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Abstract

Background: One of the primary goals of comparative metagenomic projects is to study the differences in the
microbial communities residing in diverse environments. Besides providing valuable insights into the inherent
structure of the microbial populations, these studies have potential applications in several important areas of
medical research like disease diagnostics, detection of pathogenic contamination and identification of hitherto
unknown pathogens. Here we present a novel and rapid, alignment-free method called HabiSign, which utilizes
patterns of tetra-nucleotide usage in microbial genomes to bring out the differences in the composition of both
diverse and related microbial communities.

Results: Validation results show that the metagenomic signatures obtained using the HabiSign method are able to
accurately cluster metagenomes at biome, phenotypic and species levels, as compared to an average
tetranucleotide frequency based approach and the recently published dinucleotide relative abundance based
approach. More importantly, the method is able to identify subsets of sequences that are specific to a particular
habitat. Apart from this, being alignment-free, the method can rapidly compare and group multiple metagenomic
data sets in a short span of time.

Conclusions: The proposed method is expected to have immense applicability in diverse areas of metagenomic
research ranging from disease diagnostics and pathogen detection to bio-prospecting. A web-server for the
HabiSign algorithm is available at http://metagenomics.atc.tcs.com/HabiSign/.

Background
The advent of high-throughput sequencing technologies
(and the concomitant emergence of the field of metage-
nomics) has facilitated the rapid sequencing and charac-
terization of the entire genomic content obtained from
various microbes present in a given environment [1]. By
facilitating the recovery and characterization of genomic
material from hitherto unculturable (and consequently
unknown) microbes, the metagenomic approach enables

researchers to gain valuable insights into the taxonomic
and functional aspects of various microbial communities.
One of the primary goals of metagenomics projects is

to perform a comparative analysis of microbial commu-
nities residing in diverse ecological niches. Assaying
such differences can not only yield valuable insights into
the inherent structure of these microbial communities,
but can also identify genes/proteins/organisms that may
confer specific functional characteristics to a given
environment. Insights gained from such comparative
studies are expected to have immense potential in sev-
eral important areas of biological research, ranging from
healthcare (e.g, disease diagnostics, detection of patho-
genic contamination and characterization of novel
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pathogens), industrial biotechnology (bio-prospecting)
and bio-remediation studies.
In order to perform a comparative analysis, the meta-

genomic samples need to be first characterized in taxo-
nomic terms. Currently two approaches are used for
characterizing taxonomic diversity. In the first approach,
the 16S rRNA genes of various microbes present in a
given environmental sample are extracted and
sequenced. Subsequently, computational methods are
employed for mapping these sequenced fragments to
different taxonomic groups. In the second approach, the
entire genomic content obtained from a given environ-
ment is extracted, sequenced and taxonomically charac-
terized using computational methods [2-6]. The
differences between the microbial communities are
finally inferred by comparing the obtained taxonomic
profiles.
Comparing metagenomic samples using the above

approaches has the following limitations. First, a major-
ity of sequences in metagenomic data sets originate
from hitherto unknown organisms. Given that existing
taxonomic characterization approaches are based on
mapping metagenomic sequences to known taxonomic
groups, adopting such approaches will result in a major-
ity of sequences remaining un-characterized. The
obtained taxonomic profiles are thus far from complete.
Secondly, metagenomic data sets are huge and typically
consist of millions of sequences. For example, the GOS
data sets [7-9] contain more than 7 million sequences.
Enormous time and/or computational resources is thus
needed for characterizing all sequences in such huge
data sets.
To address the above limitations, several recent stu-

dies have explored the utility of using differences in oli-
gonucleotide usage patterns as a measure for comparing
metagenomic data sets [10-12]. The reasons for using
oligonucleotide usage patterns as features for comparing
metagenomes are as follows. Previous studies have indi-
cated that genomes of both prokaryotic and eukaryotic
organisms possess distinct patterns of oligonucleotide
usage (referred to as the ‘genomic signature’), with clo-
sely related species having more similar patterns than
distantly related ones [12-15]. For instance, correlations
in tetranucleotide usage frequencies were used by meth-
ods such as TETRA for clustering individual genomic/
metagenomic fragments [15]. Furthermore, recent stu-
dies have also indicated that environmental factors play
a key role in determining the genomic signatures of the
constituent organisms [10,11]. These studies have thus
extended the concept of ‘genomic signatures’ to ‘metage-
nomic signatures’ [11]. Such ‘signatures’ obtained solely
by profiling the overall oligonucleotide usage patterns of
all sequences in metagenomic data sets, indirectly reflect
the taxonomic composition of the underlying microbial

communities. A distinct advantage of using the metage-
nomic signature approach is the following. Metagenomic
signatures are obtained by profiling the compositional
properties of all sequences in a given metagenomic data
set irrespective of whether a given sequence is assigned
to a known taxonomic group or not. The metagenomic
signature is thus expected to comprehensively represent
a given metagenome. Consequently, comparison of
metagenomic signatures is expected to efficiently iden-
tify the differences between a set of metagenomes. An
additional advantage of approaches based on compari-
son of oligonucleotide usage patterns is that they are
much faster than alignment-based methods which
involve an extensive process of aligning millions of
sequences across metagenomic data sets.
In this paper, we present HabiSign – an approach that

