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Abstract

Background: Thermophilic proteins sustain themselves and function at higher temperatures.
Despite their structural and functional similarities with their mesophilic homologues, they show
enhanced stability. Various comparative studies at genomic, protein sequence and structure levels,
and experimental works highlight the different factors and dominant interacting forces contributing
to this increased stability.

Methods: In this comparative structure based study, we have used interaction energies between
amino acids, to generate structure networks called as Protein Energy Networks (PENs). These
PENs are used to compute network, sub-graph, and node specific parameters. These parameters
are then compared between the thermophile-mesophile homologues.

Results: The results show an increased number of clusters and low energy cliques in
thermophiles as the main contributing factors for their enhanced stability. Further more, we see
an increase in the number of hubs in thermophiles. We also observe no community of electrostatic
cliques forming in PENs.

Conclusion: In this study we were able to take an energy based network approach, to identify the
factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able
to point out that the sub-graph parameters are the prominent contributing factors. The
thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles,
although increasing stability through higher connectivity retains conformational flexibility, from a
cliques and communities perspective.
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Background
Proteins are macromolecules that preserve their structural
integrity to perform functions. Thermophilic proteins
function at higher temperatures than normal life forms.
Although they are structurally, functionally and most
instances sequentially homologous to their mesophilic
partners, they have optimal catalytic activity above 60°C
[1]. The comparative studies of thermophiles and meso-
philes, to identify the factors contributing to the stability of
the thermophiles, have been carried out at different levels
from the genomic sequence level [2], structure level [3] to
experimental elucidations [4]. These studies indicate that
thermophilic proteins have good hydrophobicity with
propensity towards branched side chains, better packing
with fewer loops and less cavities, more helical content,
increased hydrogen bonding, and high occurrence of
charged residues resulting in high electrostatic interactions.
Although we have different views on the forces contribut-
ing to stability, we do not have a consolidated view of
them [3].

Protein Structure Networks (PSNs) have been used
extensively to understand the stability in protein
structures [5,6]. Protein structure is a resultant of
complex intermolecular interactions. PSNs are conveni-
ent because this complexity is simplified as edges
between nodes. Earlier, PSNs have considered contact
based parameters to define edges [5-7].

In this study we have used energies to construct structure
networks, known as Protein Energy Networks (PENs),
for the first time. Since different types of interactions
manifest eventually as interacting energies, we have
tried to remove the ambiguities of defining each
interaction (VdW, electrostatics, hydrogen bonding)
separately, by considering energies calculated using
classical force fields to define edges. We were also able
to define Lennard-Jones dominant interaction and
electrostatics dominated interaction regions in PENs,
details of which will be presented elsewhere (work in
progress).

In this study we have simulated twelve thermophile-
mesophile pairs to obtain their equilibrium ensembles.
These ensembles were then used to generate PENs of
each protein. Parameters representing the whole protein
network such as largest connected component, and
parameters focusing on sub-graphs such as clusters,
cliques and communities and node specific parameters
like hubs are used to obtain structural insights on the
stability of thermophilic proteins as compared to their
mesophilic homologues.

In this comparative network study, we find that cluster
population and clique population, along with commu-
nity of cliques to be the major factors contributing to the
stability of thermophiles. The thermophiles appear to
have a highly packed hydrophobic core, by employing
amino acid hotspots, thus increasing the enthalpy
change between the folded and unfolded states, support-
ing previous studies [8]. The thermophiles seem to have
low energy communities, and segregated high-energy
electrostatic cliques, implying that they prefer to main-
tain a degree of conformation plasticity whilst increasing
stability, probably for performing their functions. We
have also seen global network connectivity change in
some thermophiles, supporting earlier suggestions on
global evolution for thermal adaptation [9]. Thermo-
philes seem to employ more than one of these methods
to increase their stability.

Methods
Dataset
Twelve protein pairs with similar structure and function,
one from thermophilic organism and the other from a
mesophile was taken for further analysis. The dataset is
derived from an earlier work by Kannan N and
Vishveshwara S [6]. The information on this derived
dataset is given in Table 1.

Protein Energy Network
The interaction energy is calculated as a summation of
short range Lennard-Jones and Coulombic interactions,

Table 1: Dataset taken for analysis

Adenylate Kinases
1zip/1ak2

Subtilisin
1thm/1st3

Carboxypeptidases
1obr/2ctc

Neutal Proteases
1thl/1npc

Phosphofructo Kinases
3pfk/2pfk

Lactate Dehydrogenases
1ldn/1ldm

Glyceraldhyde-3-Phosphate Dehydrogenases
1vc2/1gad

3-Phosphoglycerate Kinases
1php/3pgk

Lipomide Dehydrogenases
1ebd/1lvl

Endo-1,4-Beta Xylanases
1yna/1xyn

Triose Phosphate Isomerases
1btm/7tim

Signal Recognition Particle Receptor
1ffh/1fts

The order of thermophile (bold)/mesophile pairs is the same as the order followed in generating all the Additional Figures (Fig S1 to S6).
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averaged over an ensemble of structures generated by a
constant temperature (300 K), explicit solvent MD
simulation performed for 2 nson each protein system,
out of which the initial 1 ns was allowed for the system
to equilibrate. The equilibrium ensemble from 1 ns to 2
ns was taken for further energy calculations (Compar-
ison of interaction energies of 2 ns simulations with
prolonged 10 ns simulations for Adenylate Kinases gave
a high correlation of 0.97 (thermophile) and 0.94
(mesophile). This result indicates that the simulation
for 2 ns as carried out in this study is sufficient). The
simulation and energy calculations were performed
using GROMACS [10]. The final graph we obtain is a
complete weighted graph of the protein in which the
weight of an edge is given by the interaction energy (Eij)
between the amino acids, given in Equation 1.

E V r V rij LJ ij C ij= +( ) ( ) (1)

where, VLJ(rij) and Vc(rij) are the potential energies due to
Lennard-Jones interactions and Coulombic interactions
respectively, of residues i and j, averaged over the
ensemble.

Similarly, we have constructed PENs in which we have
considered only LJ interactions (VLJ(rij)) and Coulombic
interactions (Vc(rij)) respectively. The details of these
graphs are not discussed.

The weighted PEN can further be converted into an
unweighted PENe, where e is the highest energy that can
exist between ‘i’ and ‘j’ to draw an edge between them.
For example, PEN-15, is a graph where, there exists an
unweighted edge between ‘i’ and ‘j’, if Eij ≤ -15 KJ/mol.
The PENe is thus mathematically represented as an
adjacency matrix (Equation 2), where

A
if E e

ij
ij
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0

,

,

  

 otherwise
(2)

We use the term “low energy” to denote low negative
energies (for eg. -5 KJ/mol) and “high energy” for high
negative energies (for eg. -25 KJ/mol).

Clusters
Clusters are the connected components in a PENe and
can be identified using standard DFS algorithm [11].

Hubs
Hubs are highly connected nodes in the network. In
packing based Protein Structure Network (PSN) studies,
a node is declared a hub if its degree is at least 4 [5]. The
same definition is being followed here because of similar
packing constraints of the proteins analyzed.

Cliques and communities
Cliques are sub-graphs, having the maximum connectiv-
ity among them. For PENe, we identify the k-cliques
using CFinder [12]. For example, for a clique of size k,
there will be k × (k-1)/2 edges among the nodes. Two
cliques are said to be adjacent if they share k-1 nodes. A
community is a collection of adjacent k-cliques.

Size
The size of a graph/network or a sub-graph (clusters, cliques
and communities) is the total number of nodes in it.

