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Abstract

experiments are carried out.

experimental confirmation.

Background: Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is
catalyzed by y-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in
the post-translational conversion of Glu residues to y-carboxyglutamate (Gla) residues. It has been shown that the
process of carboxylation is involved in the blood clotting cascade, bone growth, and extraosseous calcification.
However, studies in this field have been limited by the difficulty of experimentally studying substrate site specificity
in y-glutamyl carboxylation. In silico investigations have the potential for characterizing carboxylated sites before

Results: Because of the importance of y-glutamyl carboxylation in biological mechanisms, this study investigates
the substrate site specificity in carboxylation sites. It considers not only the composition of amino acids that
surround carboxylation sites, but also the structural characteristics of these sites, including secondary structure and
solvent-accessible surface area (ASA). The explored features are used to establish a predictive model for
differentiating between carboxylation sites and non-carboxylation sites. A support vector machine (SVM) is
employed to establish a predictive model with various features. A five-fold cross-validation evaluation reveals that
the SVM model, trained with the combined features of positional weighted matrix (PWM), amino acid composition
(AAC), and ASA, yields the highest accuracy (0.892). Furthermore, an independent testing set is constructed to
evaluate whether the predictive model is over-fitted to the training set.

Conclusions: Independent testing data that did not undergo the cross-validation process shows that the proposed
model can differentiate between carboxylation sites and non-carboxylation sites. This investigation is the first to
study carboxylation sites and to develop a system for identifying them. The proposed method is a practical means
of preliminary analysis and greatly diminishes the total number of potential carboxylation sites requiring further

Introduction

Carboxylation is a post-translational modification (PTM)
of glutamate (Glu) residues in proteins that is primarily
involved in the blood clotting cascade specifically occur-
ring in factors II, VII, IX, and X, protein C, protein S, as
well in some bone proteins [1,2]. Vitamin K is a critical
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cofactor in the post-translational conversion of Glu resi-
dues to y-carboxyglutamate (Gla) residues [3]. Carboxy-
lation is catalyzed by y-glutamyl carboxylase [4] and
proceeds in the lumen of the endoplasmic reticulum [5].
The vitamin K-dependent carboxylase transforms Glu to
Gla when carbon dioxide (CO,) is added at the y-posi-
tion in the presence of oxygen (O,) and reduced vitamin
K [2]. The carboxylated proteins can be activated when
Gla domain binds Ca%*[6]. Since Glu is a weak CaZ*
chelator and Gla is a much stronger one, the transfor-
mation by the vitamin K-dependent carboxylase greatly
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increases the Ca”**-binding capacity of a protein [7]. Stu-
dies conducted over the last few years have revealed
that the y-glutamyl carboxylated proteins in vertebrates
can be categorized into three main groups [8]. The first
group comprises the carboxylated proteins with an
amino terminal Gla domain, and includes vitamin K-
dependent blood coagulation factors and co-regulators
of blood coagulation [9]. The second group is composed
of osteocalcin and matrix Gla protein (MGP) [10,11],
and includes three and five Gla residues, respectively,
which are critical to the regulation of bone growth and
extraosseous calcification [12,13]. The third group is the
y-glutamyl carboxylase, itself, which includes Gla resi-
dues [14].

Morris et al. used mass spectrometry to reveal the
processive behavior of vitamin K-dependent carboxyla-
tion wherein multiple carboxylations occur during a sin-
gle substrate binding event [6]. The efficient
carboxylation of native substrates depends on the bind-
ing of a conserved region to the carboxylase with a sub-
micromolar affinity constant [15,16]. Owing to the
biological importance of y-glutamyl carboxylation, more
attention has been paid to mass spectrometric analyses
in order to identify experimentally confirmed carboxyla-
tion sites. Nevertheless, in vitro identification of protein
carboxylation sites requires a very large amount of time
and effort. Meanwhile, in silico methods have the poten-
tial to characterize carboxylated sites before experiments
are conducted. Additionally, in silico identification pre-
sents a more feasible means of preliminary analysis with
the potential to significantly diminish the number of
potential carboxylation sites requiring further experi-
mental verification.