uses a novel methodology for generating the metage-
nomic signature. The performance of HabiSign has been
tested on several metagenomic data sets having varia-
tions at phenotypic, species and biome levels. We
demonstrate that HabiSign is able to group and cluster
metagenomes much more efficiently than the average
tetranucleotide frequencies based approach as well as
the di-nucleotide relative abundance based approach
used by Willner et al.[11]. In addition, we also demon-
strate that the signature generated using the HabiSign
approach aids in identifying subsets of sequences that
are specific to given metagenomic samples. Identifying
the taxonomic affiliation of such subsets of sequences
(and the genes/proteins encompassed within them) may
help in determining the key players which are possibly
responsible for conferring a specific phenotype to a
given metagenome.

Results
Principle of HabiSign algorithm
The principle of the HabiSign algorithm is as follows.
Given that environmental factors influence the overall
oligonucleotide composition of the genomes of the con-
stituent organisms [10,11], the oligonucleotide usage
patterns of the DNA sequences collected from diverse
habitats are expected to be different. Consequently, if a
‘feature vector space’ is created, wherein the DNA
sequences are represented as distinct points (on the
basis of their oligonucleotide usage patterns), sequences
belonging to a particular metagenome are likely to loca-
lize to specific regions in this space. This pattern of spa-
tial localization will essentially capture the signature
corresponding to a given metagenome. Furthermore,
this pattern of localization is expected to be different for
sequences originating from metagenomes sampled from
diverse habitats. Consequently, quantifying these differ-
ences can primarily aid in efficiently comparing and
grouping metagenomes. Furthermore, while comparing
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a set of metagenomes obtained from diverse habitats, it
is possible to identify regions (in the same feature
space) that are selectively over-mapped by sequences
belonging to metagenome(s) sampled from a particular
habitat. The sequences mapping to such regions are
likely to originate from organism(s) or gene cluster(s)
that are specific to a particular habitat.

HabiSign algorithm
Identification of reference points
In order to study the pattern of localization of
sequences constituting metagenomic data sets, it is
necessary to first identify a set of reference points in the
feature vector space. It is desirable that these reference
points are not only spatially well separated, but also
represent diverse patterns of oligonucleotide composi-
tions generally observed across biological sequences.
The mapping pattern of the sequences (constituting a
given metagenome) to these reference points will thus
serve as the ‘metagenomic signature’.
For the identification of these reference points, the

following procedure was adopted. Sequences corre-
sponding to 237 completely sequenced microbial gen-
omes (one representative from each genus) were
downloaded from the NCBI database (ftp://ftp.ncbi.nih.
gov/genomes/Bacteria/all.fna.tar.gz). The rationale
behind selecting 237 genomes is the following. Selecting
genomes from each of the 237 genera ensures that the
generated reference points comprehensively represent
diverse patterns of oligonucleotide usage generally
observed across known biological realm. In addition,
selecting one representative from each genera ensures
that the generated reference points are not too many,
and therefore does not adversely impact the the overall
computation time.
Each genome was split into non-overlapping frag-

ments of 1000 base pair (bp) length. For each fragment,
a 128 dimensional vector containing the frequencies of
all possible 256 tetra-nucleotides (with frequencies of
complementary tetranucleotides, e.g, ACGT and TGCA,
being counted together) was computed and stored.
Reducing the dimensionality of the vector from 256 to
128 was done to reduce the overall computation time.
Subsequently, using Manhattan distance (between indi-
vidual vectors) as the similarity criterion, these vectors
were then clustered by adopting the standard k-means
clustering approach [16]. A critical aspect of the k-
means clustering approach is deciding on the number of
clusters (k) to be generated for the sequence fragments.
Previous studies [17] have suggested a simple thumb
rule wherein, the number of clusters (k) is given by:

k n≈ / 2

where n is the number of observations . In this case, n
is equal to the total number of sequence fragments gen-
erated from the 237 microbial genomes.
Using the above rule, a total of 631 clusters were cre-

ated. Vectors corresponding to the centroid of each
individual cluster were computed and stored along with
the total number of sequences in the respective cluster.
These 631 centroid vectors were considered as distinct
‘reference points’ (hereafter referred to as RPs) and
represented the different regions of feature vector space.
It is to be noted that clustering step described above is
a one-time activity.
Generation of metagenomic signature
For each sequence in a given metagenome, the frequen-
cies of all possible tetra-nucleotides is calculated and
represented in the form of a 128 dimensional vector (as
described in the previous section). The distance of this
vector to each of the 631 RPs is computed. The closest
RP (in terms of distance) as well those RPs having a dis-
tance less than or equal to 1.01 times the distance of
the closest RP are identified. The identified set of RPs is
referred to as ‘hit profile’ for that particular sequence.
This hit profile indirectly represents the composition of
the given sequence as well as the spatial localization of
this sequence in feature vector space. Hit profiles for all
sequences constituting a metagenome are obtained in a
similar manner. The propensity (Hij) of a RPi to be
mapped by sequences belonging to a given metagenome
j is then calculated using the following formula:

H
C

N Fij
ij

j i

=
*

Where,
Cij is the number of times ith RP (i.e. RPi) is picked up

by the hit profile of sequences in metagenome j, Nj is
the total number of sequences in metagenome j. Fi
denotes the frequency of genomic fragments mapping to
the cluster corresponding to the given RPi in the k-
means clustering process.
Fi is calculated using the following formula:

Fi
i= No. of sequences corresponding to RP

Total no. of sequennces corresponding to all the RPs 

Given that metagenomes exhibit distinct oligonucleo-
tide usage patterns, the propensity with which each of
the 631 RPs are mapped are expected to be different.
The propensity of all the 631 RPs for a given metagen-
ome are then represented as a 631-dimensional vector
of the form [H1, H2…Hi,…H631]. This vector (henceforth
referred to as ‘HabiSign signature’) thus indicates the
pattern of localization of the sequences present in a
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given metagenome to spatially distinct regions in feature
vector space.
Identification of degree of relatedness across metagenomes
For a given pair of metagenomic data sets (j and k), the
Manhattan distance (L1 norm) between their HabiSign
signatures is first computed using the following formula:

D H Hjk ij ik

i

i

= −
=

=

∑
1

631

where, Hij and Hik represent the propensity of a RPi to
be mapped by sequences belonging to metagenomes j
and k respectively.
To compare a set of m metagenomes, the pairwise dis-

tance values are used for generating a m x m distance
matrix. Elements of this matrix indicate the degree of
relatedness across the different metagenomes in the set.
Relatedness between metagenomes can also be visualized
by providing this distance matrix as an input to a suitable
tree-building software package such as Phylip [18].

Identification of habitat-specific sequences
Metagenomes obtained from diverse habitats exhibit dif-
ferent patterns of oligonucleotide usage. Consequently,
the propensity with which RPs are mapped (by sequences
present in the metagenomes) is expected to be different.
By identifying RPs over-mapped by sequences belonging
to a specific habitat (as compared to the other), it is pos-
sible to identify sequences that are specific to a given
habitat. The procedure adopted for identifying such
sequences is as follows. Given two metagenomes corre-
sponding to two different habitats (j and k), the relative
mapping propensity (for each RP) is first calculated as
the ratio of the mapping propensity obtained with habitat
j (Hij) to that obtained with habitat k (Hik). While RPs
having a relative mapping propensity with z score value
greater than 2.5 are identified as specific to habitat j,
those RPs having a relative mapping propensity with z
score value lower than -2.5 are identified as specific to
habitat k. The identified sets of habitat specific RPs are
further refined using a Bayesian probabilistic approach,
wherein only those specific RPs are retained which show
a strong co-occurring tendency within the hit profiles
obtained for a particular habitat. Sequences of a meta-
genome that map to the corresponding refined set of RPs
(identified as specific for this metagenome) are tagged as
specific to that metagenome. To further improve the
confidence on the identified specific sequences, the pro-
cedure described above is repeated multiple times using a
different set of reference points. A different set of refer-
ence points can be generated using the same procedure
described earlier (in section ‘Identification of reference
points’) with a different set of genomes.

Validation
Besides being able to capture differences in oligonucleo-
tide usage patterns between metagenomes sampled from
diverse habitats, an ideal metagenomic signature should
also be able to identify subtle differences (at organismal
or phenotypic level) between metagenomes sampled
from similar habitats. Consequently, validation of Habi-
Sign was performed using the following three sets of
metagenomes (Additional File 1).

(A) Metagenomes from diverse habitats
Metagenomes from diverse habitats, including those
sampled from freshwater, marine, coral reefs, hot
springs, salterns, etc, were downloaded from http://
www.theseed.org/DinsdaleSupplementalMaterial[19].
The hot spring metagenomic data sets were obtained
from NCBI (http://www.ncbi.nlm.nih.gov/) .

(B) Metagenomes from similar habitats but sampled from
diverse species
Gut metagenomes sampled from cow, chicken, mice,
human and fish were downloaded from http://www.the-
seed.org/DinsdaleSupplementalMaterial[19].

(C) Metagenomes from similar habitats and species but
exhibiting different phenotypes
Sequences belonging to five mouse gut metagenomes
(previously analyzed by Turnbaugh et al.[20]) were
downloaded from http://www.ddbj.nig.ac.jp. While three
of these metagenomes (Lean1, Lean2 and Lean3) were
obtained from the gut of lean mice, two of them
(Obese1 and Obese2) were obtained from the gut of
obese mice. These data sets thus represented metagen-
omes obtained from similar habitats in similar species
but nevertheless corresponded to two functional pheno-
types namely lean and obese respectively.

Comparison of the performance of HabiSign with other
approaches
The clustering patterns obtained with the HabiSign
signatures (for the three sets of metagenomes
described above) were also compared with those
obtained using two metagenomic signature approaches
described below:

(A) Average Tetra-nucleotide based approach
In the average tetra-nucleotide nucleotide frequency
based approach, the signature (for a given metagenome)
is obtained by simply computing the average tetranu-
cleotide frequencies observed across all sequences
belonging to the metagenome (as a 128 dimensional
vector as described in the section ‘Identification of refer-
ence points’). The relative distances between any two
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metagenomes (J and K) are then computed as a simple
Manhattan distance between the two vectors.