Results and discussion
PENs are obtained for the proteins in the dataset as given
in Methods section. The interaction energies in PENs
mostly range from 0 KJ/mol to -35 KJ/mol, in which the
low (negative) energy region (> -10 KJ/mol) is dominated
by Van der Waals interaction and the higher (negative)
energy region (< -20 KJ/mol) is dominated by electrostatic
interactions (Fig 1). The PENs are then analyzed for largest
connected component size, largest community size,
clusters, cliques and hub population changes, as a function
of ‘e’. The results obtained are compared between each

Figure 1
Transition profile of largest connected component in
Adenylate Kinases. Largest Connected Component (LCC)
profile of thermophile(1zip, also orange cartoon) and
mesophile(1ak2, also cyan cartoon) Adenylate Kinases is
shown in the figure. The thermophile has a larger LCC
(shown as red VdW representation over the cartoon
representation of the protein) than the mesophile (shown as
blue VdW spheres). The LCC represented in VdW spheres
are for PEN-14. The region below the transition is the low
energy region (yellow) where LJ interactions dominate. The
high-energy region (green) beyond ~-25 KJ/mol is dominated
mainly be salt-bridge interactions. The region of transition is
in between these low and high energy regions.
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thermophile-mesophile pair to obtain insights into their
stability differences, from a network perspective. A
comparison of different parameters for PENe of each pair
is given in Additional file 1, Table S1.

Largest connected component (LCC) transition profile
The Largest Connected Component is a very important
parameter in network analysis since it provides informa-
tion on the connectivity of the network [5,11]. The Largest
Connected Component (LCC) is obtained as a function of
‘e’. The LCC is well connected at low energy regions but
breaks up at the transition region (Fig 1). The LCC
transition profile comparison shows that thermophiles of
Adenylate Kinases (Ad Kinases) (Fig 1), Subtilisins,
Carboxypeptidases, PhosphoFructo (PF) Kinases and
Endo-1,4-Beta Xylanases (E14B Xylanases) show a more
connected LCC than mesophiles (Fig S1). From LCC
profile we observe that global evolution from mesophile to
thermophile is not a prominent contributing factor,
nonetheless we observe certain thermophiles following
this behavior (Fig 1 and Additional file 1, Fig S1).

Cluster population
Clusters are autonomously connected units in PENs.
They provide us information on what amino acids are
interconnected to stabilize which part of the protein
structure [6]. The more clusters there are in a PEN, the
more segregated the stability of the protein is. Clusters
for a PENe are obtained using Depth First Search as given
in Methods Section and the total number of clusters
(only if cluster size is atleast 3) is calculated as a function
of ‘e’ (Fig 2, clusters segregate at high ‘e’). The cluster
population profiles show a consistent pattern of thermo-
philes having higher number of clusters than mesophiles
(except Ad Kinases and Carboxypeptidases) (Additional
file 1, Fig S2). The profiles mostly show that (i) the
population of clusters peaks higher for thermophiles
than mesophiles (seen in E14B Xylanases, Li Dehydro-
genases), (ii) the thermophile cluster population peak is
shifted towards higher energy (seen in Lactate Dehydro-
genases (L Dehydrogenases), 3 PhosphoGlycerate
Kinases (3PG Kinases)) or (iii) the number of clusters
at higher energies (< -20 KJ/mol) are more than that of
its mesophile counterpart (Additional file 1, Fig S2).
Fig 2 shows an example of the cluster population profile
of E14B Xylanases where it follows all the three patterns
mentioned above. The increased population of electro-
statics dominated clusters at high energy levels (< -20 KJ/
mol), like in 3PG Kinases, can highly stabilize the
thermophile protein. In general the higher cluster
population in thermophiles suggests enhanced stability
due to increased number of segregated groups of
interactions.

