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Abstract

Background: Finding reliable gene markers for accurate disease classification is very challenging due to a number
of reasons, including the small sample size of typical clinical data, high noise in gene expression measurements,
and the heterogeneity across patients. In fact, gene markers identified in independent studies often do not
coincide with each other, suggesting that many of the predicted markers may have no biological significance and
may be simply artifacts of the analyzed dataset. To find more reliable and reproducible diagnostic markers, several
studies proposed to analyze the gene expression data at the level of groups of functionally related genes, such as
pathways. Studies have shown that pathway markers tend to be more robust and yield more accurate classification
results. One practical problem of the pathway-based approach is the limited coverage of genes by currently known
pathways. As a result, potentially important genes that play critical roles in cancer development may be excluded.
To overcome this problem, we propose a novel method for identifying reliable subnetwork markers in a human
protein-protein interaction (PPI) network.

Results: In this method, we overlay the gene expression data with the PPI network and look for the most
discriminative linear paths that consist of discriminative genes that are highly correlated to each other. The
overlapping linear paths are then optimally combined into subnetworks that can potentially serve as effective
diagnostic markers. We tested our method on two independent large-scale breast cancer datasets and compared
the effectiveness and reproducibility of the identified subnetwork markers with gene-based and pathway-based
markers. We also compared the proposed method with an existing subnetwork-based method.

Conclusions: The proposed method can efficiently find reliable subnetwork markers that outperform the gene-
based and pathway-based markers in terms of discriminative power, reproducibility and classification performance.
Subnetwork markers found by our method are highly enriched in common GO terms, and they can more
accurately classify breast cancer metastasis compared to markers found by a previous method.

Background
Given the high-throughput genomic data from microar-
ray experiments, one challenge is to find effective bio-
markers associated with a complex disease, such as
cancer. Extensive work has been done to identify differ-
entially expressed genes across different phenotypes

[1-5], which can be used as diagnostic markers for clas-
sifying different disease states or predicting the clinical
outcomes [6-11]. However, finding reliable gene markers
is very challenging for a number of reasons. The small
sample size of typical clinical data is one important fac-
tor that makes this problem difficult. We often have to
select a small number of gene markers from thousands
of genes based on a limited number of samples, which
makes the performance of the traditional feature selec-
tion methods very unpredictable [12]. In addition to
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this, the inherent measurement noise in microarray
experiments and heterogeneity across samples aggravate
this problem further [13-16]. Moreover, previous meth-
ods often select gene markers only based on their
expression data. Therefore, it is possible that some of
the selected gene markers may be functionally related,
hence contain redundant information which may lead to
the degradation of the overall classification performance.
To address the aforementioned problems, several stu-

dies proposed to interpret the expression data at the
level of groups of functionally related genes, such as
pathways derived from microarray studies [17-19], GO
annotations [20], and other sources. Methods have been
developed to capture the overall expression changes of a
given pathway by jointly analyzing the expression levels
of its member genes. For example, Guo et al. [21] used
the mean or median expression level of the member
genes as the pathway activity. Tomfohr et al. [22] ana-
lyzed the expression levels of genes in a pathway using
singular value decomposition (SVD), and they used the
eigenvector with the largest eigenvalue as the pathway
activity. Lee et al. [23] estimated the pathway activity by
computing the average expression level of the condition
responsive genes (CORGs) within a pathway. More
recently, another method has been proposed based on a
simple probabilistic model, which estimates the pathway
activity that contributes to the phenotype of interest
based on the log likelihood ratios (LLR) of the member
genes [24]. These pathway-based methods showed that
pathway markers are generally more reliable compared
to gene markers and that they lead to better or compar-
able classification performance [21-24]. The main
advantage of the pathway-based methods is that they
can reduce the effect of the measurement noise and that
of the correlations between genes that belongs to the
same pathway. Moreover, pathway markers can provide
important biological insights into the underlying
mechanisms that lead to different disease phenotypes.
However, pathway-based methods also have some short-
comings. First, currently known pathways cover only a
limited number of genes and may not include key genes
with significant expression changes across different phe-
notypes. Besides, many pathways overlap with each
other, hence the activity of such pathway markers may
be highly correlated. One possible way to alleviate these
problems is to directly identify such markers in a large
protein-protein interaction (PPI) network. In a recently
published paper [25], Chuang et al. tried to identify sub-
network markers by overlaying gene expression data on
the corresponding proteins in a PPI network. They
started from the so-called seed proteins in the PPI net-
work that have high discriminative power and greedily
grew subnetworks from them to maximize the mutual
information between the subnetwork activity score and

the class label. They showed that subnetwork markers
yield more accurate classification results and have better
reproducibility compared to gene markers.
In this paper, we propose a new method for identify-

ing effective subnetwork markers from a PPI network by
performing a global search for differentially expressed
linear paths using dynamic programming. After finding
the most discriminative linear paths, we combine over-
lapping paths into subnetworks through a greedy
approach and use those subnetworks as diagnostic mar-
kers for classifying breast cancer metastasis. To test the
effectiveness of our subnetwork markers, we perform
cross validation experiments based on two independent
breast cancer datasets. We compare the performance of
our method with a gene-based method, a pathway-based
method [24] and a previously proposed subnetwork-
based method [25]. The results show that the proposed
method finds reliable subnetwork markers that can
accurately classify breast cancer metastasis. We also per-
form an enrichment analysis and show that the identi-
fied subnetwork markers are highly enriched with
proteins that have common GO terms.