(B) Dinucleotide relative abundance based approach
The dinucleotide relative abundance based approach was
adopted by Willner et al. [11] for comparing/clustering
metagenomic data sets. In this approach, the propensity
of each dinucleotide for over- or under-representation
in a metagenome is first obtained and represented in
the form of a 16 dimensional vector. This vector repre-
sents the signature for a given metagenome. The above
procedure (described in Willner et al. [11]) was imple-
mented in Perl. This implementation was used for gen-
erating the signatures for the metagenomic data sets
used in the present study.
The clustering pattern obtained for the three methods

(graphically represented in the form of trees) were first
qualitatively compared. Subsequently, genealogical sort-
ing indexes [21] were computed for obtaining a precise
quantitative measure of the clustering efficiencies of
each of the methods. Given a set of observations belong-
ing to different groups (represented in the form of a
hierarchical tree), the Genealogical Sorting Index (GSI)
value obtained for a particular group provides a quanti-
tative measure of how closely the observations belonging
to this group have clustered in the given tree. The GSI

value ranges between the values of 0 and 1, wherein a
group obtains a GSI value of 1, if all the members of
the group can be distinctly represented as a separate
homogenous sub-clade of the tree (having no members
belonging to any of the other groups). As the observa-
tions (belonging to a particular group) spread out, the
GSI values for such groups fall below one. Given these
attributes, GSI values can be used as a quantitative mea-
sure of the resolving power of different methods to dis-
tinguish between metagenomes belonging to different
groups. A detailed description of the computation of
genealogical sorting indexes and their comparison for
the three different methods is given in Additional File 2.

Validation results
Analyzing signatures of metagenomes sampled from
diverse habitats
A distance matrix was generated by comparing HabiSign
signatures corresponding to metagenomic data sets
sampled from diverse aquatic habitats. These signatures
were then hierarchically clustered by providing this dis-
tance matrix as an input to the neighboring joining pro-
gram of PHYLIP software package [18] (neighbor
joining algorithm with default parameters, branch
lengths not specified). Figure 1A graphically illustrates
the results of this analysis.

Figure 1 Clustering pattern of metagenomic signatures corresponding to the diverse aquatic metagenomes. Clustering patterns
obtained using (A) HabiSign signatures and (B) metagenomic signatures generated using the average tetranucleotide frequency approach ( C)
Dinucleotide relative abundance based approach.
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Results (Figure 1A) indicate a clustering pattern,
wherein the HabiSign signatures corresponding to meta-
genomes obtained from similar habitats are observed to
cluster together. For instance, HabiSign signatures of
metagenomes obtained from the saline habitats are
observed to cluster together, and are distinctly separated
from those belonging to the metagenomes sampled
from freshwater habitats. Similarly, it is also observed
that the HabiSign signatures of the four metagenomic
samples taken from the coral atolls in the Northern
Line islands (Christmas, Palmyra, Tabuaeran, and King-
man) cluster together along with those of the seven
coral reef-associated samples (Coral PC 1-6, Coral PA).
However, the HabiSign signature of the coral metagen-
ome from Porites astreoides (Coral PA) was observed to
be an outlier with respect to the cluster containing the
HabiSign signatures corresponding to the other coral
reef metagenomes (Coral PC 1-6). A similar pattern of
clustering was also obtained earlier by Willner et al.,
[11] who suggested two likely reasons for the Coral PA
sample being observed as an outlier. First, these anoma-
lies could be due to artifacts accumulated during the
sample preparation stage. The second reason could be
the presence of specific taxonomic groups (in the Coral
PA sample) that possess a distinct oligonucleotide com-
position as compared to the other coral reef samples. In
order to check the latter possibility, taxonomic profiles
of all the coral reef associated samples were obtained
using SPHINX [5]. A comparison of these taxonomic
profiles (Additional File 3) indicates that the Coral PA
sample has a distinct taxonomic composition as com-
pared to coral reef-associated samples (Coral PC 1-6).
For instance, the Coral PA sample is observed to be
noticeably depleted in its Cyanobacterial, Firmicutes and
Spirochaetes content as compared to the other six coral
reef associated samples. Given these observations, it is
likely that the distinct oligonucleotide composition
observed for the Coral PA sample (reflected in its Habi-
Sign signature) is due to the specific differences in the
abundance patterns of the above mentioned taxonomic
groups. Moreover, the taxonomic composition of the
Coral PA sample is observed to be similar to that of the
sample isolated from the Christmas coral atoll.
To further analyze the above aspects, we used Habi-