Given the importance of y-glutamyl carboxylation in
biological mechanisms, this work focuses on investigat-
ing the substrate site specificity of carboxylation sites.
The experimentally validated y-glutamyl carboxylations
were mainly gathered from UniProtKB, a universal pro-
tein resource [17]. Numerous experimental carboxyla-
tion sites in humans have been taken from HPRD [18],
which contains curated data that the authors manually
extracted from the PubMed literature database. Amino
acid side chains that undergo post-translational modifi-
cation tend to be accessible on protein surfaces [19].
Therefore, this investigation not only examines the
amino acid composition around carboxylation sites, but
also considers structural characteristics, including sol-
vent-accessible surface area (ASA) and secondary struc-
ture. In order to characterize the structural properties of
the tertiary structures of carboxylated proteins, experi-
mentally identified carboxylation sites are mapped to its
corresponding positions from the protein sequences of
Protein Data Bank (PDB) [20]. However, most of the
collected carboxylation sites lack the corresponding PDB
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tertiary structures. Accordingly, two tools, RVP-Net
[21,22] and PSIPRED [23], are utilized to calculate the
ASA values and the secondary structures of amino acids
in protein sequences, respectively.

Each feature is examined to evaluate its capacity to
differentiate carboxylation sites from non-carboxylation
sites. A support vector machine (SVM) is utilized to
establish a predictive model with various features,
including the positional weighted matrix of amino acids,
amino acid composition, ASA, and secondary structure.
Five-fold cross-validation is utilized to test the predictive
performance of the generated SVM model. To prevent
the generated model from an overestimation of predic-
tive power, homologous sequences are eliminated by
applying a window length of 2xn+1 to carboxylation sites.
After building and evaluating the model, the selected
models providing the best accuracy are further tested
using a data set of independent testing. The indepen-
dent test set, which is not included in the training set, is
then adopted to evaluate whether the selected model is
over-fitting to the training data. Finally, the training fea-
tures and window length providing the highest predic-
tive accuracy for the model are used to construct a web-
based system for identifying y-glutamyl carboxylation.

Material and methods
Data collection and preprocessing
A comprehensive PTM resource dbPTM [24], which
collects PTM data from release 15.0 of UniProtKB [17]
and release 8.0 of HPRD [18], comprises of 1123 Gla
residues in 182 protein entries from multiple organisms.
After the non-experimental sites, annotated as “by simi-
larity”, “potential” and “probable” in the “MOD_RES”
fields of UniProtKB, have been removed, 463 experi-
mental carboxylation sites from 134 carboxylated pro-
teins are obtained. It is observed that the carboxylation
site occurs on Glu residues. In this investigation, all car-
boxylated Glu residues are regarded as the positive set.
On the other hand, Glu residues, found in the experi-
mental carboxylated proteins, which are not annotated
as carboxylation sites are regarded as the negative set.
Consequently, a total of 854 non-carboxylated Glu sites
are defined as negative set. This work aims to investi-
gate the structural characteristics of protein carboxyla-
tion sites; with reference to a previous work [25],
features such as amino acid composition, accessible sur-
face area (ASA), and secondary structure are explored.
The extracted features are used to construct a predictive
model and are evaluated in terms of its ability to differ-
entiate carboxylation sites from non-carboxylation sites.
To avoid an overestimation in the cross-validation, the
removal of homologous sequences in the positive data is
done by using a window size of 2n+1 centered on the
carboxylation site. With reference to the method of
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homology reduction in N-Ace [26], two carboxylated
proteins having more than 30% sequence similarity are
regarded as homologous proteins. Then, for every two
homologous protein sequences, BL2SEQ [27] is applied
to re-align the fragment sequences with 2x+1 amino
acids centered on the carboxylated sites. For two frag-
ment sequences having a sequence similarity higher
than 50%, only one fragment sequence is kept while
the other is removed the positive set. The same
approach is also applied to generate the non-homolo-
gous negative set.

In the evaluation of cross-validation, the constructed
SVM models may be overestimated due to a possible
over-fit to the training data set. Thus, about 15% of
experimental carboxylated proteins are randomly chosen
to construct an independent data set which is later used
for estimating the actual prediction power of the
selected model [28-30]. As shown in Table 1, the non-
homologous training data comprises of 302 carboxylated
glutamate residues (positive set of training data) and
567 non-carboxylated glutamate residues (negative set of
training data) from 79 carboxylated proteins. Addition-
ally, a total of 60 carboxylated glutamate residues and
99 non-carboxylated glutamate residues from 14 car-
boxylated proteins, respectively, are defined as the posi-
tive set and negative set for independent testing. After
the k-fold cross-validation, the trained model yielding
the best accuracy is evaluated using the independent
test data.