Results and discussion
Identification of subnetwork markers
We obtained two independent breast cancer datasets
from the large-scale expression studies in Wang et al.
[10] (referred as the USA dataset) and van’t Veer et al.
[9] (referred as the Netherlands dataset). The USA data-
set contains 286 samples and the Netherlands dataset
contains 295 samples. Metastasis had been detected for
78 patients in the Netherlands dataset and 107 patients
in the USA dataset during the five-year follow-up visits
after the surgery. The PPI network has been obtained
from Chuang et al. [25], which contains 57,235 interac-
tions among 11,203 proteins. Since not all proteins have
corresponding genes in the microarray platforms used
by the two breast cancer studies, we used the induced
network which contains 9,263 proteins and 49,054 inter-
actions for the USA dataset, and 8,380 proteins and
31,201 interactions for the Netherlands dataset.
Our proposed method integrates the gene expression

data and the PPI data by overlaying the expression value
of each gene on its corresponding protein in the PPI
network. The subnetwork identification algorithm con-
sists of the following three major steps:
Step 1: Search for highly discriminative linear paths whose
member genes are closely correlated to each other
To find discriminative linear paths in the large PPI net-
work, we define a scoring scheme that incorporates
both the t-test statistics scores of the member genes and
the correlation coefficient between their expression
values. This scoring scheme takes a weighted sum of the
t-scores of the member genes within a given path. The
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weights depend on the correlation between the member
genes and the parameter θ, where θ is introduced to
control the trade off between the “discriminative power”
of individual genes and the “correlation” between the
member genes (see Methods). Based on the above scor-
ing scheme, we developed an algorithm that searches for
the top scoring linear paths that have length l and end
at node g

i
.

Step 2: Combine top scoring linear paths into a subnetwork
We initialize the subnetwork using the path with the
highest score. As long as there exists a high scoring
path that overlaps with the current subnetwork, we
combine them and check if the discriminative power of
the new subnetwork is larger than that of the previous
subnetwork. If the discriminative power improves, we
keep the new subnetwork. Otherwise, we keep the pre-
vious subnetwork and check the next best path. To eval-
uate the discriminative power of subnetworks, we
applied the probabilistic pathway activity inference
method proposed in [24] to infer the subnetwork activ-
ity. The discriminative power of a subnetwork is
assessed by computing the t-test statistics score of the
subnetwork activity.
Step 3: Update the PPI network
After identifying the discriminative subnetwork, we
update the PPI network by removing the proteins in the
identified subnetwork from the current PPI network. In
order to find additional non-overlapping subnetworks,
we repeat the search process from Step 1.
In order to control the size of the identified subnet-

works, we restricted the length of the linear paths to be
less than 8. For a given l and for every node gi in the
network, we identified the top 20 linear paths with the
highest scores, whose length is l and end at the given
node gi. To construct the subnetwork marker that can
be used as a diagnostic marker for breast cancer metas-
tasis, we chose the top 100 scoring linear paths whose
length are within a given range 5 ≤ l ≤ 8. The selected
linear paths were combined into a single subnetwork as
described in Step 2. To find the best θ, we repeated the
experiment for six different values θ = 1, 2, 4, 8, 16 and
∞. For every value of θ, we identified 50 subnetwork
markers for each dataset using the proposed method.
The statistics of the identified subnetworks for the two
datasets are shown in Table 1. We can see that the
overlap between the subnetwork markers identified on
different datasets is around 25%, which is significantly
larger than the overlap reported in Chuang et al.
(12.7%) [25].

The identified subnetworks are enriched with proteins
that have common GO terms
We identified 50 discriminative subnetworks using the
proposed method for both the USA dataset and the

Netherlands dataset (θ = 8). The identified subnetworks
consist of 1035 and 976 genes, respectively. Next, we
analyzed the identified subnetworks using FuncAssociate
[26], which is a web application designed for character-
izing large collections of genes and proteins. It performs
a Fisher’s Exact Test (FET) analysis to identify Gene
Ontology (GO) [20] attributes that are shared by a frac-
tion of the entries in a given set of genes or proteins. At
a significance threshold of 0.01, 78% and 84% of the
subnetworks that were respectively identified using the
USA dataset and the Netherlands dataset were enriched
with proteins that share common GO terms. These GO
terms generally correspond to cell growth and death,
cell proliferation and replication, cell and tissue remo-
deling, circulation and coagulation, or metabolism.
Examples of the identified subnetworks are shown in
Figure 1, where we can see that the proposed method is
capable of finding subnetwork markers that also include
genes that are oppositely regulated. The enrichment
analysis results of the sample subnetworks obtained
using FuncAssociate are shown in Table 2.