Sign to identify sequences ‘specific’ to the Coral PA
habitat and the Coral PC habitats. These sets of ‘habitat
specific’ sequences have oligonucleotide usage patterns
specifically over-represented in Coral PA and Coral PC
habitats respectively. Taxonomic analysis of these
sequences is expected to provide a direct indication of
specific taxonomic groups that differentiate the two
habitats. A comparison of taxonomic assignments (at
phylum level) of sequences identified as specific to the
Coral PA and Coral PC 1-6 metagenomes respectively is

provided as a table in Additional File 4. Results in this
table indicate that the taxonomic assignment patterns
obtained with specific sequences are similar to those
obtained using the entire Coral PA and Coral PC 1-6
metagenomes. As observed earlier (Additional File 3),
sequence dataset identified as specific to the Coral PA
habitat is enriched for the phyla Proteobacteria, Eur-
yarchaeota, Thermotogae and Planctomycetes. Besides,
there is a marked depletion in the proportion of Cyano-
bacteria, Firmicutes and Actinobacteria. Thus, the simi-
larities/differences in taxonomic profiles are clearly
reflected in clustering of the respective HabiSign signa-
tures (Figure 1A).
Furthermore, Figure 1A indicates a clustering pattern

wherein HabiSign signatures corresponding to the saline
metagenomic samples have been progressively arranged
as per their salinity levels. The only exception to this
pattern are the HabiSign signatures corresponding to
the two low salinity samples, namely Low salinity 2 and
Low salinity Plasmid. The HabiSign signatures of the
latter two are seen to be clustered along with those cor-
responding to the metagenomic samples obtained from
freshwater habitats. To check the possible reason for
this clustering pattern, taxonomic profiles of these two
samples were compared with the taxonomic profiles of
other samples obtained from saline and freshwater habi-
tats. Results of this analysis (Additional File 5) indicate
an over abundance of Firmicutes (and depletion of Acti-
nobacteria) in the four freshwater samples, the Low Sali-
nity 2 and Low salinity Plasmid samples as compared to
samples obtained from other saline habitats. This clearly
indicates the ability of the HabiSign signature in sug-
gesting taxonomic differences present in different
metagenomes.
In contrast to the clustering pattern observed for the

HabiSign signatures (Figure 1A), it is observed that the
average tetranucleotide frequency approach incorrectly
places the metagenomic signatures of the three Fresh-
water metagenomes (Freshwater 1,2 and 4) close to the
coral and the marine metagenomes and farther from the
Freshwater 3 metagenome (Figure 1B). A similar picture
is also obtained using the dinucleotide relative abun-
dance approach, wherein, the signatures of Low Salinity
Plasmid and Low Salinity metagenomes are placed clo-
ser to the Freshwater metagenomes (Freshwater 1,2 and
4) as compared to the Freshwater 3 metagenome (Figure
1C). Furthermore, it is also observed that metagenomic
signatures generated using the average tetranucleotide
frequency approach for the coral samples (PC 1-6) are
placed away from the other coral reef associated sample
(Coral PA) and are seen to be placed closer to those
obtained for the Freshwater and the Low salinity meta-
genomes. It is also observed that using the dinucleotide
relative abundance approach [11], places the signature
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of the Coral PA sample even farther away from the
Coral PC samples and relatively closer to the Marine,
Freshwater and Low salinity samples (Figure 1C). These
results (Figure 1) thereby indicate that, unlike the Habi-
Sign approach, the average tetranucleotide frequency
approach as well as the dinucleotide relative abundance
based approach are unable to accurately distinguish
between the oligonucleotide usage patterns obtained
from the coral, marine, low salinity and the freshwater
habitats. On the other hand, the HabiSign approach is
able to clearly distinguish between the oligonucleotide
usage patterns for the above habitats and is able to
place the generated signatures into distinct clades in the
hierarchical tree.
The high clustering efficiency of HabiSign approach is

further evident in the comparative analysis of GSI values
(Additional File 2) obtained for the different biome level
groups corresponding to the aquatic metagenomes. For
most of the biome level groups (with exception of the
Hot Spring biome), it is observed that the GSI values
obtained using HabiSign are higher than or equal to
those obtained using the average tetranucleotide fre-
quency or the dinucleotide relative abundance
approaches (Additional File 2).
Analyzing signatures of metagenomes from similar habitats
but sampled from diverse species
The signatures for the gut metagenomes of diverse spe-
cies (namely, Cow, Fish, Chicken, Human and Mice),
obtained using the HabiSign approach as well as the
average tetranucleotide frequency approach, were hier-
archically clustered as described in the previous section.
Figure 2 graphically illustrates the results of this analy-
sis. Similar to the results obtained with metagenomes
from diverse habitats, HabiSign signatures correspond-
ing to gut samples obtained from diverse species show a

nice clustering pattern (Figure 2A). HabiSign signatures
obtained from the gut samples of the same species are
seen to be clustered together indicating similar oligonu-
cleotide usage patterns within microbial communities
residing in a given species. Cow Rumen sample 4 is
observed to be the only exception to the above pattern
(Figure 2A). The taxonomic compositions of the cow
rumen samples indicated a significant overabundance of
Proteobacteria as well as a depletion of Firmicutes, Bac-
teroidetes and Euryarchaeota in the Cow rumen sample
4 (Additional File 6). Thus, the outlier observed in the
tree generated using HabiSign signatures suggests differ-
ential presence of certain microbial groups.
Similar to the analysis performed for the Coral Samples,

