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Abstract

Background: Many methods have been developed to infer and reason about molecular interaction networks.
These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude
more edges. It is often desirable to summarize the biological information in such networks. A very common
approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it
ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of
genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network
interactions into account.

Results: Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of
interest, we compute the subgraph of the network induced by genes annotated to this function. We use the
sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the
statistical significance of the connectivity empirically by a permutation test. We present three applications of our
method: i) determine which functions are enriched in a given network, ii) given a network and an interesting sub-
network of genes within that network, determine which functions are enriched in the sub-network, and iii) given
two networks, determine the functions for which the connectivity improves when we merge the second network
into the first. Through these applications, we show that our approach is a natural alternative to network clustering
algorithms.

Conclusions: We presented a novel approach to functional enrichment that takes into account the pairwise
relationships among genes annotated by a particular function. Each of the three applications discovers highly
relevant functions. We used our methods to study biological data from three different organisms. Our results
demonstrate the wide applicability of our methods. Our algorithms are implemented in C++ and are freely
available under the GNU General Public License at our supplementary website. Additionally, all our input data and
results are available at http://bioinformatics.cs.vt.edu/~murali/supplements/2011-incob-nbe/.

Background
The functioning of a living cell is governed by an intri-
cate network of interactions among different types of
molecules. These interactions transduce external signals,
control gene expression, protein synthesis and localiza-
tion, chemically modify protein activities, and drive
metabolic and biochemical reactions. Considerable effort
in molecular and cellular biology has been expended
over the last 50 years by individual research groups on

testing and detecting interactions on a small scale. The
results of these experiments are enshrined in the litera-
ture. In the last few years, a number of efforts have
manually curated the literature and created databases of
these interactions [1-3]. More recently, the genomic
revolution has inspired the development of experimental
technologies that can detect interaction networks in a
high-throughput manner and on a genome-wide scale.
For example, the yeast 2-hybrid screen has been scaled
up to unveil protein-protein interaction networks con-
taining tens of thousands of interactions in a number of
organisms [4,5]. In a similar vein, the chromatin
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immunoprecipitation on a microarray (ChIP-on-chip)
technology allows the detection of the targets of a speci-
fied transcription factor on a genome-wide scale [6].
These developments have made molecular interaction
networks pervasive in systems biology.
Concomitantly, a number of computational

approaches have been developed to analyze networks
and their properties. Foremost among them are methods
to reverse engineer gene regulatory networks by inte-
grating gene expression data with other types of ’omic
data [7]. Such interactions usually relate the expression
of a gene to that of other genes in the cell [8]. Another
broad class of methods overlay gene expression data for
a condition on the wiring diagram to compute the cell’s
response network for that condition [9-11]. Networks of
these types can contain hundreds or thousands of nodes
and an order of magnitude more edges. For example,
the B-cell interactome [12,13], a network of experimen-
tally verified or computationally predicted protein-DNA,
protein-protein, and transcription factor-modulator
interactions, contains nearly 6000 nodes and over
64,000 edges. It is often desirable to summarize the bio-
logical information in such networks. A very common
approach is to perform enrichment analysis of the terms
in some catalog such as the Gene Ontology [14-16].
Enriched functions and processes are very useful in
summarizing the main biological themes of a large net-
work at a high level, as a preliminary to more detailed
mechanistic studies. When applied to reverse-engineered
or response networks, a major drawback of functional
enrichment is that it ignores information about the
edges in the network being analyzed, i.e., it treats the
network simply as a set of genes. Therefore, a function
may appear to be enriched in a network, but the genes
annotated with that function may be highly discon-
nected within the network. In such cases, it is difficult
to interpret the relevance of that function to the
network.
In this paper, we introduce a novel method for func-

tional enrichment that explicitly takes network interac-
tions into account. Our approach naturally generalizes
Fisher’s exact test, a widely-used gene set-based techni-
que. We use the sequence of sizes of the connected
components of the network to estimate its degree of
connectivity. We estimate the statistical significance of
this connectivity empirically by a permutation test.
It may be argued that one approach that mitigates the

drawback of using gene set enrichment on networks is
to find clusters within the network and then compute
enriched functions within them. Since clusters are
usually densely-connected, enriched functions are likely
to induce connected subgraphs within clusters. Our
approach is distinct from finding enriched functions in
clusters. Clustering algorithms typically compute dense

subgraphs. In contrast, we detect subgraphs (defined by
genes annotated with specific functions) that are more
connected than may be expected at random. In our
results, we show examples of subgraphs that clustering
algorithms may not detect.
We showcase three applications of our approach: i)

determine which functions are enriched in a reverse-
engineered network, ii) given a network and a response
sub-network of genes within that network, determine
which functions are enriched in the sub-network, and
iii) given two experimentally derived networks, deter-
mine the functions for which the connectivity improves
when we merge the second network into the first. These
analyses use data from three different species (human,
rat, and baker’s yeast). They demonstrate that our con-
ceptualization of network-based functional enrichment
is a powerful framework for addressing a diverse variety
of interesting biological questions about molecular inter-
action networks.