The subnetwork markers identified by the proposed
method are more discriminative and reproducible
We first evaluated the subnetwork markers identified
using the proposed method. For a given θ, we identified
the subnetwork markers based on one dataset and esti-
mated their discriminative power on the same dataset.
The discriminative power of the subnetwork marker was
estimated as the absolute t-test statistics score of the
subnetwork activity. Subnetwork markers were then
sorted in the decreasing order of t-score. Next, to show
the reproducibility of our subnetwork markers, we iden-
tified the top 50 markers based on one dataset and eval-
uated their discriminative power on the other dataset.
Again, subnetwork markers were sorted according to
their discriminative power. Figure 2 shows the discrimi-
native power of subnetwork markers identified using six
different values of θ, where the x-axis corresponds to
the top K markers being considered, and the y-axis
shows the mean absolute t-score of the top K markers
(K = 10, 20, 30, 40, 50). Figure 2A and Figure 2B show
the results obtained from the USA dataset and the
Netherlands dataset, respectively. Figure 2C shows the
discriminative power of the subnetwork markers
selected based on the Netherlands dataset and evaluated
using the USA dataset. Figure 2D shows the discrimina-
tive power of the markers selected based on the USA
dataset and evaluated using the Netherlands dataset. As
we can see from these results, the discriminative power
of the identified subnetwork markers is not very sensi-
tive to the choice of θ. To further compare the identi-
fied subnetwork markers with other markers, we used θ
= 8 which showed good performance in average.
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Table 1 Statistics of the subnetwork markers identified by the proposed method

θ Size Number of genes Number of genes in common

mean standard deviation

1 USA 16.8 10.17 840 213

Netherlands 14.62 8.69 731

2 USA 18.22 12.3 911 233

Netherlands 16 10.34 801

4 USA 18 12.8 901 202

Netherlands 17.28 11.4 864

8 USA 20.7 13.38 1035 252

Netherlands 19.52 12.57 976

16 USA 20.2 11.13 1010 201

Netherlands 16.64 10.89 832

∞ USA 22.32 14.86 1116 266

Netherlands 21.92 10.67 1096

For each θ, we show the mean and standard deviation of the subnetwork size as well as the total number of genes covered by the identified subnetworks. We
also show the number of genes shared by the subnetworks identified using the respective breast cancer datasets.

Figure 1 Sample subnetworks identified using the proposed method. (A), (B) are examples of subnetworks identified using the USA
dataset. (C), (D) are examples of subnetworks identified using the Netherlands dataset. Red (green) implies that the gene is upregulated
(downregulated) in breast cancer samples with metastasis.
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Next, we compared the identified subnetwork markers
with gene markers, pathways markers [24] and the sub-
network markers identified by Chuang et al. [25]. For
gene markers, we selected the top 50 genes based on
the absolute t-score among all genes covered by the 50
identified subnetworks. For pathway markers, we
selected the top 50 pathways among the 639 pathways
in the C2 curated gene sets in MsigDB (Molecular Sig-
natures Database) [17]. We also obtained the subnet-
works identified by Chuang et al. [25] from the Cell

Circuits database [27] (149 discriminative subnetworks
for the Netherlands dataset and 243 subnetworks for the
USA dataset). We chose the top 50 subnetworks out of
149 subnetworks based on the Netherlands dataset and
the top 50 subnetworks out of 243 subnetworks based
on the USA dataset. The pathways and subnetworks
were ranked using the scheme proposed by Tian et al.
[18], based on the average absolute t-test statistics score
of all the member genes. For subnetwork markers iden-
tified by Chuang et al., we computed the t-scores of

Table 2 Enrichment analysis results for the sample subnetworks shown in Figure 1

Subnetwork Attribute ID P-value Attribute name

A GO:0045165 0.024 cell fate commitment

GO:0012501 0.001 programmed cell death

GO:0008219 0.006 cell death

GO:0016265 0.006 Death

GO:0006915 0.017 Apoptosis

B GO:0000718 < 0.001 nucleotide-excision repair, DNA damage removal

GO:0006308 0.046 DNA catabolic process

GO:0043566 0.040 structure-specific DNA binding

C GO:0051318 0.039 G1 phase

GO:0022403 < 0.001 cell cycle phase

GO:0005654 < 0.001 Nucleoplasm

GO:0000280 0.009 nuclear division

GO:0007067 0.009 Mitosis

GO:0048285 0.009 organelle fission

GO:0051301 0.001 cell division

GO:0022402 < 0.001 cell cycle process

GO:0007049 0.000 cell cycle

GO:0051726 0.008 regulation of cell cycle

GO:0044428 0.001 nuclear part

GO:0005634 0.024 Nucleus

D GO:0005838 < 0.001 proteasome regulatory particle

GO:0000076 0.016 DNA replication checkpoint

GO:0032297 0.016 negative regulation of DNA replication initiation

GO:0030174 0.030 regulation of DNA replication initiation

GO:0000502 0.010 proteasome complex

GO:0031145 < 0.001 anaphase-promoting complex-dependent proteasomal ubiquitin-dependentprotein catabolic process