Feature investigation

This work not only investigates the composition of
amino acids that surround carboxylation sites, but also
takes the solvent accessible surface area (ASA), and sec-
ondary structure (SS) into account. A window size of 2n
+1 is utilized to extract fragment sequences from posi-
tive and negative sets of training data. Various values of
n changing from four to ten are applied to decide the
optimal window length. The amino acid composition
(AAC) [31], which refers to the relative frequencies of
twenty amino acids in a given window length, is
regarded as the elementary feature in the investigation
of carboxylation sites [28]. A vector of 20 elements for
amino acid composition specifies the number of occur-
rences of the twenty amino acids normalized by the
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total number of residues in a fragmented sequence with
window length 2x1+1. To investigate the position-specific
amino acid composition around the carboxylation sites,
a positional weighted matrix (PWM) is determined
using non-homologous positive set of training data [32].
The PWM specifies the occurring frequency of amino
acids in each position of a fragment. A matrix of (2n
+1)xm elements, where 2n+1 refers to the window
length and m contains 21 elements that stands for the
20 amino acids and one terminal signal, is referred to in
order to encode each fragment sequence in the training
data.

The amino acids that undergoes post-translational
modification were reported to be exposed on the surface
of a protein [19]. Thus, the accessible surface area
(ASA) surrounding the carboxylation sites is considered.
Due to the fact that almost all of the experimental car-
boxylated proteins do not contain a corresponding PDB
tertiary structure, RVP-Net [21,22] is utilized to calcu-
late the ASA value, which is the percentage of the sol-
vent-accessible area of each amino acid on a protein
sequence. RVP-net is a prediction tool to determine the
value of residual ASAs using neighborhood information
and yields a mean absolute difference of 18.0 — 19.5%
between the predicted and experimental values of ASA
[22]. In this work, the full-length sequences of carboxy-
lated proteins are submitted to RVP-Net to calculate the
ASA value for all amino acids. The ASA values of the
amino acids surrounding the carboxylation site are nor-
malized to zero to one.

In investigating secondary structures surrounding car-
boxylation sites, PSIPRED [23] was utilized to predict
the secondary structure from a given protein sequence.
PSIPRED applied two feed-forward neural networks to
predict secondary structure using the results from PSI-
BLAST (Position Specific Iterated - BLAST) [33].
PSIPRED 2.0 has been reported as the top out of 20
evaluated methods by achieving a mean Q3 score of
80.6% for a test data containing 40 domains which have
no significant similarity to PDB structures [34]. The
full-length sequences of carboxylated proteins are sub-
mitted to PSIPRED to obtain the secondary structure of
all amino acids. The resulted data of PSIPRED is
encoded in terms of “H” for helix, “E” for sheet, and “C”
for coil. In order to transform the three terms into

Table 1 Statistics of experimentally verified carboxylation sites in training data and independent testing data

Data set All data (UniProt release 15.0 and Training data (non- Independent testing data (non-
HPRD 8.0) homologous) homologous)

Number of carboxylated proteins 134 79 14

Number of carboxylated glutamate 463 302 60

residues

Number of non-carboxylated glutamate 854 567 99

residues




Lee et al. BVIC Bioinformatics 2011, 12(Suppl 13):510
http://www.biomedcentral.com/1471-2105/12/513/S10

numeric vectors, a three-dimensional binary vector is
applied: helix (H) is encoded as “100,” sheet (E) is
encoded as “010,” and coil (C) is encoded as “001”.

Model learning and evaluation

In this study, support vector machine (SVM) is
employed in order to create predictive models that uti-
lize the explored features. In terms of binary classifica-
tion, SVM adopts a kernel function to map samples
into a higher dimensional space and subsequently deter-
mines a hyper-plane for effectively discriminating
between the two classes of samples with a maximum
margin and a minimum inaccuracy. LibSVM [35] is
employed to generate a binary prediction model using
the positive and negative training sets. The kernel func-
tion of SVM is radial basis function (RBF):

2
K(Si’sj) =exp(~y H Si - S]- ) Moreover, two SVM

parameters, cost and gamma value, are tuned to yield a
highest accuracy.