Formulation of functional enrichment
The problem of functional enrichment is usually formu-
lated as follows. We have a universe U of genes and an
“interesting collection” C ⊂ U of genes. We desire to
evaluate the functional coherence of C based on the
annotations of the genes in it. To this end, we have
access to a set F of biological functions. For each func-
tion f Î F, let Uf ⊆ U denote the set of genes annotated
by f. Furthermore, let Cf = C ∩ Uf denote the subset of
genes in C that are annotated by f. We will use lower-
case letters to denote the cardinalities of the corre-
sponding sets, which are named by uppercase letters.
See Figure 1 (top) for an illustration. The standard for-
mulation of functional enrichment in terms of the one-
sided version of Fisher’s exact test asks the following
question:
If we select a set X of uf genes uniformly at random

(without replacement) from the set of all genes U, what
is the probability that X ∩ C will contain cf or more
genes?
Thus, we are interested in the probability that a ran-

dom set of uf genes would contain cf or more genes
from C. As is well known, we can compute this prob-
ability by:
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Now let us consider the setting in which network-
based functional enrichment is relevant. We are given
an undirected graph G = (U, I), where U is the set of all
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genes (as before) and I is a set of edges. We are also
given a subgraph H = (C, J) of G, where C (the “interest-
ing collection” of genes) is a subset of U, and J is a sub-
set of I. Note that H may not be the subgraph of G
induced by C, i.e., some edges of I that connect node
pairs in C may be missing from J. Given a function f,
define Hf to be the subgraph of H induced by the genes
in Uf ∩ C, i.e., the subgraph of H induced by the genes
that are annotated by f. We desire to use statistics of Hf

to estimate whether the function f is enriched in H or

not. This concept is illustrated in Figure 1 (bottom).
Intuitively, even if Hf is highly disconnected, existing
methods may declare f to be highly enriched in H. How-
ever, it is difficult to interpret the biological relevance of
such a function. Therefore, we would like to incorporate
the connectedness of Hf into its evaluation.
Ideally, f is highly statistically significant if Hf contains

only one connected component, and f is statistically
insignificant if Hf contains only singletons (or many
small components). We define the size of a connected

Figure 1 Functional enrichment cartoons. (Top) The standard formulation of functional enrichment computes the statistical significance of the
size of Cf, the overlap between an interesting collection C of genes and the set Uf of genes annotated with function f. (Bottom) Our network-
based approach to functional enrichment computes the statistical significance of the connectivity of Hf, the network induced by the intersection
of the interesting collection C and the set Uf of genes annotated by the function.
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component as the number of nodes in that component.
Suppose Hf has m connected components whose sizes
are a1, a2,…, am, where ai ≥ ai+1, 1 ≤ i <m. Using the
abbreviation “cs” for “component sizes,” we will use cs
(Hf) to denote this non-increasing sequence of numbers.
We would like to estimate the statistical significance of f
in terms of cs(Hf). If X is a subset of U, we abuse nota-
tion and use HX to denote the subgraph of H induced
by X. Drawing a parallel with the formulation of func-
tional enrichment in the network-free case, we pose the
following question:
If we select a set X of uf genes uniformly at random

(without replacement) from the set of all genes U, what
is the probability that cs(HX) ≥ cs(Hf)?
Clearly, answering these questions requires that we

define how we can compare different values of cs(), i.e.,
decide if one sorted sequence of connected component
sizes is “greater than” another. Note that two distinct
subsets X and Y of U may induce different subgraphs of
H (i.e., HX ≠ HY) that have the same sequence of com-
ponent sizes. Conversely, HX and HY may have the same
number of nodes, yet cs(HX) and cs(HY) may be vastly
different. (Consider the case where |X ∩ C| = |Y ∩ C|,
and HX is a clique while HY is a collection of singletons.)
It appears difficult to determine the null distribution of
cs(HX) analytically. Thus, we developed two sampling-
based approaches, discussed in “Methods”, to compute
the statistical significance of cs(Hf) empirically.

Methods
As before, let G = (U, I) be a network whose nodes are
the universal set of genes and let H = (C, J) be a net-
work whose nodes are the interesting collection of
genes. We sometimes refer to G and H as the universal
network and the interesting network, respectively. Let Hf

be the subgraph of H induced by the nodes annotated
with function f.
First, we elaborate on our method for comparing dif-

ferent values of cs(), i.e., sorted lists of network compo-
nent sizes. Next, with a method to compare
subnetworks in hand, we proceed to compute the statis-
tical significance of cs(Hf) empirically using two sam-
pling-based approaches.

Comparing sequences of component sizes
Let A = {a1, a2,…, am} and B = {b1, b2, …, bn} be sorted
sequences such that ai ≥ ai+1 for 1 ≤ i <m, and bi ≥ bi+1
for 1 ≤ i <n. Since the ai’s and bi’s represent component
sizes, we assume all values are positive. If m <n, we pad
A with zeros by setting ai = 0 for m <i ≤ n. We pad B
similarly in the case that n <m.
Now, we naturally define A = B if and only if ai = bi

for all 1 ≤ i ≤ max(m, n). Otherwise, we define A <B if
and only if there exists some index i, 1 ≤ i ≤ max(m, n),

such that ai <bi, and aj = bj for all j <i. If neither of
these cases hold, we say that B <A. Essentially, we walk
along A and B simultaneously (which have the same
length after padding) until we find an index i where ai ≠
bi. The smaller sequence is the one that contains the
smaller of those two values.