GO:0051436 < 0.001 negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle

GO:0051352 < 0.001 negative regulation of ligase activity

GO:0051437 < 0.001 positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle

GO:0051444 < 0.001 negative regulation of ubiquitin-protein ligase activity

GO:0051443 0.001 positive regulation of ubiquitin-protein ligase activity

GO:0051439 0.001 regulation of ubiquitin-protein ligase activity during mitotic cell cycle

GO:0051351 0.001 positive regulation of ligase activity

GO:0051438 0.002 regulation of ubiquitin-protein ligase activity

GO:0051340 0.002 regulation of ligase activity

GO:0010498 0.007 proteasomal protein catabolic process

GO:0043161 0.007 proteasomal ubiquitin-dependent protein catabolic process

GO:0022402 < 0.001 cell cycle process

GO:0006511 0.050 ubiquitin-dependent protein catabolic process

GO:0006259 0.050 DNA metabolic process
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their member genes using the original expression values.
For pathway markers, t-scores of the member genes
were computed using their log-likelihood ratios as in
[24] (see Methods). To assess the discriminative power
of the subnetwork markers identified using the proposed
method, their activity score was inferred using the prob-
abilistic inference method proposed in [24]. For subnet-
work markers identified by Chuang et al., we inferred
their activity score using the mean expression value of
the member genes as reported in their paper [25].
The discriminative power of these different markers

are shown in Figure 3. As we can see in Figure 3, sub-
network markers identified by our method are more dis-
criminative compared to other markers. Moreover, it
can be seen that they also retain higher discriminative
power across different datasets.

Subnetwork markers identified by the proposed method
improve classification performance
To evaluate the performance of the classifiers that are
constructed using the subnetwork markers identified by

the proposed method, we performed the following
within-dataset and cross-dataset cross-validation
experiments.
In the within-dataset experiments, the top 50 subnet-

work markers identified using one of the two breast
cancer datasets were used to build the classifier. The
dataset was divided into ten folds of equal size, one of
them was withheld as the “test set” and the remaining
nine were used for training the classifier. In the training
set, six folds (referred as the “marker ranking set”) were
used to rank the subnetwork markers according to their
discriminative power and to build the classifier using
logistic regression. The other three folds (referred as the
“feature selection set”) were used for feature selection.
We started with the top ranked subnetwork marker and
enlarged the feature set by adding features sequentially.
Every time we included a new subnetwork marker into
the feature set, a new classifier was built using the mar-
ker ranking set and it was tested on the feature selection
set. For all the samples in the feature selection set, the
classifier can compute the posterior probabilities of the

Figure 2 Discriminative power of the subnetwork markers identified by the proposed method using different θ. We computed the
mean absolute t-score of the top K = 10, 20, 30, 40, 50 subnetwork markers for different values of θ (shown in different colors). (A), (B): Markers
were identified using a particular dataset and tested on the same dataset. (C), (D): Markers were identified using the first dataset and evaluated
on the second dataset.
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class label (metastasis versus metastasis-free), based on
which we can estimate the AUC (Area Under ROC
Curve) [28]. The AUC metric provides a useful statisti-
cal summary of the classification performance over the
entire range of sensitivity and specificity. We retained
the new subnetwork marker if the AUC (estimated on
the feature selection set) increased; otherwise, we dis-
carded the subnetwork marker and continued to test the
remaining ones. The above experiment was repeated 500
times based on 50 random ten-fold splits. The average
AUC was reported as the classification performance
measure.
To evaluate the reproducibility of the subnetwork

markers, we performed the following cross-dataset
experiments. We first identified the top 50 subnetwork
markers based on one dataset and performed cross-vali-
dation experiments on the other dataset, following a
similar procedure that was used in the previously
described within-dataset experiments.
For comparison, we also performed similar within-

dataset and cross-dataset experiments using gene

markers, pathway markers and the subnetwork markers
identified by Chuang et al., respectively. For each
method, we limited the feature set to the top 50 markers
for each dataset. Figure 4 shows the classification perfor-
mance based on the subnetwork markers identified by
the proposed method for different values of θ. We
found that the AUC for both within-dataset and cross-
dataset experiments first increases with increasing θ and
starts to drop after certain point. At θ = 8, the AUC
values for both cross-dataset experiments are relatively
larger than those at other values of θ. Also, the AUC
values for both within-dataset experiments at θ = 8
compare favorably with those at different θ, which
implies that the trade off between maximizing the dis-
criminative power and increasing the correlations of the
member genes is well balanced.
To compare the classification performance of the

identified subnetwork markers with other types of mar-
kers, we set θ = 8. Based on this setting, we compared
our subnetwork markers with gene markers, pathway
markers and the subnetwork markers from Chuang