Largest community transition profile
The cliques are rigid sub-graphs in a network [13]. And
hence, a community is a collective rigid sub-graph of
PENe, thus giving stability to the protein. The commu-
nities in a PENe are identified as given in Methods
Section. The size of the largest community (of k = 3
cliques) is plotted as a function of ‘e’, where the
community size is large at lower energies and breaks
down as we decrease ‘e’ (Fig 3). From, the community
transition profile comparison of thermophiles and
mesophiles, we find that the thermophiles perform
similar or better than the mesophiles, having larger
community sizes in PENs at lower energy levels. For
example, the thermophilic Carboxypeptidase has a larger
community (k = 3 cliques) at a lower energy regime (e =
0 to -8 KJ/mol) than the mesophile pair (Fig 3). An
additional mesophilic carboxypeptidase (PDBID: 2piz)
with high structural homology but a sequence homology
of only 46% shows the same profile as the mesophile
showing that the mesophiles indeed follow the same
trend which is distinct to that of their thermophilic
homolog (Additional file 1, Figure S3). There are some
exceptions like L Dehydrogenases and Signal Recogni-
tion Particle Receptors (SRP Receptors) (Additional file
1, Fig S4). The presence of communities only in the low

Figure 2
Cluster population change with ‘e’ in Endo-1,4-Beta
Xylanases. Cluster population change as a function of ‘e’
denoted in KJ/mol in E14B Xylanases is shown as a line plot.
The graph shows the increased number of clusters in
thermophile(1yna, also red cartoon) as compared to
mesophile(1xyn, also blue cartoon) protein. The isolated
clusters in each protein (for PEN-20) are represented as Surf
in various colors for both 1yna (red cartoon) and 1xyn (blue
cartoon) to highlight the increased occurrence of clusters in
the thermophilic E14B Xylanase.
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energy region, suggests absence of electrostatic influence
and hence the non-preference to electrostatic interac-
tions aggregating to form very rigid networks.

Clique population
Although, communities provides insight into how rigid
sub-graphs collate to provide rigidity to the protein,
isolated cliques can also provide similar rigidity to parts
of the protein, empowering islands in protein structures
to withstand extreme temperatures. From profiling the
population change of cliques with changes in ‘e’, we were
able to capture this effect in proteins. Analysis of the
clique population profile in PENe shows that almost all

thermophiles with the exception of TIM, shows increased
population of cliques at low energies (Additional file 1,
Fig S5 and Fig 3). Unlike community transition profile,
we see considerable number of cliques dominated by
electrostatics (by constructing PENs with Eij = VC(rij)).
Conformational plasticity might be a possible factor
influencing this behavior. The thermophilic proteins
seem to employ low energy cliques and communities to
maintain stability, but use only segregated high energy
electrostatics dominated cliques to maintain rigidity.
This strategy might help thermophiles to maintain
stability but retain a degree of flexibility, enabling
them to function.

Figure 3
Largest community transition profile in Carboxypeptidases. The size of the largest community (of k = 3 cliques) for
Carboxypeptidases, is plotted as a function of ‘e’. The largest community (k = 3 cliques for PEN-8) for thermophile, 1obr (red
nodes), is almost always bigger than the mesophile, 2ctc (blue nodes). The bar diagram given below is the total number of
cliques for PEN-6. This shows the increased number of cliques in thermophilic proteins (except TIM and PF Kinases) at low
energies. This increased clique population is clearer from Fig S5.
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Hub population
Hubs are node specific property in a network. In real world
networks, hubs are considered to provide resilience to the
networks against random attacks [14], in the case of
proteins against random mutations [5]. In a PENe, it can
represent the structurally and possibly functionally impor-
tant residues in the protein. The number of hubs plotted as
a function of ‘e’ can give us information on the amount of
structural resilience a protein (PEN) can have against
external perturbations. Thermophiles show higher hub
population than mesophiles (with exceptions like 3PF
Kinases, Glyceraldhyde-3-Phosphate Dehydrogenases (G3P
Dehydrogenases) (Additonal file 1, Fig S6)). Fig 4 shows
that the hub population of thermophilic 3PG Kinase is
more than the mesophilic counterpart, both at the low
energy and at the transition regions. An interesting
observation is that most of the thermophiles have
consistently higher number of hubs than mesophiles in
lower energy region if we remove electrostatics from PEN
calculation (i.e. Eij = VLJ(rij)), supporting packing based
PSN studies by Brinda KV and Vishveshwara S [5]. The
above observation suggests that the thermophiles may
have more efficiently packed hydrophobic cores than
mesophiles, supporting previous studies [2,8,15].