Function randomization
The function randomization approach for computing
the statistical significance of cs(Hf) parallels the sam-
pling-based alternative to the analytical solution for the
one-sided version of Fisher’s exact test (Equation 1). In
the sampling-based solution for Fisher’s exact test (that
is not network-based), we repeatedly select a set X of uf
genes uniformly at random from the universe of genes
U. We then calculate an empirical p-value for the func-
tion f, which represents the statistical siginificance of
the size of Cf, as the fraction of samples for which |X ∩
C| ≥ cf, i.e., the size of the intersection between the ran-
domly selected set X and the interesting collection of
genes is at least as large as Cf. If we repeat this process
many times, the empirical value converges to the analy-
tical value computed by Equation 1.
In the case of network-based enrichment, we have not

been able to derive the null distribution of cs(HX) analy-
tically. Therefore, we apply a sampling-based algorithm
similar to the one used in the non-network case. We
repeatedly select a set X of uf genes uniformly at ran-
dom from the universal genes U. At each iteration we
compute the subgraph of H = (C, J) induced by genes in
X ∩ C and call this subgraph HX. We calculate the p-
value for f as the fraction of random choices of X for
which cs(HX) ≥ cs(Hf). This p-value is an empirical esti-
mate of the probability that the intersection between the
interesting network and a randomly-selected subgraph
of the universal network is more well-connected than
Hf.
This network-based formulation of functional enrich-

ment strongly parallels the traditional non-network for-
mulation. In fact, notice that if we remove all edges
from G and from H, the network-based solution is
exactly the same as the one-sided version of Fisher’s
exact test. In this sense, we generalize a standard func-
tional enrichment approach for gene sets to networks
induced by sets of genes.

Network structure randomization
The function randomization approach for computing
network-based functional enrichment tests the depen-
dency of cs(Hf) on the size of the set of genes annotated
with f. However, Hf also depends on the specific interac-
tions present in the underlying universal network G =
(U, I). To test the dependence of cs(Hf) on G, we devel-
oped a separate method that relies on randomizing the
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structure of G. We use the following algorithm [17] to
generate a randomized universal network with the same
degree sequence as G, i.e., the degree of each node is
the same in G and in the new network. This algorithm
preserves topological properties of molecular interaction
networks, such as their scale-free degree distribution.
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The first if statement in RANDOMIZE prevents the
algorithm from producing self-loops in the random net-
work. The second if statement ensures that the edges to
be added do not already exist in I′, thereby keeping the
resulting graph simple. We perform the edge swap ran-
domization for k|I| iterations, where k is an external
parameter to this algorithm. We set k = 10 for all analy-
sis presented in this paper. We determined this value
for k by running RANDOMIZE with multiple values of
k on the networks discussed in “Results”. For each value
of k, we analyzed the distribution of the overlap between
the edges in a random network and the original net-
work. Increasing k beyond 10 did not show any signifi-
cant change in this distribution (compared to k = 10)
for any of the original networks.
In order to assess the significance of cs(Hf) for each

function, we repeatedly generate a randomized universal
network G′ = RANDOMIZE(G, k). Let H′ = (C, J′) be
the subgraph induced in G′ by the genes in C, and let

′H f be the subgraph of H′ induced by the genes anno-
tated with function f; H′ and ′H f are subgraphs of G′ in
the same fashion as H and Hf are subgraphs of G. We
calculate the p-value for each function f as the fraction
of iterations (i.e., random networks) for which
cs H cs Hf f( ) ( )′ ≥ . This p-value indicates the probability
that the genes in Hf are more connected after randomly
shuffling the edges in G (including those in Hf) while
maintaining the degree sequence of G.

Combining p-values
We developed the function randomization approach
because of its strong ties to the standard way we inter-
pret functional enrichment. Furthermore, it can be
expressed as an extension of the one-sided version of
Fisher’s exact test. This approach is an attempt to

answer the following question: “Given a function f that
annotates uf genes, what is the probability that a ran-
domly-selected set of uf genes will have a more con-
nected intersection with the interesting genes than Hf

does?”.
As an alternative, we developed the network structure

randomization approach because we were interested in a
strictly network-based formulation of functional enrich-
ment. This approach is an attempt to answer a very dif-
ferent question from the previous method: “Given a
function f, what is the probability that the subgraph
induced by genes in Cf will be more connected in a net-
work chosen uniformly at random from the set of all
networks with the same degree sequence as G?”.
In this paper, we only consider those functions

deemed well-connected by both approaches. Thus, we
assign a p-value for each function that is the maximum
of the two p-values from each of the two approaches. In
the rest of the paper, unless stated otherwise, the p-
value for a function refers to the maximum of the p-
values computed by both approaches.