Figure 3 Discriminative power of different types of markers. We evaluated the discriminative power of the subnetwork markers identified
using the proposed method, and compared them with gene markers, pathway markers [24], and the subnetwork markers identified by Chuang
et al. [25]. Mean absolute t-score is shown for the top K = 10, 20, 30, 40, 50 markers. (A), (B): Markers were identified using a particular dataset
and tested on the same dataset. (C), (D): Markers were identified using the first dataset and evaluated based on the second dataset.
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et al. using the experimental designs described above.
Figure 5 summarizes the classification performance of
the proposed approach, in comparison with the other
methods. The two bar charts on the left of Figure 5

show the AUC of the within-dataset experiments. As
shown in Figure 5, classifiers based on the subnetwork
markers identified by the proposed method perform sig-
nificantly better than the classifiers based on other types

Figure 4 Classification performance of the identified subnetwork markers for different θ. The line plots show the average AUC for
classifiers based on subnetwork markers identified using θ = 1, 2, 4, 8, 16, ∞. The legends USA, Netherlands denote the results of within-dataset
experiments based on the USA dataset and the Netherlands dataset, respectively. The legends USA-Netherlands, Netherlands-USA denote the
results of cross-dataset experiments where markers were identified based on the first dataset and tested based on the second dataset.

Figure 5 Classification performance of different types of markers. The bar charts show the average AUC of different classifiers that use
subnetwork markers identified by the proposed method, gene markers, pathway markers, and subnetwork markers found by Chuang et al.’s
method. Results of the within-dataset experiments based on the USA and Netherlands dataset are shown in the two bar charts on the left. The
two bar charts on the right show the results of the cross-dataset experiments, where markers were identified based on the first dataset and
tested based on the second dataset.
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of markers. The results of the cross-dataset experiments
are shown in the two bar charts on the right of Figure
5. Again, we can see that the classifiers built on the sub-
network markers predicted by our method significantly
outperform those based on other markers. This indicates
that the predicted subnetwork markers are more repro-
ducible compared to other markers.
Figure 6 shows the classification error of the classifiers

built using different types of markers at different TPR
(true positive rate). As shown in Figure 6, the error
curve that corresponds to the proposed markers always
lies below others, which implies that classifiers built on
our subnetwork markers yield a lower error rate at any
fixed sensitivity level.

Conclusions
In this paper, we proposed a new method for identifying
effective subnetwork markers in a protein-protein inter-
action (PPI) network. As shown throughout this paper,
integrating the PPI network with microarray data can
overcome some of the shortcomings of the gene-based
and pathway-based methods. First of all, using a gen-
ome-scale PPI network provides a better coverage of the
genes in the microarray studies compared to using
known pathways obtained from public databases. Sec-
ond, the network topology provides prior information
about the relationship between proteins, hence the
genes that code for these proteins. Subnetworks identi-
fied by integrating the network structure and the gene

Figure 6 Classification error at different TPR (true positive rate) for different types of markers. (A), (B) show the results of the within-
dataset experiments based on the USA dataset and the Netherlands dataset, respectively. (C), (D) show the results of the cross-dataset
experiments, where markers were identified using the first dataset and tested based on the second dataset.
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expression data can cluster proteins (or genes) that are
functionally related to each other. By aggregating the
expression values of the member genes, subnetwork
markers can avoid selecting single gene markers with
redundant information. Furthermore, the discriminative
subnetworks identified by the proposed method can also
provide us with important clues about the biological
mechanisms that lead to different disease phenotypes.
The proposed method finds top scoring linear paths
using dynamic programming and combines them into a
subnetwork by greedily optimizing the discriminative
power of the resulting subnetwork marker. We devel-
oped a scoring scheme that is used by the search algo-
rithm to find linear paths that consist of discriminative
genes that are highly correlated to each other. The pro-
posed algorithm allows us to control the trade off
between maximizing the discriminative power of the
member genes within a given linear path and increasing
the correlation between the member genes, by choosing
the appropriate value for θ. As the subnetwork markers
are constructed based on the top scoring linear paths,
instead of single genes, the proposed method is expected
to yield more robust subnetwork markers. Another
important advantage of our method is that it can find
non-overlapping subnetwork markers. This can reduce
the overall redundancy among the identified markers. In
this paper, the activity of the identified subnetwork mar-
kers were inferred using the probabilistic activity infer-
ence scheme proposed in [24]. This allows us to find
better subnetwork markers, since it can assess their dis-
criminative power more effectively.
As shown in this paper, the identified subnetwork

markers consist of proteins that share common GO
terms. The classifiers based on the subnetwork markers
identified using the proposed method were shown to
achieve higher classification accuracy in both within-
dataset and cross-dataset experiments compared to clas-
sifiers based on other markers. These results suggest
that the method proposed in this paper can find effec-
tive subnetwork markers that can more accurately clas-
sify breast cancer metastasis and are more reproducible
across independent datasets.