K-fold cross-validation is an important method for
evaluating the performance of a predictive model [36].
The training data is split into k approximately equal
sized subgroups. For one round of k-fold cross-valida-
tion, k-1 subgroups are defined as the training set and
the remaining one subgroup is defined as the valida-
tion set. The process of k-fold cross-validation is exe-
cuted k times until each of the k subgroups regarded
as the validation set one by one. In the evaluation of
k-fold cross-validation, all data are equally considered
as both the validation set and training set, and each
data is used as the validation set exactly once [37]. In
this study, k is set to five and the k results are inte-
grated to produce a single estimation. The measure-
ment of the predictive performance is defined as
follows:

.. P
Precision (Pre) = ———, 1)
TP + FP
P
Sensitivity (Sn) = ———, (2)
ty (Sn) TP + FN
TN
Specificity (Sp) = ———, (3)
P y(p) =
TP + TN
Accuracy (Acc) = , (4)
o (Acc) TP + EN + TN + FP
Matthews Correlation Coefficient (MCC) = [TP+FN]X(;I";\T:flz;x(;ﬂi?p)x eI (5)
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where TP, FN, TN, and FP represent the numbers of
true positives, false negatives, true negatives, and false
positives, respectively. Since a two-class classification is
of very different sizes, the Matthews correlation coeffi-
cient (MCC) is usually regarded as a balanced measure
which takes into account the true and false positives
and negatives [38]. The range of MCC values is between
-1 and +1: a measure of +1 stands for a perfect predic-
tion, 0 is a random prediction and -1 represents an
inverse prediction. Furthermore, the parameters of a
predictive model, such as window length, cost value of
SVM, and gamma value of SVM, are optimized to
achieve a highest accuracy. Finally, the SVM model
yielding the highest accuracy is selected for further inde-
pendent testing.

Results and discussion

Amino acid composition at the vicinity of carboxylation
sites

The aim of this work is to explore the substrate specifi-
city of y-glutamyl carboxylation sites. To examine the
composition of amino acids around carboxylation sites,
the amino acids from -7 to +7 that flank non-homolo-
gous carboxylation sites are graphically represented as
sequence logos. WebLogo [39,40] is used to produce a
frequency plot of sequence logo which shows the rela-
tive frequency of twenty amino acids at each position
surrounding the carboxylation sites. This is applied to
simplify the study of amino acid conservation near car-
boxylation sites. The frequency plot of the sequence
logo in Fig. 1A presents the highly concentrated Glu
residues around carboxylation sites. The high conserva-
tion of negatively charged glutamate residue is consis-
tent with previous findings that the y-carboxylation
recognition site suffices to direct vitamin K-dependent
carboxylation on an adjacent glutamate-rich region of
thrombin in a propeptide-thrombin chimera [41].

To compare amino acid compositions between posi-
tive and negative data, the web-based tool, TwoSample-
Logo [42], was utilized to detect significant differences
in terms of the position-specific symbol compositions
between two sets of multiple sequence alignments. Fig-
ure 1B shows the position-specific differences in amino
acid composition between carboxylation sites (302
sequences) and non-carboxylation sites (567 sequences).
With a 15-mer window length (from -7 to +7), the most
prominent feature of carboxylation sites is the abundant
and uniform Glu residue (negatively charged amino
acid) that surrounds positions -7, -6, -4, -3, -1, +1, +3,
+4, +6 and +7. Another interesting feature is the slight
enrichment of arginine (positively charged amino acid)
at positions -7, -5, -4, -1, and +3. The distant amino
acids in the primary sequence, which may be
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Figure 1 Composition of amino acids at the vicinity of carboxylation sites with 15-mer window length (from -7 to +7). A) Frequency
plot of amino acid composition at each flanking position. B) Position-specific differences in amino acid composition at the vicinity of

immediately adjacent to the Gla residue in a three-
dimensional structure, differ significantly between car-
boxylation and non-carboxylation sites. Also notable is
the depleted Glu residue at flanking positions, particu-
larly positions -2 and +2, which are close to the carbox-
ylation sites.