Conclusion
In this study, we have used Protein Energy Networks for
representing interactions in protein structures, to

compare a dataset of thermophile-mesophile homolo-
gues. Network parameters like the largest connected
component, sub-graph properties like clusters, cliques
and communities and node specific parameters like hubs
were compared across a range of interaction energies, to
identify the factors contributing to the enhanced stability
of thermophiles. In this work, we have consolidated all
the interaction types by using their resultant interaction
energies (calculated using classical force fields). This
effort has eliminated ambiguities in defining and
analyzing interactions separately. Also, we have consid-
ered the complexity of amino acid interactions by
representing them as networks.

From the results obtained for PENs, we were able see that
thermophilic proteins like Adenylate Kinases, Subtilisins,
Carboxypeptidases, 3PG Kinases and Endo-1,4-Beta
Xylanases show enhanced global connectivity, as seen
from their increased LCC transition profiles. But
thermophiles seem to prefer more than one factor for
stabilization. For example, Adenylate Kinases thermo-
phile seems to employ large communities and increased
clique population than the mesophiles, whereas E14B
Xylanase thermophile has a larger number cliques and
hubs to enhance their stability. The LCC for thermo-
philic Neutral Proteases and Lipodimide Dehydro-
genases are less connected than the corresponding
mesophiles. Hence, the notion that evolution may prefer
a global change from a thermophile to a mesophile
might be more case specific. This was further strength-
ened by our observations on increased cluster popula-
tion in thermophiles, showing that they use more
autonomous stabilizing units to enhance stability.
Also, increased electrostatic clusters in certain thermo-
philes, at higher energy ranges (< -20 KJ/mol), suggest
that they might play a vital role in imparting stability to
them, supporting earlier works in this area [16,17].

Thermophilic proteins show a higher clique population
than their mesophile homologues. But the clique
population and largest community formation are at the
low energy regime. PENs have electrostatic cliques but
they do not form community. These observations
suggest that the thermophilic proteins may employ a
higher number of low energy communities to gain
increased stability, but refrain from introducing much
rigidity to the protein by keeping the high energy
electrostatic cliques isolated. This property might allow
thermophiles to be more stable but retain flexibility,
probably to perform its function.

The studies on hub population suggest that the hubs
(especially LJ dominated hubs) in thermophilic proteins
are higher than that of mesophiles. Hence, the hydro-
phobic core connectivity (packing) in thermophilic

Figure 4
Hub population change as a function of ‘e’ in
Phosphoglycerate Kinases. The hub population change as
a function of ‘e’ for Phosphoglycerate Kinases is shown in the
line plot. The hubs in PEN-15 (yellow VdW representation) in
thermophilic PG Kinase, 1php (red cartoon representation),
is considerably higher than in the corresponding mesophile,
3pgk (blue cartoon representation).
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proteins is better than mesophile partners, probably
enabling them to stay folded under harsh conditions.
This observation supports many studies on improved
core packing in thermophilic proteins [8].

This comparative network based study suggests that
global evolution of local enhancements has resulted in
an increase in overall network connectivity and hence an
increase in global stability of thermophiles. Increase in
clusters and hubs in thermophiles bring about these
local enhancements. Apart from these changes, thermo-
philes seem to employ low energy communities (highly
connected sub-graphs) to maintain a level of rigidity to
the network. Presence of electrostatic clusters, and
cliques but absence of communities, shows localized
electrostatic interactions, rather than global network
influences. And thermophilic proteins seem to have
evolved by exploiting more than one of the above-
mentioned methods.
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