Methods
Overview
Given a large PPI network, we want to find subnetwork
markers whose activity is highly indicative of the disease
state of interest. For this purpose, we first need a
method for inferring the activity of a given subnetwork
and evaluating its discriminative power. There exist dif-
ferent ways for computing the activity score of a given
group of genes [24]. Recently, we proposed a probabilis-
tic pathway activity inference scheme, which was shown
to outperform many other existing methods. Thus, we

adopt this activity inference scheme for finding subnet-
work markers whose activity scores are highly discrimi-
native of the disease states. However, finding the
subnetwork markers with maximum discriminative
power in a PPI network based on the selected inference
method is computationally infeasible. For this reason,
we propose an algorithm for identifying effective subnet-
work markers which is motivated by a simple scheme
proposed in Tian et al. [18]. This scheme scores a path-
way marker by computing the average absolute t-score
of its member genes. It has been shown to be effective
in evaluating the discriminative power of pathway mar-
kers in [24]. Since our goal is to find groups of genes
that display coordinated expression patterns, we modi-
fied Tian et al.’s scoring scheme to incorporate the cor-
relation between the genes within a given pathway. This
new method scores a given pathway by taking the
weighted sum of the absolute t-scores of its member
genes, where the weights are computed using the corre-
lation coefficients between the member genes. The gen-
eral outline of the proposed algorithm is as follows.
Based on the above scoring scheme, we first search for
differentially expressed linear paths in the PPI network.
Then, the top paths that overlap with each other are
greedily combined into a subnetwork by maximizing the
discriminative power of the resulting subnetwork, evalu-
ated by the method proposed in [24]. The identified
subnetwork is removed from the PPI network, and the
above process is repeated to find multiple non-overlap-
ping subnetwork markers. The overall scheme is illu-
strated in Fig. 7.

Probabilistic inference of subnetwork activity
Here we provide a brief review of the probabilistic activ-
ity inference method proposed in [24]. Suppose we have
a subnetwork Gs that consists of n proteins which corre-
spond to n different genes {g1, g2,…,gn}. Assume that the
expression level xi of a gene gi follows the distribution

Find top discriminative 
linear paths

Combine top overlapping 
paths into a subnetwork

Update the PPI network  
by removing the   

identified subnetwork

Repeat and find 
additional subnetworks

Figure 7 Illustration of the proposed method.
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f xi
k

i( ) under phenotype k = 1, 2. The log-likelihood
ratio (LLR) [24] between the two phenotypes is com-
puted as follows

( ) log( ( ) / ( )).x f x f xi i i i i= 1 2

In order to estimate the conditional probability density

function f xi
k

i( ) , we assume that the gene expression

level of gene gi under phenotype k follows a Gaussian

distribution with mean  i
k and standard deviation  i

k .

The parameters are empirically estimated using the sam-
ples with phenotype k. Given the log-likelihood ratio of

each gene, the subnetwork activity AGs
is defined as the

sum of the log-likelihood ratios of the member genes

A xG i
i

n

s
= ( )

=∑ 
1

.

Evaluating the discriminative power of linear paths in the
PPI network
A linear path l = {g1, g2,…,gn} in a given PPI network G
is defined as a group of genes, where the proteins that
correspond to gi and gi+1 are connected for i = 1,…, n −
1. To evaluate the discriminative power of a linear path,
we first evaluate the discriminative power of each gene
gi by computing the t-test statistics score of the log-like-
lihood ratio a(xi), denoted as ta(gi). Then, we compute
the Pearson product-moment correlation coefficient to
measure the correlation between the log-likelihood
ratios of ∀gi, gj ∊ l. The correlation matrix is given by

λ( ) =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∑
1

1

1

12 1

21 2

1 2

 
 

 




  


n

n

n n

where rij, i ≠ j is the correlation coefficient between
the log-likelihood ratios of gi and gj. The score of the
pathway l is defined as following

S
n

t g t g t g Jnλ λ( ) = ( ) ( ) ( )⎡⎣ ⎤⎦ ⋅ ′∑ ( )⋅1
2 1 2  , , ,

where ′∑ ( ) =
+

′∑ ( ) −( ) + ⋅⎡⎣ ⎤⎦λ λ1
1 

I I (I is the identity

matrix), and J is an all-one-column vector. We use a

normalization factor of
1
2n

to ensure that the overall

score does not depend on the length of the path. We
use θ to control the trade off between maximizing the
discriminative power of the genes within the identified
path and increasing the correlation between its member
genes. When θ = 0, the weight for the t-score of a given

gene gi is determined by the average correlation between
the log-likelihood ratios of gi and gj, where j ≠ i. As θ
increases, we give more weight on the discriminative
power of individual genes than the correlation between
member genes. Especially, when θ ® ∞, we get Σ′(l) =
I. In this case, the pathway score S(l) is simply the aver-
age t-score of the member genes in l, and the proposed
subnetwork marker identification method reduces to its
preliminary version proposed in [29]. The above scoring
scheme is used for finding the top linear paths in the
network G as we describe in the following section.