Structural characteristics at carboxylation sites

As well as amino acid composition, the solvent-accessi-
ble surface area (ASA) and secondary structure (SS) of
amino acids were considered to explore the structural
characteristics of carboxylation sites. With regard to the
application of RVP-Net [21,22], a previous investigation
of protein methylation [25] demonstrated that the RVP-
Net-computed ASA value is consistent with the
observed values in PDB tertiary structures. Figure 2A
presents the comparison of the mean ASA values
between carboxylation sites (302 sequences) and non-
carboxylation sites (567 sequences). The analysis reveals
that the flanking region of carboxylation sites has a high

preference for the solvent-accessible surface area, espe-
cially in the region from -1 to +1. The mean percentage
of ASA on carboxylated glutamate residues is 37.8%,
resulting in a great exposure to the solvent. In the inves-
tigation of ASA curves, the notable difference between
carboxylation sites and non-carboxylation sites is found
in the region from -7 to -4. Interestingly, the mean per-
centage of ASA is particularly low at positions -2 and
+2, both of which are associated with Glu depletion.
Figure 2B indicates that the flanking regions of carboxy-
lated sites are probably present in the secondary struc-
tures of coil (loop) and helix. For carboxylated
glutamate residues, 53% of the sites are located in coil
structure, 42.6% are located in helical structure, and
4.4% are located in sheet structure.

Determination of optimal window size based on amino
acid composition

To decide which window sizes can be used for generating
the predictive model that best identifies carboxylation
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B) Secondary structure around carboxylation sites.

sites on Glu residues, a five-fold cross-validation is con-
ducted to evaluate the models trained with different win-
dow lengths 2n+1, where n changes from four to ten.
With reference to a previous work that determined the
optimal window size for the identification of protein
acetylation [26], the amino acid composition (AAC) is
considered as the elementary feature in constructing the
predictive model. Figure 3 displays the precision (Pre),
sensitivity (Sn), specificity (Sp), accuracy (Acc), and Mat-
thews Correlation Coefficient (MCC) resulting from the
cross-validation evaluation done using various window
lengths. When the window length varies from 9 to 21, it
is observed that the predictive accuracy improves slightly
from 0.749 to 0.808. As the window size increases, the
predictive specificity improves while the sensitivity
declines. Overall, the models trained using a window size
of 15, 17, and 19 performs best. Given the consideration
of both computational efficiency and predictive perfor-
mance, 15-mer is chosen as the window length in the

following analyses. According to the training feature of
amino acid composition, the precision, sensitivity, specifi-
city, accuracy, and MCC resulting from a model with a
15-mer window size are 0.696, 0.798, 0.814, 0.808, and
0.596, respectively.

Evaluation of the effectiveness of studied features in
identifying carboxylation sites

To explore which features can be used to effectively dif-
ferentiate between carboxylation sites and non-carboxy-
lation sites, the impact of three different features, such
as amino acid sequence, ASA, and secondary structure,
is evaluated using five-fold cross-validation. Amino acid
sequences are encoded using a positional weighted
matrix and the amino acid composition, denoted
“AA_PWM” and “AAC”, respectively. The accessible
surface area (ASA) and the secondary structure (SS) are
encoded using the ASA values and a three-dimensional
binary vector, respectively. Table 2 reveals that, among
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Figure 3 Five-fold cross-validation performance of models trained using amino acid composition with varying window lengths. To
determine which window sizes can be used for generating the predictive model that best identifies carboxylation sites, a five-fold cross-
validation is conducted to evaluate the models trained with different window lengths 2n+1, where n changes from four to ten.

the models trained using a single feature, the model
trained with a positional weighted matrix (AA_PWM)
outperforms those trained with amino acid composition
(AAC) alone, ASA alone or SS alone. The precision,
sensitivity, specificity, accuracy, and MCC of the model
with AA_PWM are 0.735, 0.817, 0.843, 0.834, and 0.646,
respectively. The model trained with secondary structure
alone performs worse.

Additionally, the predictive power of the model that is
trained using a hybrid combination of AAC, AA_PWM,

ASA, and SS is evaluated. With respect to the perfor-
mance achieved using individual features, AA_PWM is
crucial for training a model with other individual fea-
tures. The model trained using the combination of
AA_PWM and ASA substantially outperforms those
trained with other combinations but slightly outper-
forms one that is trained with AA_PWM alone. Overall,
the model trained with AA_PWM, AAC and ASA has
the best accuracy. The predictive precision, sensitivity,
specificity, accuracy, and MCC of the best model are

Table 2 Cross-validation performance of the predictive models trained with various features

