The GetNext() function of the IDXSCAN for
the gram g returns all triple IDs sequentially by scanning
the posting list of g. IDXAND or IDXOR operators
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IDXSCAN IDXSCAN

MGJN

?x 
<hasName> 

“Tryptophan Synthetase”.

?x 
<hasSubstrate> 

<Chemical>

SCAN SCAN

HSJN

?x 
<hasName> 

“Tryptophan Synthetase”.

?x 
<hasSubstrate> 

<Chemical>

QEP1 QEP2

Figure 3 An example of QEPs. Query execution plans for the example query in Figure 1.

IDXSCAN(“MOU”)

IDXAND

IDXSCAN(“USE”)IDXSCAN(“GPR”) IDXSCAN(“CCD”)

IDXOR

IDXAND

(b) Regular expression sub-plan

Filter

RegScan

Verification

Regular
expression sub-plan

Candidate triples for
the regular expression

(a) Query execution plan

Figure 4 An example of QEP with REGSCAN. The QEP has two operators, FILTER and REGSCAN, in which REGSCAN contains regular-
expression sub-plan.
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intersect or union the results from their children. The
IDXAND operator uses offset information in the posting
lists. When the offset of the triple from the left child is
less than that of the right child and those triple IDs are
the same, it returns the triple corresponding to this tri-
ple ID. When the IDXAND intersects two sets of the
triple IDs, it uses this constraint.
The GetNext() function of REGSCAN operator calls

the GetNext() function of the root operator of its sub-
plan to get the candidate triple IDs and then converts
each triple ID into three string IDs using the dictionary
built in the index building algorithm. For example,
REGSCAN operator in Figure 4(a) gets the triple ID by
calling the GetNext() function of the root operator
(IDXAND) of the regular expression sub-plan. Then,
each triple ID is converted into the string IDs, and
REGSCAN returns these string IDs to the FILTER
operator to verify the result.

Sub-plan generation
The technique in [12] has three steps for a given index I
and a regular expression. These three steps are summar-
ized as follows:
1. Normalize the input regular expression into the

new regular expression that has only OR(|) or STAR(*).
2. Construct the parse tree using the normalized regu-

lar expression.
3. Convert the parse tree into the execution plan.
To adapt the technique in our framework, we first

find the appropriate index among IS, IP, and IO by
checking the position of regular expression appearing in
the triple pattern. In the example query, the regular
expression is bound with variable ?m, and ?m appears in
the object part of the matching triple pattern. Therefore,
we can select IO to evaluate the regular expression.
For the first step of the algorithm, the regular expres-

sion “(GPR | CCD). *MOUSE.*” in the query triple is
converted into “(GPR | CCD)(a | b | c | …)*(MOUSE)(a |
b | c | …)*”, after the normalization. Here, the periods(‘.’)
are converted into the all characters connected with OR
operators. In this step, for example, an aggregated regular
expression, such as (a-z), is converted into (a | b | ··· | z),
and a+ (more than one occurrence) is converted into aa*.
In the second step of the algorithm, we can construct

a parse tree using this normalized regular expression.
The example of the parse tree for the normalized regu-
lar expression is represented in Figure 5(a). The leaf
nodes in the parse tree contain grams that are separated
by OR, AND, or STAR operators. Then, the sub-trees
whose roots are the STAR nodes are converted into the
ALL node. This is because STAR nodes can be repre-
sented as all combinations of their descendant nodes,
and the number of possible grams for the STAR nodes
is infinite. The shaded nodes in Figure 5(b) are the

converted ones. After the conversion, the nodes that
have the ALL nodes as their children are merged into
AND or OR nodes with their children. If the node is an
OR node and has an ALL node as its child, this node is
merged into an ALL node. In this case, because the ALL
node is generated again, the merging step is applied
recursively, so that the final parse tree has only AND or
OR nodes as its internal nodes.
In the third step, we build an execution plan using the