Results
We present applications of our methods to three differ-
ent interaction networks, each for a different organism.
In the first application, we identify biological processes
from the Gene Ontology (GO) [18] with significant net-
work-based enrichment in the human B cell interactome
[19]. In the second application, we discuss gene sets
from the Molecular Signatures Database [20] that are
deemed significantly enriched in a response network
that represents the differences between collagen sand-
wiches and hepatocyte monolayers, two widely-used sys-
tems to culture rat hepatocytes [21]. In the third
application, we discover GO biological processes whose
network-based enrichment improves when we add a col-
lection of genetic interactions in S. cerevisiae that were
identified in a large-scale study conducted by Krogan et
al. [22] to the BioGRID network [23].
Each of these three applications of network-based

enrichment showcases how our methods can be used in
a different manner: i) determine which functions are
enriched in a given network, ii) given a network and an
“interesting” sub-network of genes within that network,
determine which functions are enriched in the sub-net-
work, and iii) given two networks, determine the func-
tions whose connectivity improves by merging the
second network into the first. These three applications
ask different questions about the functional enrichment
of an interaction network, each of which we can answer
using the framework presented in “Methods”.
We used the Synergizer [24] to generate all gene and

protein identifier mappings. We visualized all networks
using Cytoscape [25].
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B cell interactome
To analyze functions enriched in human B cells, we
applied our methods to the B cell interactome (BCI)
[19], which incorporates three different types of interac-
tions: protein-protein, protein-DNA, and transcription
factor-modulator. The BCI includes both experimentally
verified and computationally predicted interactions
[12,13] in human B cells. Protein-DNA and transcrip-
tion factor-modular interactions are directed. For the
purposes of this work, we treated them as being undir-
ected. We removed repeated edges and self-loops from
the BCI, resulting in an interaction network with 5748
nodes and 64,007 edges. We applied our network-based
enrichment methods to identify GO biological processes
enriched in the BCI. After downloading functional anno-
tations from the GO website [18], we applied the true-
path rule to the annotations, i.e., if a gene was annotated
with function f, we ensured that it was also annotated
with any ancestors of f in the GO directed acyclic graph.
Recall that our enrichment methods require a univer-

sal network G and an interesting network H. Since we
were simply interested in the set of functions enriched
in the BCI, we let both the universal network and the
interesting network be the BCI. Notice that the standard
formulation of gene set enrichment (Equation 1) will
assign a p-value of 1 to every function, since the size of
the interesting set of genes and the size of the universe
are equal (i.e., u = c and uf = cf). As a result, we cannot
compare our method for discovering enriched functions
to the set-based Fisher’s exact test for this application.
However, our approach assigns non-trivial p-values to
several relevant functions, as we show below.
We computed p-values by executing each random

sampling approach 100,000 times. We retained those
functions that annotated at least five genes in the uni-
versal network and no more than 100 genes in the inter-
esting network, resulting in a collection of 2098 GO
biological processes. Of these, 31 processes received a
network-based enrichment p-value of less than 10–5,
which is the smallest empirical p-value possible over
100,000 iterations. Next, we present three significantly-
enriched functions and discuss their relationship to the
B cell interactome. The goal of this analysis is to
demonstrate that network-based enrichment methods
were capable of finding meaningful functions in a net-
work associated with a specific cellular context. Figure 2
illustrates the subnetwork induced by the genes anno-
tated with each of the three functions. In other words,
each of the networks in Figure 2 is a visualization of the
subgraph Hf corresponding to one of three discussed
functions. These figures only retain nodes that are inci-
dent on at least one edge. While we do not incorporate
the directionality of the protein-DNA and transcription

Figure 2 Functions related to B cells. Subgraphs of the BCI
induced by genes annotated with (Top) GO:0065004 Protein-DNA
Complex Assembly, (Middle) GO:0051251 Positive Regulation of
Lymphocyte Activation, and (Bottom) GO:0006006 Glucose
Metabolic Process. The red, blue, and green edges represent
protein-protein, protein-DNA, and transcription factor-modulator
interactions, respectively.
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factor-modulator interactions in our methods, we con-
sidered the directionality when visualizing the results.
We discuss functions that were ranked 1, 32, and 43
overall. Note that 31 processes received the smallest p-
values. Hence, all of them have the rank of 1. We
observed that a majority of these functions were related
to protein phosphorylation and kinase signaling cas-
cades. The term we discuss next is one that we could
relate to B-cells based on the proteins annotated by that
term.
Protein-DNA complex assembly
The GO term “Protein-DNA Complex Assembly”
(GO:0065004) was enriched in the BCI with a p-value of
less than 10–5 (rank 1 out of 2098 functions). Figure 2
demonstrates that the genes annotated by this function
form several densely-connected subgraphs. A clustering
algorithm may have detected each individual subgraph
but may not have included all of them in a single clus-
ter. Thus, the term “Protein-DNA Complex Assembly”
may be determined to be enriched (using set-based
approaches) in the results of a clustering algorithm only
if the clusters were themselves further grouped during a
post-processing procedure.
The genes in the subgraph induced by this function

are associated with various aspects of the aggregation
and binding of proteins with DNA molecules to form a
protein-DNA complex. For example, the nine HIST and
four H2A proteins are grouped together. DNA wraps
around the histones, forming higher-order complex pro-
tein-DNA subunits. Many eukaryotic genes contain a
DNA signature in their promoter region known as the
TATA box. These genes rely on the ordered assembly
of RNA polymerase II and several initiation factors at
the TATA box. The ten POLR genes that form a clique
encode different subunits of RNA polymerase II. The
eight densely-connected general transcription factors
(GTF2 genes in Figure 2) serve as initiation factors for
RNA polymerase II. The eleven neighboring TAF genes
perform a similar role. This function was likely deter-
mined to be enriched because of the hub transcription
factor MYC, which serves as a bridge between these
densely-connected sub-networks. Since MYC is respon-
sible for regulating many other genes, irregular expres-
sion of MYC has been linked to several cancers, and
some studies have identified this gene as a potential
cancer drug target in humans [26].
Lymphocyte activation
We found the term “Positive Regulation of Lymphocyte
Activation” (GO:0051251) enriched in the BCI with a p-
value of 10–5 (rank 33). We expected to discover this
function as enriched in the BCI: since B cells are a spe-
cific type of lymphocyte, up-regulation of lymphocyte
activation is an inherent property of genes in the BCI.
Our methods were capable of determining not only that

many genes related to lymphocyte regulation appear in
the BCI, but that there was a rich interconnectivity
among these genes. Figure 2 illustrates that the signal
transducer and activator of transcription (STAT) pro-
teins (STAT5A, STAT5B, STAT6) are central to this
connectivity. STAT5 has been shown to play a key role
in the development and proliferation of B cells [27,28]
through its activation by and mediation of many inter-
leukins (e.g., IL2, IL6, and IL7, which are also present in
this network). Each of these interleukins serves as a
growth factor for various B cell lineages.
Glucose metabolism
We found the term “Glucose Metabolic Process”
(GO:0006006) enriched in the BCI with a p-value of 2 ×
10–5 (rank 43). While glucose metabolism is not solely
related to the behavior of B cells, this process is impor-
tant for many cell types, including B cells, as a primary
source of energy. Perhaps what was most interesting
about this function was its reliance on MYC for most of
its connectivity. As mentioned, MYC is considered to be
a master regulator because it regulates the activity of a
large number of human genes. Figure 2 demonstrates
that without the annotation of MYC by “Glucose Meta-
bolic Process” the network would consist of mostly dis-
connected proteins. While MYC also plays a central role
in “Protein-DNA Complex Assembly”, one could argue
that, even without MYC and the edges incident on it,
the proten-DNA complex assembly network is reason-
ably well-connected and will be deemed to be signifi-
cantly enriched by our methods. In the case of “Glucose
Metabolic Process,” we elucidated a function whose net-
work-based enrichment score relies heavily on its con-
nectivity through a central hub.

Hepatic cultures
The liver carries out a multitude of necessary functions
in humans and many other animals, including the meta-
bolism of foreign compounds (xenobiotics) and choles-
terol. Hepatocytes constitute roughly 70-80% of the liver
cells. Two commonly used systems for culturing these
cells in vitro are the hepatocyte monolayer (HM) and
the collagen sandwich (CS). Briefly, the HM consists of
a layer of collagen on top of which a single layer of
hepatocytes are placed; the CS is similar to the HM
with the addition of an extra layer of collagen on top
(creating a “sandwich” of hepatocytes between two
layers of collagen). A recent study analyzed the expres-
sion profile over eight days of genes in primary rat
hepatocytes in both HM and CS tissue cultures [21].
The authors demonstrated that over eight days, the
genes annotated by a wide range of liver-specific biologi-
cal processes were consistently up-regulated in hepato-
cytes in CS but not in HM and that processes related to
the cell cycle were down-regulated in CS, as compared
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to HM. Hepatocytes in HM differentiate and lose some
of their morphology over time, contributing to their loss
of liver-specific functions.
For this application of our enrichment methods, we

sought to discover functions that annotate differentially-
expressed genes in the CS cultures when compared to
HMs. We used the STRING database of known and pre-
dicted protein interations [29] as our universal interac-
tion network. STRING assigns a weight between 0 and
1000 to each interaction based on the combined scores
of various sources of evidence for the interaction, where
higher scores indicate more confidence for that interac-
tion. We removed any self-loops or interactions with a
score below 500 from the universal network, resulting in
a network of 9925 nodes and 204,992 edges. We ana-
lyzed the expression profiles for rat hepatocyte genes in
HM versus CS cultures after 8 days of growth [21],
since CS showed the greatest divergence from HM after
8 days. Based on these expression profiles, we used
LIMMA [30] to compute p-values that represented the
significance of the differential expression of each gene
between CS and HM. We desired to compute the
response network (a subgraph of the STRING network)
that captured the differential expression between CS
and HM cultures. Accordingly, we used these per-gene
p-values in concert with the BioNet algorithm [31] to
compute a response network (within the STRING uni-
versal network) of interconnected genes that is per-
turbed in CS, in comparison to HM. We used the
default parameters for BioNet, with FDR=0.001. Please
see the BioNet publication for more details. The
response network contained 876 nodes and 3423 edges.
We collected functional annotations of the genes in this
network from the Molecular Signatures Database
(MSigDB) [20]. We only retained curated gene sets
(category C2) and GO gene sets (category C5) from
MSigDB, and we removed any functions that annotated
fewer than five genes in the universal interaction
network.
With the universal interaction network, an interesting

subnetwork of the universe (i.e., the BioNet response
network), and functional annotations of the universal
genes, we applied our network-based enrichment meth-
ods. We tested the enrichment of 4035 MSigDB func-
tions for 100,000 iterations. We also computed the
enrichment of each function, using an empirical version
of Equation 1, to allow us to compare our network-
based enrichment p-value for a given function to the p-
value given by a standard gene set-based enrichment
method (i.e., the one-sided version of Fisher’s exact
test). We did not use the analytical version of Fisher’s
test so that the enrichment p-value estimated by our
methods for each function was comparable to that com-
puted by Fisher’s test. We observed that 177 of the 4035