Training features Pre Sn Sp Acc MCC
Positional Weighted Matrix of flanking Amino Acids (AA_PWM) 0.735 0817 0.843 0.834 0.646
Amino Acid Composition (AAC) 0.696 0.798 0814 0.808 0.596
Accessible Surface Area (ASA) 0672 0.768 0.800 0.789 0.553
Secondary structure (SS) 0.580 0718 0.723 0.721 0424
AA_PWM + AAC 0.738 0814 0.846 0.835 0.647
AA_PWM + ASA 0.781 0.831 0.876 0.860 0.698
AA_PWM + SS 0.709 0.791 0.827 0814 0.604
AA_PWM + AAC + ASA 0.836 0.860 0.910 0.892 0.765
AA_PWM + AAC + SS 0711 0.801 0.827 0.818 0613
AA_PWM + AAC + ASA + SS 0812 0.860 0.894 0.882 0.745

Abbreviation: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthews Correlation Coefficient.
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0.836, 0.860, 0.910, 0.892, and 0.765, respectively. How-
ever, some of the models that are trained with ASA or
SS do not outperform that trained with AA_PWM
alone. In conclusion, five-fold cross-validation indicates
that the model that is trained using a combination of
AA_PWM, AAC and ASA performs best, and is there-
fore adopted in further independent testing.

Evaluation of y-glutamyl carboxylation predictive model
using independent test set

To test the effectiveness of the studied features yielding
the highest accuracy in cross-validation, the independent
set is utilized to test the model trained with a 15-mer
window length and the features positional weight matrix
(AA_PWM), amino acid composition (AAC), and acces-
sible surface area (ASA). The independent test set com-
prises 60 carboxylation sites and 99 non-carboxylation
sites in 14 proteins, none of which is included in the
training data. Table 3 shows that the predictive sensitiv-
ity falls slightly during independent testing and specifi-
city falls by around 10%. Overall, independent testing
reveals that the model has an accuracy of 0.823, which
approximates to that of cross-validation. The precision,
sensitivity, specificity, and MCC in independent testing
are 0.735, 0.833, 0.818, and 0.638, respectively. Accord-
ingly, independent testing demonstrates that the posi-
tional weight matrix (AA_PWM), amino acid
composition (AAC), and accessible surface area can dis-
tinguish between carboxylation and non-carboxylation
sites when data are truly blind to the cross-validation
process.

Investigation of functional domains in carboxylated
proteins

To study the preferred functional domains in carboxy-
lated proteins, the annotations in InterPro [43] are used.

Table 3 Comparison of performances between cross-
validation and independent testing.

Five-fold cross Independent
validation testing
Number of positive data 302 60
Number of negative data 567 99
True Positive 260 50
False Positive 42 10
True Negative 516 81
False Negative 51 18
Precision 0.836 0.735
Sensitivity 0.860 0.833
Specificity 0910 0818
Accuracy 0.892 0.823
Matthews Correlation 0.765 0.638

Coefficient
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InterPro is an integrated resource that was developed
initially as a means of rationalizing the complementary
uses of PROSITE [44], PRINTS [45], Pfam [46] and Pro-
Dom [47] databases, to provide protein “signatures”
such as protein families, domains and functional sites.
Based on the annotations in InterPro release 28.0, 134
carboxylated proteins had annotations for 32 InterPro
functional types. Table 4 shows the InterPro annotations
which occur in more than ten carboxylated proteins.
The most featured annotation is the abundance of a
“gamma-carboxyglutamic acid-rich (GLA) domain”
(InterPro ID: IPR000294), which occurrs in 43 carboxy-
lated proteins, 21 and 17 of which are involved in the
“coagulation factor” domain (InterPro ID: IPR002383)
and the “bone matrix” family (InterPro ID: IPR002384),
respectively. Another annotation in 19 carboxylated pro-
teins is associated with the functional domains “pepti-
dase S1/S6, chymotrypsin/Hap” (InterPro ID:
IPR001254) and “serine/cysteine peptidase, trypsin-like”
(InterPro ID: IPR009003). Eighteen and 15 carboxylated
proteins have peptidase-related annotations, “peptidase
S1A, chymotrypsin” family and “peptidase S1A, coagula-
tion factor VII/IX/X/C/Z” family, respectively. Addition-
ally, 17 carboxylated proteins are associated with an
EGF-like domain, including “EGF-like region, conserved
site” (InterPro ID: IPR013032), “EGEF-like, type 3” (Inter-
Pro ID: IPR000742), and “EGF-like” (InterPro ID:
IPR006210). Interestingly, these proteins are also
involved in the post-translational modification of the
“EGEF-type aspartate/asparagine hydroxylation site”
(InterPro ID: IPR000152). In conclusion, the carboxy-
lated proteins could be categorized into three functional
groups, which are Gla domain, peptidase, and EGF-like
proteins.