Searching for discriminative linear paths
Let G = (E, V) denote the PPI network, where V is the
set of nodes (i.e., proteins), E is the set of edges (i.e.,
protein interactions). Suppose there are N proteins in G.
Then we can represent E as an N-dimensional binary
matrix. For any protein pair (va, vb), where va, vb ∊V, we
let E[va, vb] = 1, if va, vb are connected; E[va, vb] = 0,
otherwise. Based on the scoring scheme defined in the
previous section, we search for top discriminative linear
paths using dynamic programming. We define l(vi, l) as
the optimal linear path among all linear paths that have
length l and end at vi. The score of this optimal path is
defined as
s(vi, l) = ta[l(vi,l)] Σ′[l(vį, l)].
Here, only paths with length l ≤ L are considered. The

algorithm is defined as follows.
(i) Initialization:l = 1, ∀vi∊V,
s(vi, l) = |ta(vi)|.
(ii) Iteration:
for l = 2 to L,
for ∀vi∊V,

s v l t v l v v l v E v vi
v

j i j i i j
j

( , ) max{ ( ( , ), ) ( ( , ), ) log( [ , ])},= ⋅ ′ +λ λΣ

vv t v l v v l v E v vj
v

j i j i i j
j

* argmax{ ( ( , ), ) ( ( , ), ) log( [ , ])},= ⋅ ′ +λ λΣ

if s(vi, l) > 0, then

λ λv l v l vi j i, , .*( ) = −( ) { }1 

end
end
(iii) Termination:
for ∀vi∊V, 1 ≤ l ≤ L,
S(l(vi, l)) = s(vi, l)/l

2.(1)
Although the above algorithm finds only the top path

for every (vi, l), we can easily modify it to find the top
M discriminative paths. Increasing M allows us to find
better linear paths with higher discriminative power, but
it will also increase the computational complexity of the
algorithm.
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Combining top overlapping paths into a subnetwork
Based on (1), we choose the m top scoring paths Λ =
{l1, l2, … , lm} whose length is within a given range
[Lmin, Lmax]. Next, the paths in Λ are combined into a
subnetwork Gs so that its discriminative power R(Gs) is
locally optimized. This process is carried out as follows:
(i) Gs ¬ li, Gtemp ¬ Gs, i = 1.
(ii) i = i + 1; If li ∩ Gs ≠ ø, Gtemp ¬ Gtemp ∪ li.
(iii) If R(Gtemp) > (1 +∊)R(Gs), Gs ¬ Gtemp; else Gtemp

¬ Gs.
(iv) Go to (ii) if i < m; otherwise, terminate.
Here ∊ is set as 0.01 to avoid over-fitting to the

expression data. We used the activity inference method
in [24] to computed the actual activity score of Gs.
Then, R(Gs) is computed as the t-test statistics of the
subnetwork activity score.
After obtaining a subnetwork Gs, we removed it from

the network G by setting E[vs, vi] = E[vi, vs] = 0, ∀vsεGs,
vi∊G. Then, the whole process was repeated using the
updated network to find additional subnetwork markers.

Acknowledgements
We would like to thank the authors of [25], especially H.Y. Chuang and T.
Ideker, for sharing the PPI network and their helpful communication.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 6, 2010: Proceedings of the Seventh Annual MCBIOS
Conference. Bioinformatics: Systems, Biology, Informatics and Computation.
The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2105/11?issue=S6.

Author details
1Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX 77843-3128, USA. 2Computational Biology Division,
Translational Genomics Research Institute, Phoenix, AZ 85004, USA.

Authors contributions
Conceived and designed the experiments: JS BJY ERD. Performed the
experiments: JS. Analyzed the data: JS BJY ERD. Wrote the paper: JS BJY ERD.

Competing interests
The authors declare that they have no competing interests.

Published: 7 October 2010

References
1. Efron B, Tibshirani R: Empirical bayes methods and false discovery rates

for microarrays. Genet. Epidemiol 2002, 23:70-86.
2. Baldi P, Long AD: A Bayesian framework for the analysis of microarray

expression data: regularized t-test and statistical inferences of gene
changes. Bioinformatics 2001, 17:509-519.

3. Kepler TB, Crosby L, Morgan KT: Normalization and analysis of DNA
microarray data by self-consistency and local regression. Genome Biol.
2002, 3, RESEARCH0037.

4. Ideker T, Thorsson V, Siegel AF, Hood LE: Testing for differentially-
expressed genes by maximum-likelihood analysis of microarray data. J.
Comput. Biol. 2000, 7:805-817.

5. Chen Y, Dougherty ER, Bittner ML: Ratio-based decisions and the
quantitative analysis of cDNA microarray images. Journal of Biomedical
Optics 1997, 2:364-374.

6. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC,
Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L,
Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD,
Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D,

Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature 2000, 403:503-511.

7. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES:
Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science 1999, 286:531-537.

8. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of
metastasis in primary solid tumors. Nat. Genet. 2003, 33:49-54.

9. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,
van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM,
Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.

10. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D,
Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D,
Foekens JA: Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet 2005, 365:671-679.

11. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H,
Olson JA, Marks JR, Nevins JR: Predicting the clinical status of human
breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. U.S.
A. 2001, 98:11462-11467.

12. Hua JDE, Tembe WD: Performance of feature-selection methods in the
classification of high-dimension data. Pattern Recognition 2008,
42:409-424.

13. Ein-Dor L, Kela I, Getz G, Givol D, Domany E: Outcome signature genes in
breast cancer: is there a unique set? Bioinformatics 2005, 21:171-178.

14. Symmans WF, Liu J, Knowles DM, Inghirami G: Breast cancer
heterogeneity: evaluation of clonality in primary and metastatic lesions.
Hum. Pathol. 1995, 26:210-216.

15. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW,
Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB,
Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent fusion of TMPRSS2 and
ETS transcription factor genes in prostate cancer. Science 2005,
310:644-648.

16. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J,
Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ,
Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES,
Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes
involved in oxidative phosphorylation are coordinately downregulated
in human diabetes. Nat. Genet. 2003, 34:267-273.

17. Subramanian A, Tamayo P, feature VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set
enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005,
102:15545-15550.

18. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ:
Discovering statistically significant pathways in expression profiling
studies. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13544-13549.

19. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D,
Lancaster JM, Berchuck A, Olson JA, Marks JR, Dressman HK, West M,
Nevins JR: Oncogenic pathway signatures in human cancers as a guide
to targeted therapies. Nature 2006, 439:353-357.

20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:
Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat. Genet. 2000, 25:25-29.

21. Guo Z, Zhang T, Li X, Wang Q, Xu J, Yu H, Zhu J, Wang H, Wang C,
Topol EJ, Wang Q, Rao S: Towards precise classification of cancers based
on robust gene functional expression profiles. BMC Bioinformatics 2005,
6:58.

22. Tomfohr J, Lu J, Kepler TB: Pathway level analysis of gene expression
using singular value decomposition. BMC Bioinformatics 2005, 6:225.

23. Lee E, Chuang HY, Kim JW, Ideker T, Lee D: Inferring pathway activity
toward precise disease classification. PLoS Comput. Biol. 2008, 4:e1000217.

24. Su J, Yoon BJ, Dougherty ER: Accurate and reliable cancer classification
based on probabilistic inference of pathway activity. PLoS ONE 2009, 4:
e8161.

25. Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of
breast cancer metastasis. Mol. Syst. Biol. 2007, 3:140.

26. Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP: Next generation software
for functional trend analysis. Bioinformatics 2009, 25:3043-3044.

Su et al. BMC Bioinformatics 2010, 11(Suppl 6):S8
http://www.biomedcentral.com/1471-2105/11/S6/S8

Page 12 of 13

http://www.biomedcentral.com/1471-2105/11?issue=S6
http://www.ncbi.nlm.nih.gov/pubmed/12112249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12112249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11395427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11395427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11395427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11382363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11382363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10676951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10676951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12469122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12469122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15721472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15721472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11562467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11562467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7860051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7860051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16273092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16273092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15774002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15774002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16156896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16156896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19717575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19717575?dopt=Abstract


27. Mak HC, Daly M, Gruebel B, Ideker T: CellCircuits: a database of protein
network models. Nucleic Acids Res. 2007, 35:D538-545.

28. Fawcett T: An introduction to ROC analysis. Patt Recog Letters 2006,
27:861-874.

29. Su J, Yoon BJ: Identifying reliable subnetwork markers in protein-protein
interaction network for classification of breast cancer metastasis.
Acoustics, Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on 2010, 525-528 [http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5495633&isnumber=5494886].

doi:10.1186/1471-2105-11-S6-S8
Cite this article as: Su et al.: Identification of diagnostic subnetwork
markers for cancer in human protein-protein interaction network. BMC
Bioinformatics 2010 11(Suppl 6):S8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Su et al. BMC Bioinformatics 2010, 11(Suppl 6):S8
http://www.biomedcentral.com/1471-2105/11/S6/S8

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/17135207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17135207?dopt=Abstract
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495633&isnumber=5494886
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495633&isnumber=5494886

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Identification of subnetwork markers
	Step 1: Search for highly discriminative linear paths whose member genes are closely correlated to each other
	Step 2: Combine top scoring linear paths into a subnetwork
	Step 3: Update the PPI network

	The identified subnetworks are enriched with proteins that have common GO terms
	The subnetwork markers identified by the proposed method are more discriminative and reproducible
	Subnetwork markers identified by the proposed method improve classification performance

	Conclusions
	Methods
	Overview
	Probabilistic inference of subnetwork activity
	Evaluating the discriminative power of linear paths in the PPI network
	Searching for discriminative linear paths
	Combining top overlapping paths into a subnetwork

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