HabiSign was used to identify sequences ‘specific’ to the
Cow Rumen 4 and the Cow Rumen 1-3 metagenomes.
Analyzing the phylum level taxonomic affiliations of these
‘specific’ sequences (Additional File 7) reveals a picture
similar to that obtained by the analyzing the overall phy-
lum compositions of the corresponding metagenomes
(Additional File 6). Interestingly, the phylum Firmicutes
which was observed to be under-represented in overall
phylum composition of the Cow Rumen 4 metagenome
was observed to be over-represented in the sequences
identified as specific to the Cow Rumen 4 (as compared to
the other Cow Rumen metagenomes). A probable reason
for this could be the presence of a specific hitherto
unknown species of Firmicutes (having unique oligonu-
cleotide composition) in the Cow Rumen 4 sample.
A comparison of the clustering pattern obtained using

HabiSign signature (Figure 2A) with that obtained using
the average tetranucleotide frequency approach (Figure
2B) and the dinucleotide relative abundance based
approach (Figure 2C) indicates the following. Similar to
the clustering pattern obtained using HabiSign

Figure 2 Clustering pattern of metagenomic signatures corresponding to the gut metagenomes from diverse species. Clustering
patterns obtained using (A) HabiSign signatures and (B) metagenomic signatures generated using the average tetranucleotide frequency
approach ( C) Dinucleotide relative abundance based approach
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signatures, the metagenomic signature of the Cow
Rumen 4 sample (generated using both the approaches)
is observed to be an outlier to those corresponding to
the other cow rumen samples. However, it is also
observed in Figure 2B that the metagenomic signature
of the Mice Lean Gut (generated using the average tet-
ranucleotide frequency approach) is placed closer to the
signatures corresponding to the Human Lean Gut and
the Chicken Caecum samples than to the other mice
gut sample, namely Mice Obese Gut. A similar pattern
of clustering is also obtained with the dinucleotide rela-
tive abundance based approach where in, the mouse
lean gut is placed closer to the Human Gut, Fish gut
and the Cow Rumen 1-3 samples as compared to the
Mouse Obese gut sample. This is in contrast to the clus-
tering pattern using the HabiSign approach, where in
the HabiSign signatures obtained for both the mouse
gut samples are observed to be placed together in a dis-
tinct clade (Figure 2A). These differences in the cluster-
ing pattern are also reflected in the GSI values obtained
for the Mouse samples (Additional File 2). While Habi-
Sign generates a GSI value of 1 for the mouse samples,
the corresponding GSI values (for the mouse samples)
obtained using average tetranucleotide frequency based
approach and the dinucleotide relative abundance based
approach are relatively much lower (0.27 and 0.18
respectively). Similarly, it is also observed that (in con-
trast to the HabiSign signatures), the metagenomic sig-
natures (generated using the average tetranucleotide
frequency approach) for the two human gut samples are
placed farther apart in hierarchical tree (Figure 2B).
Similarly, it is observed in Figure 2C that using the
dinucleotide relative abundance based approach, the
metagenomic signature of the Human Obese Gut gener-
ated is placed closer to the Mice Lean Gut as compared

to that corresponding to the other Human Gut sample.
These discrepancies in clustering pattern indicate that,
unlike the HabiSign approach, the metagenomic signa-
tures generated using the average tetranucleotide fre-
quency approach, are not able to efficiently distinguish
between the species specific variations in oligonucleotide
usage patterns. These differences in the clustering effi-
ciencies (for the human samples) are also reflected in
the corresponding GSI values obtained using the three
methods on the human samples (Additional File 2).
While HabiSign generates a GSI value of 1 for the
human samples, the corresponding GSI values obtained
using average tetranucleotide frequency based approach
and the dinucleotide relative abundance based approach
are 0.12 and 0.45 respectively.
Analyzing signatures of metagenomes identical at habitat
and species level but exhibiting differences at phenotypic level
Figure 3 illustrates the pattern of clustering obtained
with the signatures corresponding to the five mouse gut
metagenomes, using the HabiSign approach (Figure 3A)
and the average tetranucleotide frequency approach
(Figure 3B). It is observed that the HabiSign signatures
corresponding to the lean mouse samples cluster sepa-
rately from those of obese mouse samples (Figure 3A).
These results demonstrate that HabiSign signature is
able to efficiently discriminate between microbial com-
munities having subtle differences at the phenotypic
level. It is also observed that, amongst the three lean
samples, the Lean 3 sample is the closest to the two
obese samples. Similarly, it is observed in Figures 3B
and 3C that the signature of the Lean 3 sample,
obtained using the average tetranucleotide frequency
approach as well as the dinucleotide relative abundance
based approach, in placed closer to the Obese 2 sample
than to the other lean samples. These differences in the