Conclusions

Although the importance of carboxylation in the blood
clotting cascade, bone growth and extraosseous calcifica-
tion has been established, studies on carboxylation are
still subject to technical limitations - especially when the
concern is regarding substrate site specificity in y-gluta-
myl carboxylation. Following the collection of experi-
mentally verified carboxylation sites from UniProtKB
and HPRD, 463 experimentally verified carboxylation
sites have been identified in 134 carboxylated proteins.
In this investigation, after the construction of a training
data set and an independent test data set, the composi-
tion of the flanking amino acids among the training
data is studied. The analysis of position-specific differ-
ences in amino acid composition reveals that the most
prominent feature is the abundance of a uniform residue
of glutamate around carboxylation sites. Another impor-
tant characteristic is the slight increase in the abundance
of arginine (positively charged amino acid) at positions
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Table 4 Statistics of InterPro functional annotations in 134 carboxylated proteins

InterPro ID Type Description Number of carboxylated proteins
IPR000294 Domain Gamma-carboxyglutamic acid-rich (GLA) domain 43
IPR002383 Domain Coagulation factor, Gla domain 21
IPRO01254 Domain Peptidase S1/56, chymotrypsin/Hap 19
IPRO09003 Domain Serine/cysteine peptidase, trypsin-like 19
IPRO01314 Family Peptidase STA, chymotrypsin 18
IPRO13032 Conserved site EGF-like region, conserved site 17
IPR0O00742 Domain EGF-like, type 3 17
IPRO00152 PTM EGF-type aspartate/asparagine hydroxylation site 17
IPR0O06210 Domain EGF-like 17
IPR002384 Family Bone matrix, Gla protein 17
IPRO18114 Active site Peptidase S1/56, chymotrypsin/Hap, active site 16
IPR006209 Domain EGF 16
IPRO18097 Conserved site EGF-like calcium-binding, conserved site 15
IPRO12224 Family Peptidase STA, coagulation factor VII/IX/X/C/Z 15
IPR0O01881 Domain EGF-like calcium-binding 14

-7, -5, -4, -1, and +3. This investigation indicates that
the distant amino acids in the primary sequence, which
may be immediately adjacent to the y-carboxyglutamate
(Gla) residue in a three-dimensional structure, differ
notably between carboxylation sites and non-carboxyla-
tion sites.

Structural characteristics such as solvent-accessible
surface area and secondary structure are also investi-
gated. In the study of ASA curves, the region from -7 to
-4 exhibits notable differences between carboxylation
sites and non-carboxylation sites. The mean percentage
of ASA values on the carboxylated glutamate residues is
37.8% which shows that it is greatly exposed to the sol-
vent. The analysis of the secondary structure shows that
the flanking regions of the carboxylated sites are likely
to be present on the coil (loop) and helix structures.
The five-fold cross-validation evaluation demonstrates
that the SVM model trained using the combined fea-
tures of positional weighted matrix, amino acid compo-
sition, and accessible surface area has the highest
accuracy. Additionally, independent testing reveals that
the proposed model can differentiate carboxylation sites
from non-carboxylation sites when the data are truly
blind to the cross-validation process.

Although the independent tests verify that the pro-
posed method performs accurately and robustly, some
issues warrant further investigation. First, the evolution-
ary conservation of carboxylation sites should be exam-
ined. The analysis of functional domains (See
Supplementary Information) shows that carboxylated
proteins can be categorized into three main functional
groups: Gla domain, peptidase, and EGF-like proteins.
However, carboxylated proteins with the same func-
tional domain may be homologous. The carboxylation
sites of homologous proteins should exhibit evolutionary

conservation. Second, the structural affinities of carbox-
ylation sites, particularly when flanking amino acids are
not conserved, should be studied in greater detail
[48,49]. The intrinsic disordered regions, B-factor, pro-
tein linker region, and other factors should also be
explored at the vicinity of carboxylation sites in PDB
entries. Finally, the biological function of carboxylated
proteins should be investigated. Analysis of gene ontol-
ogy [50], the occurrence of other PTMs, and the net-
work context of protein-protein interaction [51] may
offer a clue to the functions of carboxylated proteins.
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