functions received a network-based enrichment p-value
of less than 10–5, the smallest possible empirical p-value
for 100,000 iterations (i.e., our methods returned a p-
value of 0 for these functions). We present four of the
top 177 functions and analyze their relationship to liver
cultures. Figure 3 illustrates the networks induced by
the genes annotated by these four top-ranking network-
based enriched functions (i.e., we show Hf for each func-
tion). The genes are colored based on their level of per-
turbation in the contrast between CS and HM. Lightly-
colored genes indicate little or no perturbation, while
dark red (green) nodes denote significant up- (down-)
regulation in CS compared to HM.
Actin cytoskeleton
Our network-based enrichment methods discovered the
KEGG [3] pathway “Regulation of Actin Cytoskeleton”
enriched with a p-value less than 10–5 (rank 1). Com-
paratively, the empirical p-value for the one-sided ver-
sion of Fisher’s exact test was 0.02857 (rank 819), more
than three orders of magnitude larger than our p-value.
Actin organizes into thin filaments to provide structure
to cells. Cell locomotion is often a driving force for the
development of actin cytoskeleton. Actin filaments form
a highly-organized, complex structure, and manipulation
of the actin cytoskeleton enables adhesion to the sub-
trate and movement of the cell [32]. However, hepato-
cytes are generally stationary cells and are unlikely to
use this mechanism. More specifically, HM hepatocytes
lose the true hepatic phenotypes much faster than those
in CS cultures. A specific characteristic of this loss is
the production of actin fibers that help cells in the HM
culture to better adhere to the underlying substrate.
This phenomenon explains why many genes in the
“Regulation of Actin Cytoskeleton” network (Figure 3)
are consistently down-regulated in CS hepatocytes com-
pared to those in HM. Note that this network contains
some up-regulated genes, including Fgf21 and Myh14.
These genes are involved in a wide variety of biological
processes including cell growth, tissue repair, and cell
polarity. Their participation in several processes not
directly related to actin development may explain why
they are upregulated in CS compared to HM in this
network.
Cell cycle checkpoints
We found the REACTOME [1] pathway “Cell Cycle
Checkpoints” enriched with a p-value less than 10–5

(rank 1), while the empirical version of Fisher’s method
assigned a p-value of 0.05539 (rank 1034). Many genes
in this network are essential to the cell cycle process.
ANAPC2 codes for part of the anaphase-promoting
complex, which is responsible for promoting eukaryotic
cells from metaphase to anaphase during mitosis. Wee1
serves as a key checkpoint in the cell cycle by inhibiting
entry into mitosis until the cell has grown to a certain
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size, thus preventing the separation of the cell into two
daughter cells that are too small. Mcm6 and Mcm7 are
essential genes for DNA replication in eukaryotes, a sig-
nificant process in the cell cycle. Under healthy condi-
tions, mature hepatocytes do not readily divide except
to replace damaged hepatocytes [33]. This observation
may explain the downregulation of these genes in CS
compared to HM. In other words, down-regulation of
cell cycle checkpoints prevents the cell cycle from pro-
gressing in CS cultures, in comparison to HM cultures.
Nuclear receptor transcription pathway
We identified the REACTOME “Nuclear Receptor Tran-
scription Pathway” enriched with a network-based p-
value less than 10–5 (rank 1). Fisher’s method returned a
p-value of 0.0092 (rank 565). Nuclear receptors are
responsible for sensing steroids, hormones, and other
signaling molecules in the cell. Since one of the primary
functions of the liver is the production of hormones,
enrichment of this gene set in CS cultures is to be
expected and was noted in an earlier study [21].
Furthermore, we expect many genes involved in this
pathway to exhibit up-regulation in CS versus HM cul-
tures. Figure 3 confirms that all the genes in the inter-
section between this pathway and the BioNet response
network are indeed up-regulated. Nr1h3, Nr1i2, Rxrg,

and Hnf4a encode parts of the liver X receptor, the
pregnane X receptor, the retinoic acid receptor, and the
hepatocyte nuclear factor, respectively. All these nuclear
receptors are responsible for sensing signaling molecules
that are highly relevant to liver function, e.g., metabo-
lism of toxic substances and vitamins.
Drug metabolism
The KEGG pathway “Drug Metabolism of Cytochrome
P450” was enriched according to our network-based
method with a p-value of less than 10–5 (rank 1). Fisher’s
method assigned the same function a p-value of 0.01572
(rank 681). All genes in this network were up-regulated
in CS hepatocytes compared to those in HM. One of the
primary functions of the liver is processing xenobiotics,
including drugs. Cytochrome P450s represent a class of
proteins that are responsible for breaking down various
lipids, steroids, and xenobiotic (external) compounds.
Primary hepatocytes actively express these proteins, even
in the absence of external chemicals or drugs [34]. The
enrichment of this pathway in CS cultures (in compari-
son to HMs) supports the well-known phenomenon that
HMs rapidly lose liver-specific functions.
Gene sets with high network-based p-values
Several functions received a high network-based p-value
from our methods and a low set-based p-value using

Figure 3 Functions related to hepatic cultures.Subgraphs of a hepatocyte response network induced by genes annotated with MSigDB gene
sets. (Top Left) (KEGG) Regulation of Actin Cytoskeleton, (Top Right) (REACTOME) Cell Cycle Checkpoints, (Bottom Left) (REACTOME) Nuclear
Receptor Transcription Pathway, and (Bottom Right) (KEGG) Drug Metabolism Cytochrome P450. Red and green nodes indicate up- and down-
regulation, respectively, of individual genes in collagen sandwich versus hepatocyte monolayer tissue cultures. Darker node color indicates higher
perturbation in either direction, as indicated by the legend on the left.
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Fisher’s exact test. We ranked the genes sets in increas-
ing order of their set-based p-values, and we report the
two highest-ranking gene sets that received a network-
based p-value of 1. According to Fisher’s exact test, we
found the MSigDB gene set “Su Liver” significantly
enriched with a p-value of 1.77–6 (rank 89) and the gene
set “Chiaradonna Neoplastic Transformation Kras DN”
significantly enriched with a p-value of 2.48 × 10–6

(rank 93). Our network-based functional enrichment
approach deemed both functions insignificant with a p-
value of 1 because there exist no interactions among the
genes annotated by either function. Gene sets whose
constituent proteins are sparsely-connected may be diffi-
cult to interpret.

Improving functional network coherence
In the third and final application of our network-based
enrichment methods, we sought to analyze how the
addition of a collection of experimentally determined
interactions impacts a dataset of known interactions.
Specifically, given a universal interaction network in S.
cerevisiae, we wanted to determine which biological
functions became more coherent within the network
after introducing new pairwise interactions discovered in
a large-scale genetic interaction (GI) study. We retrieved
the yeast interactome from the BioGRID database [23],
which incorporates both genetic and physical interac-
tions from multiple sources (5681 nodes and 97,862
edges). BioGRID includes a sub-network of 14,421 GIs
among 721 genes reported by Collins et al [22]. We
refer to this list of GIs as “the GI study” or “the GIs”
throughout this section. Our goal was to ask which GO
biological processes became better connected when the
GIs were added to BioGRID. We downloaded GO biolo-
gical process annotations of the genes in BioGRID from
GO [18]. As with the annotations of the BCI, we applied
the true-path rule to the annotations, and we removed
any functions that annotated fewer than five genes in
the universal network and more than 100 genes in the
interesting collection C.
We then applied our network-based enrichment

approach in two ways. The universal interaction net-
work (G) remained the same in both cases. In the first
case, we set the interesting network (H) to be the same
as the universal network (which also includes edges
from the GI study). This analysis is similar to the analy-
sis performed on the BCI. Essentially, the network-based
p-values in this case indicated which functions were
enriched in the entire BioGRID network, including the
GIs. For the second case, we set the interesting network
to be the universal network with interactions from the
GI study removed. If there were other sources of evi-
dence for one of the GIs, we retained that edge in the
interesting network. The network-based p-values in this

case indicated which functions were enriched in the uni-
versal network if we ignored any information from the
GI study.
Let pa(f) be the network-based p-value for function f

from the first case, where we considered all edges in the
univeral network, including those from the GI study.
Similarly, let pr(f) be the network-based p-value for
function f from the second case, where we removed any
edges in the GI study from the interesting network. We
scored each function by s(f) = log10(pr(f)/pa(f)). Thus,
functions whose network-based enrichment p-value
decreased (became more significant) as a result of add-
ing the GIs received a positive score, functions whose
enrichment remained the same received a score of 0,
and functions whose p-values increased (became less
significant) as a result of adding the GIs received a
negative score. We believed that highly positive-scoring
functions were those biological processes whose coher-
ence improved the most by adding the GIs. Of the 1443
functions tested, 28 functions received a score greater
than 1 (i.e., the p-value decreased by more than 1 order
of magnitude after adding the GIs), and only 1 function
received a score less than -1 (i.e., the p-value increased
by more than 1 order of magnitude by including the
GIs). Next, we discuss the three GO biological pro-
cesses, “Chronological Cell Aging”, “DNA Geometric
Change”, and “Histone Deacetylation”, that received the
2nd, 3rd, and 9th highest overall scores, respectively.
These examples illustrate a new application of network-
based functional enrichment that is sensitive to the
increased connectivity among a set of genes upon the
addition of multiple edges. However, gene set-based
enrichment may not be sensitive to such an addition of
edges if, for example, all newly-added edges were among
genes already present in the network.
Cell aging
The GO biological process “Chronological Cell Aging”
(GO:0001300) received a score of 2.6464 (pa = 0.0003
and pr = 0.1329) exhibiting a decrease in network-
based p-value of nearly three orders of magnitude
with the addition of the GIs. This process is the pro-
gression of quiescent (non-dividing) cells from their
inception to the end of their lifespans. Figure 4
demonstrates that this increase in enrichment is a
result of three GIs incident on SOD1, a Cu-Zn super-
oxide dismutase that has a role in the detoxification
of oxygen radicals. These enzymes catalyze the break-
down of the superoxide radical (O2-) into an oxygen
molecule and hydrogen peroxide. Yeast cultures lack-
ing SOD1 exhibit drastically decreased viability [35].
Strikingly, the interactions from the GI study were
able to connect three previously disconnected subnet-
works of genes annotated with chronological cell
aging in S. Cerevisiae.
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DNA geometric change
Our approach identified the GO term “DNA Geometric
Change” (GO:0032392) with a score of 2.32 as having a
considerably decreased network-based enrichment p-value
after adding the GIs (pa less than 10–4, but pr = 0.0021).
The p-value decreased primarily because of the GI between
SSL1 and TOP1, which connected two previously discon-
nected components of the network induced by genes asso-
ciated with DNA geometric change. Additionally, the
added GIs reinforced the connectivity among RFA1, RFA2,
RAD54, SRS2, and their neighboring genes. Thus, the con-
nected component induced by these genes was less likely to
become disconnected during the randomization procedures
used to perform network-based enrichment.
Histone deacetylation
Our enrichment approach assigned a score of 1.5955 (pa
= 0.0005 and pr = 0.0197) to the GO term “Histone
Deacetylation” (GO:0016575). The GIs improved the
connectivity among several genes related to histone dea-
cetylation (HDA1, HOS2, SDS3, SIF2, SNT1, UME1,
and UME6). The GIs also provided a new source of evi-
dence for many previously-known interactions, a prop-
erty we can deduce from Figure 4 but one that is not
explicitly considered by our methods. However, the
interaction connecting HOS3 to EAF3 and the interac-
tions between HST3 and CPR1/SIN3 are perhaps the
most interesting as they provide new evidence for
including HOS3, HST3, and HST4 in the large con-
nected component associated with histone deacetylation.
The GIs that connect HST3 and HST4 to the largest
connected component of this biological process are
quite striking, since these genes code for histone deace-
tylases, and the GIs provide previously unknown inter-
action data for including them in this network.