Figure 3 Clustering pattern of metagenomic signatures corresponding to the gut metagenomes from lean and obese mice. Clustering
patterns obtained using (A) HabiSign signatures and (B) metagenomic signatures generated using the average tetranucleotide frequency
approach ( C) Dinucleotide relative abundance based approach
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clustering efficiencies (for the mouse samples) are also
reflected in the corresponding GSI values obtained
using the three methods on these samples (Additional
File 2).
In order to find a reason for the general proximity of

the lean 3 sample to the obese samples, an analysis of
the five mouse gut metagenomes were performed using
SPHINX [5]. These results (Additional File 8) revealed
similarities in the taxonomic composition of the Lean3
sample and the obese samples. The Bacteroidetes/Firmi-
cutes ratio of the Lean3 sample (3.51) was observed to
be more similar to the Obese1 and Obese2 samples
(2.46 and 3.40 respectively). In contrast, the average
Bacteroidetes/Firmicutes ratio of the lean samples was
8.17. The above result is also reflected in Figure 3A,
wherein, the Lean1 and Lean2 samples (with similar
taxonomic composition) are observed to have clustered
closer to each other than to the Lean3 sample (having a
deviant taxonomic profile). These results further demon-
strate the robustness of the signatures generated using
the HabiSign approach.
To further demonstrate the utility of the HabiSign

approach in identifying sequences specific to a given
habitat, sequences specific to lean and obese mouse guts
were identified adopting the methodology described in
the section ‘Identification of habitat-specific sequences’.
The results of this analysis (Table 1) indicate a 2.4 to
4.7 fold increase in the Bacteroidetes/Firmicutes ratio in
the lean specific sequences identified by HabiSign. Simi-
larly, the obese specific sequences were observed to be
significantly enriched for sequences originating from Fir-
micutes, reflected as 3.6 – 6.1 fold decrease in the Bac-
teroidetes/Firmicutes ratio (Table 1). An earlier study
on these metagenomic data sets had indicated a higher
Bacteroidetes/Firmicutes ratio in the gut metagenomes
of lean individuals as compared to those from obese
individuals [19]. Given this observation (also reflected in

the taxonomic profiles obtained using SPHINX),
sequences identified (by HabiSign) as specific to lean
samples are expected to have a relatively higher Bacter-
oidetes/Firmicutes ratio. Similarly the obese phenotype-
specific sequences (identified by HabiSign) are expected
to be significantly enriched for Firmicutes, thereby
resulting in a relatively lower Bacteroidetes/Firmicutes
ratio. The results obtained in this study reaffirm that the
HabiSign signature not only helps in comparing and
grouping metagenomes, but also aids in identifying a
subset of sequences that are unique to a metagenomic
sample(s).

Discussion
Genomes of microbes inhabiting a particular habitat dis-
play distinct patterns of oligonucleotide usage. The pre-
sent study utilizes these habitat-specific patterns for
generating a ‘metagenomic signature’. The approach
used for generating the signatures is distinct from those
used by earlier studies by Willner et al.[11]. In the latter
study, the metagenomic signature was computed by
averaging the frequencies of all possible di-nucleotides
present in sequences constituting a given metagenome.
The signature generated using such an approach is able
to capture the differences in the overall oligonucleotide
usage patterns observed across metagenomes. However,
the applicability of such a signature is limited for the
following reason. Consider a set of metagenomes
sampled from highly similar habitats. In such cases, the
overall oligonucleotide usage patterns of a majority of
species constituting these metagenomes are expected to
be more or less similar. However, subtle differences (in
nucleotide usage) may exist with respect to a small sub-
set of species (or a gene cluster) constituting these
metagenomes. A metagenomic signature computed by
averaging the oligonucleotide frequencies of all
sequences (in a given metagenome) may primarily fail to

Table 1 Analysis of lean and obese specific sequences

Sample Bacteroidetes/Firmicutes Ratio Fold increase in Bacteroidetes/Firmicutes ratio

All lean sequences Lean-specific sequences

Lean 1 7.82 24.1 3.08

Lean 2 8.52 20.2 2.37

Lean 3 3.51 14.89 4.24

Sample Bacteroidetes/Firmicutes Ratio Fold decrease in Bacteroidetes/Firmicutes ratio

All obese sequences Obese-specific sequences

Obese 1 2.47 0.69 3.58

Obese 2 3.4 0.56 6.07

A comparison of Bacteroidetes/Firmicutes ratio observed in lean and obese mouse gut metagenomes as well as in the sequence data sets identified (by
HabiSign) as lean specific and obese specific.
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efficiently capture such subtle differences. This is also
evident in our analysis of real metagenomes, where it is
observed that both the average tetranucleotide frequency
approach as well as the dinucleotide relative abundance
based approach (as used by Willner et. al. [11]) fail to
efficiently capture these differences in oligonucleotide
usage patterns. To further validate these observations, a
comparative analysis of the clustering efficiencies of var-
ious methods was performed using simulated metage-
nomic data sets. The results (see Additional File 9) of
this analysis (using GSI as a measure) clearly indicate
that, unlike HabiSign, the performance of ‘generic’ sig-
nature approaches drop when the analyzed metage-
nomic data sets have subtle differences in their
taxonomic composition. Moreover, the utility of such
‘generic’ signatures is limited since they cannot be used
for identifying habitat-specific sequences. In contrast,
the HabiSign signature first partitions sequences consti-
tuting a given metagenomic data set into spatially dis-
tinct groups, wherein all sequences in each group
possess a distinct pattern of oligo-nucleotide usage. In
other words, the vector corresponding to the HabiSign
signature (for a given metagenome) efficiently captures
the variations (however subtle) in a given metagenome
(instead of simply averaging them out). Comparing such
vectors obtained from two sets of metagenomes can
thus be used to identify groups (however small) that are
distinct to either metagenomes. Sequences mapping to
these groups can be identified as specific to the respec-
tive metagenome(s). Organisms and the genes corre-
sponding to or encompassed by these specific sequences
can potentially be studied to identify factors conferring
a specific phenotype that provide an adaptive advantage
to a given microbial community. Identification of such
factors may have immense potential applications in sev-
eral areas ranging from disease diagnostics to bio-pro-
specting. Interestingly, the HabiSign approach is
alignment-free and involves simple numerical calcula-
tions. Consequently, this approach is extremely rapid as
compared to existing comparative metagenomic
approaches which rely on generating alignments
between millions of sequences constituting metagenomic
data sets.
In contrast to the k-mer size of 2 used by Willner et