parse tree constructed in the second step. In this step,
we first convert the AND and OR nodes into IDXAND
and IDXOR operators respectively, and leaf nodes are
converted into IDXSCAN operators. An IDXSCAN
operator for the gram g returns all IDs of the triples
which contain g. An IDXAND or an IDXOR are logical
AND or OR operators between the two sets of the triple
IDs that come from its child operators. For example,
Figure 6(a) represents the converted parse tree in Figure
5. The AND and OR nodes are converted into the
IDXSCAN and IDXOR operators, and each leaf node g
is converted into the IDXSCAN(g) operator.
Because all grams in the parse tree are not indexed,

there may be no results for the IDXSCAN operators.
Therefore, we need further modifications in the execu-
tion plan. For the gram g, there would be three cases: 1)
g is indexed, 2) g is not indexed, but some substrings of
g are indexed, and 3) g is not indexed, and its substrings
are not indexed either. For the first case, we do nothing.
In the second case, we replace the IDXSCAN(g) opera-
tors with the IDXAND operators of the IDXSCAN
operators of g’s indexed substrings. In the third case, we
replace the IDXSCAN node with the ALL node and
apply the merging technique in the parse tree building
step. For example, In Figure 6(b), because the gram
“MOUSE” is not index, and its substrings “MOU” and
“USE” are indexed, IDXSCAN(“MOUSE”) in Figure 6(a)
is converted into the IDXAND between IDXSCAN
(“MOU”) and IDXSCAN(“USE”).

Cost model
In this section, we explain the cost model of the query
processing. Our cost model is based on the cost of I/Os
to access the index pages. The CPU cost for the verifica-
tion of the candidate triples can also affect the execution
time. However, we do not consider the CPU cost
because it is negligible compared with the I/O cost. The
cost for REGSCAN operator, Cost, is defined as follows:
Cost = OnePageAccessCost × (|G| × Height(I) + ∑g∊G

NumPages(g)),
where OnePageAccessCost is a unit cost for accessing a

page, G is a set of all grams in the execution plan, and
NumPages(g) is the number of pages of the posting list
for the gram g. To evaluate the execution plan, we have
to access all posting lists and pages in the B+-tree.
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This cost model can be used in the cost-based query
optimizers of the RDF database. We exploit a cost-based
bottom-up query optimizer to find the optimal query
execution plan for the given SPARQL. Using the cost
model, our algorithm can be adapted seamlessly.

Results and discussion
Setup
We implemented our framework using C++. The codes
were compiled using the GNU gcc 4.3 compiler. All the
experiments were conducted on a PC with an Intel
Xeon Quad Core CPU and 8GB RAM running 64-bits
Linux. We compared the performance of our algorithm
with Sesame [22]. Our framework is denoted as
RegScan. In our experiments, in order to avoid the pro-
blem of large database size as well as long index build-
ing time, we empirically select the values 2 and 4 for

the parameters a and b, respectively. We use the thresh-
old value 0.1, which is commonly used for finding infre-
quent grams for the parameter c. We used GeneOntolgy
RDF dataset [17], a common real dataset which contains
869,770 triples for the experiments. For query proces-
sing, we used 8 queries which are presented in Appen-
dix A. Before execution of each query, we flushed the
OS caches using the /proc/sys/vm/drop_caches interface
to minimize the caching effect.

Results for the database building
Table 1 shows the database building time and the data-
base size. In terms of the database building time,
RegScan takes 4.57 times more time compared with
Sesame, because RegScan has additional steps for the
selective gram extraction. RegScan also needs 5.70 times
more disk space compared with Sesame. This is because

MOUSE

GPR CCD

OR STAR

a b

c
OR

…

OR

AND

AND

AND

STAR

a b

c
OR

…

OR

MOUSE

GPR CCD

OR ALL

AND

AND

AND

ALL

MOUS
E

GPR CCD

OR

AND

(a)  A parse tree from the normalized 
regular expression

(b)  A parse tree after the converting 
STAR nodes

(c)  A final parse tree after 
the merging

Figure 5 An example of the parse tree building. The parse tree is constructed from the normalized regular expression, STAR nodes
converting, and ALL nodes merging.