Conclusions
In this paper, we have presented a novel approach to
functional enrichment that takes into account the

pairwise relationships among genes annotated by a par-
ticular function. We proposed two different methods for
calculating p-values to assess the significance of each
function in a network-based context; we described these
methods as “function randomization” and “network
structure randomization”. We required functions to
have low enrichment p-values based on both criteria.
Our function randomization approach is a generalization
of the one-sided version of Fisher’s exact test, a standard
formulation of functional enrichment for gene sets. Spe-
cifically, after removing edges from the universal and
interesting networks, the function randomization
approach is equivalent to the one-sided version of Fish-
er’s exact test. Our network structure randomization
approach offers a strictly network-centric method for
determining functional enrichment.
We utilized our methods on real biological data from

three different organisms: human, rat, and yeast. In each
organism, we showcased a different application of net-
work-based enrichment. First, we used the human B cell
interactome to demonstrate the capability of our meth-
ods to simply discover enriched functions in a single
network. We have noted that many standard gene set
enrichment methods do not address this issue, as they
require a universal gene set and an interesting collection
of genes within the universal genes. Moreover, graph
clustering algorithms that are designed to compute
dense subgraphs might not detect sub-networks that are
well-connected but not very dense, such as those corre-
sponding to “Protein-DNA Complex Assembly” and
“Glucose Metabolic Process” in Figure 2. Second, we
applied our methods to a response network composed
of rat genes perturbed in hepatocytes cultured in two
different ways. This approach parallels traditional gene
set enrichment methods, where given an interesting col-
lection of genes, we seek functions overrepresented in
the interesting genes with respect to some universe of
genes. We identify several relevant functions that our

Figure 4 Functions related to the GI study. Subgraphs of the BioGRID universal network induced by genes annotated with GO biological
processes (Left) GO:0001300 Chronological Cell Aging, (Middle) GO:0032392 DNA Geometric Change, and (Right) GO:0016575 Histone
Deacetylation. Blue interactions are edges in BioGRID that were not identified by the GI study [22]. Solid pink edges were identified in the GI
study and were also present in BioGRID through some alternative evidence. Dashed red interactions were only discovered by the GI study.
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network-based method finds as being most significant
but are far from the highest-ranking functions using the
set-based Fisher’s method. Third, we demonstrated a
novel application of network-based enrichment to assess
the functional contribution of a collection of genetic
interactions in yeast to the underlying universe of
known yeast interactions.
Our work suggests many directions of future research.

While we did not take edge reliabilities into account for
the analysis presented here, our methods can be readily
applied to weighted networks. Indeed, our approach for
comparing sequences of component sizes can be used to
compare sorted sequences of the sums of edge weights
within each component (rather than the number of
nodes). Identifying alternative methods for sequence com-
parison is also an interesting question, particularly those
methods for which the resulting distribution of sorted
sequences can be determined analytically. Such compari-
son methods may drastically improve the computational
efficiency of our network-based enrichment approach.
Our methods analyze the functions one at a time and
often lead to redundant functions being identified as
enriched. Additionally, we need to apply corrections for
multiple hypotheses testing, thereby potentially decreasing
our statistical power. Furthermore, our permutation-based
approach for computing p-values is very time-consuming.
These three issues can potentially be tackled by generaliz-
ing model-based approaches for gene function enrichment
[15,16] to the domain of network-based function enrich-
ment. After assuming an appropriate model for how biolo-
gical processes may be perturbed in a cell, these methods
proceed to infer the set of biological processes that best
explain an input list of genes (the interesting collection)
against a background list (the universe). We are develop-
ing a modified version of our network-based approach
that identifies groups of functions that jointly cover the
network of interest, rather than consider functions indivi-
dually. Applying these methods in the network context is
an interesting and important problem.
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