al. [11] for generating the metagenomic signature, a k-
mer size of 4 was used in the present study for the fol-
lowing reason. Earlier studies have indicated the suit-
ability of tetra-nucleotide frequencies for taxonomic
discrimination [15,22]. In addition, the lengths of
sequences in metagenomic data sets generated using
existing sequencing technologies generally have lengths
in the range of 100 to 1000 bp. For sequences in this
length range, using lower k-mer sizes (< 4) results in
lower discriminatory power. In contrast, oligonucleotide

frequency values obtained with higher k-mer sizes
(greater than or equal to 5) are expected to be signifi-
cantly low and statistically insignificant.
Given that both HabiSign as well as other approaches

(used in the present study) involve simple vector based
mathematical calculations, the difference in the overall
execution time of the methods is marginal (with Habi-
Sign being 2-3 minutes slower per million sequences).
Although HabiSign is slower (marginally), it has the
added advantage of identifying habitat-specific
sequences. Moreover, overall results of the validation
studies presented in this paper indicate that the metage-
nomic signatures obtained using HabiSign are much
more robust as compared to other approaches.

Conclusions
The present study describes a rapid and accurate
approach for capturing habitat specific oligonucleotide
usage patterns in the form of a metagenomic signature.
Results with metagenomic data sets indicate that the
present approach is successful in differentiating between
metagenomes having variations at phenotypic, species
and biome levels. Moreover, the present approach is
also able to identify sequences that are ‘specific’ to a
given habitat. Identification of such habitat specific
sequences is expected to have immense utility in several
areas of life sciences research.

Additional material

Additional file 1: Details of microbial metagenomes used in this
study A pdf document containing the details of the metagenomes used
in the study. These details include the Name of the metagenome, the
NCBI genome project id, the the biome corresponding to the
metagenome and the associated reference.

Additional File 2: Computation and Comparison of Genealogical
Indexes (GSIs) A pdf document describing the details of the
computation and comparison of GSI values. These values are obtained
for the various biome-level, species-level and phenotypic groups using
the three methods (namely, HabiSign, the average tetranucleotide
frequency approach and the dinucleotide relative abundance based
approach)

Additional file 3: Distribution of taxonomic assignments for the
coral reef associated metagenomes A pdf document containing the
distribution of taxonomic assignments (cumulated at phylum level)
obtained using SPHINX for the coral reef associated metagenomes.

Additional file 4: Taxonomic analysis of sequences identified as
specific to the Coral PA and the Coral PC metagenomes A pdf
document containing the distribution of taxonomic assignments
(cumulated at phylum level) obtained using SPHINX for the sequences
identified as specific to the Coral PA and Coral PC (Coral PC 1-6)
metagenomes.

Additional file 5: Distribution of taxonomic assignments for
metagenomes obtained from habitats of varying salinity A pdf
document containing the distribution of taxonomic assignments
(cumulated at the phylum level) obtained using SPHINX for the
metagenomes sampled from habitats of varying salinity.

Additional file 6: Distribution of taxonomic assignments for the
cow rumen metagenomes A pdf document containing the distribution
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of taxonomic assignments (to various phyla) obtained using the SPHINX
algorithm for the cow rumen metagenomes.

Additional file 7: Taxonomic analysis of sequences identified as
specific to the Cow rumen 4 and Cow Rumen 1-3 metagenomes A
pdf document containing the distribution of taxonomic assignments
(cumulated at phylum level) obtained using SPHINX for the sequences
identified as specific to the Cow Rumen 4 and the other Cow Rumen
(Cow Rumen 1-3) metagenomes.

Additional file 8: Distribution of taxonomic assignments from lean
and obese mouse gut metagenomes. A pdf document containing the
distribution of taxonomic assignments (to various phyla) obtained using
the SPHINX algorithm for the lean and obese mouse gut metagenomes.

Additional file 9: Genealogical Sorting Index (GSI) based
comparative analysis of clustering efficiencies using simulated
metagenomic data sets. A pdf document describing a GSI based
comparative analysis of the clustering efficiencies of HabiSign, the
average tetranucleotide frequency approach and the dinucleotide
relative abundance based approach on simulated metagenomic data sets
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