IDXSCAN(“MOUSE”)

IDXSCAN(“GPR”) IDXSCAN(“CCD”)

IDXOR

IDXAND

IDXSCAN(“MOU”)

IDXAND

IDXSCAN(“USE”)IDXSCAN(“GPR”)IDXSCAN(“CCD”)

IDXOR

IDXAND

(a)  An execution plan from the parse tree. (b)  An execution plan after the modification.
Figure 6 An example of the regular expression sub-plan building. An execution plan is built from the parse tree, and then modified
according to the indexed grams.
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RegScan has to store additional indexes for scalable reg-
ular expression processing.

Results for the query processing
Table 2 shows the performance results for the GeneOn-
tology dataset. According to this table, RegScan is the
most effective among all algorithms. In terms of the
query execution time, RegScan outperforms Sesame by
up to 2143 times, and by 282 times on average.
This is because RegScan can avoid full-scanning of the

database, and it only scans the posting lists which have
very small sizes in comparison to the database size. We
observe that RegScan performs more effectively, when
the selectivity of the regular expression is low, since the
regular expression with low selectivity accesses small
sizes of posting lists for the grams. Since Sesame does
not support scalable regular expression processing and
is implemented using Java, it has much more overhead
compared with our framework, and shows the worst
performance results.

Conclusions
In this paper, we have presented a novel framework
which can be considered as the first solution for effi-
ciently supporting regular expression processing of
SPARQL queries over RDF databases. For building this
framework, we first extract the grams from RDF data
and efficiently build an inverted index structure based
on the set of selective grams. Then, in the query proces-
sing, we find the indexed grams from regular expression
patterns, and generate an efficient execution plan by
using our proposed cost model for regular expression

processing. To demonstrate the performance of our
techniques, we have prototyped the proposed framework
in C++ and then compared the efficiency and effective-
ness of our systems with a popular RDF system (i.e.,
Sesame). The experimental results over large knowledge
resources which are commonly used in bioinformatics,
such as GeneOntolgy, have shown that our framework
is an efficient and effective solution for processing regu-
lar expressions over RDF data and is useful for extract-
ing information from bioinformatics knowledge
databases.

Appendix A: Query set for GeneOntology
Q1. SELECT * WHERE {?gp rdfs:label ?name FILTER

regex (?name, ”spliceosomal”) .}
Q2. SELECT * WHERE {?gp rdfs:label ?name FILTER

regex (?name, ”mRNA|tRNA”) .}
Q3. SELECT * WHERE {?gene ?pred ?isbn FILTER

regex (?isbn, ”[0-9]19857[0-9]”) .}
Q4. SELECT * WHERE {?gp rdf:type ?type .?gp rdfs:

label ?name FILTER regex (?name, ”BP.*mouse”) .}
Q5. SELECT * WHERE {?gp rdf:type ?type FILTER

regex (?gp, ”0005[0-9][0-9][0-9]”) .?gp rdfs:label ?name .?
gp rdfs:comment ?comment .}
Q6. SELECT * WHERE {?gp rdf:type ?type FILTER

regex (?gp, ”0005[0-9][0-9][0-9]”) .?gp rdfs:label ?name
FILTER regex (?name, ”activity”) .?gp rdfs:comment ?
comment .}
Q7. SELECT * WHERE {?gp rdf:type ?type FILTER

regex (?gp, ”0005[0-9][0-9][0-9]”) .?gp rdfs:label ?name
FILTER regex (?name, ”activity”) .?gp rdfs:comment ?
comment FILTER regex (?comment, ”molecular”) .}
Q8. SELECT * WHERE {?gp1 go:consider ?gp2 . ?gp1

?p1 ?ns1 FILTER regex (?ns1, ”cellular”) .?gp2 ?p2 ?ns2
FILTER regex (?ns2, ”molecular”) .}
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