POSTER PRESENTATION

Open Access

A two-step approach to qPCR experimental design and software for data analysis

Huazhang Guo^{*}, Larry Tague, Ramesh Ray, Gabor Tigyi

From UT-ORNL-KBRIN Bioinformatics Summit 2010 Cadiz, KY, USA. 19-21 March 2010

Background

The quantitative polymerase chain reaction (qPCR) is a widely used sensitive method for measuring gene expression, especially for low levels of mRNA. Currently, qPCR has no standard guideline for experimental design and statistical analysis. We have developed a two-step experimental design that uses screening and confirmation steps.

Materials and methods

For screening, a single biological sample is used for each control and treatment group. If screening shows interesting findings, confirmation follows with more biological replicates and a definitive statistical analysis using pooled data from the screening and confirmation steps. This experimental design for qPCR reduces reagent cost and labor without sacrificing sensitivity. To quantitate gene expression, we selected the comparative Ct method due to its simplicity, intuitiveness, and popularity. For statistical analysis, however, this two-step approach raised an interesting question; which parameter should be used for statistical analysis of the data from the screening step. With a single biological sample, the statistical analysis relies on the technical replicates of qPCR. Even though it is natural to assume a normal distribution of the relative gene expression levels of biological replicates based on the central limit theorem, it is unknown for technical replicates because the Ct values of the technical replicates have been non-linearly transformed to obtain relative gene expression levels. Hence, we studied the distribution of delta-Ct and relative gene expression levels from our qPCR data and found that the distribution of delta-Ct is symmetrical and approximately normal while the distribution of relative gene

expression levels is skewed. Therefore, we chose delta-

Published: 23 July 2010

doi:10.1186/1471-2105-11-S4-P18 Cite this article as: Guo *et al.*: A two-step approach to qPCR experimental design and software for data analysis. *BMC Bioinformatics* 2010 11(Suppl 4):P18.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: huazhang.guo@gmail.com

Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA