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Abstract

Background: Haplotype-based approaches have been extensively studied for case-control
association mapping in recent years. It has been shown that haplotype methods can provide more
consistent results comparing to single-locus based approaches, especially in cases where causal
variants are not typed. Improved power has been observed by clustering similar or rare haplotypes
into groups to reduce the degrees of freedom of association tests. For family-based association
studies, one commonly used strategy is Transmission Disequilibrium Tests (TDT), which examine the
imbalanced transmission of alleles/haplotypes to affected and normal children. Many extensions
have been developed to deal with general pedigrees and continuous traits.

Results: In this paper, we propose a new haplotype-based association method for family data that
is different from the TDT framework. Our approach (termed F_HapMiner) is based on our
previous successful experiences on haplotype inference from pedigree data and haplotype-based
association mapping. It first infers diplotype pairs of each individual in each pedigree assuming no
recombination within a family. A phenotype score is then defined for each founder haplotype.
Finally, F_HapMiner applies a clustering algorithm on those founder haplotypes based on their
similarities and identifies haplotype clusters that show significant associations with diseases/traits.
We have performed extensive simulations based on realistic assumptions to evaluate the
effectiveness of the proposed approach by considering different factors such as allele frequency,
linkage disequilibrium (LD) structure, disease model and sample size. Comparisons with single-
locus and haplotype-based TDT methods demonstrate that our approach consistently outperforms
the TDT-based approaches regardless of disease models, local LD structures or allele/haplotype
frequencies.

Conclusion: We present a novel haplotype-based association approach using family data.
Experiment results demonstrate that it achieves significantly higher power than TDT-based
approaches.
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Background
Identification and localization of disease susceptibility
genes is an important step towards the understanding of
etiology of diseases and the development of new
approaches for diagnoses and treatments. With the aid
of molecular markers, statistical methodologies have
made fundamental contributions to the identification of
a substantial number of Mendelian diseases. However,
deciphering genetic architectures of complex diseases is
still a great challenge. With the advance of technology in
recent years, single-nucleotide polymorphisms (SNPs)
have emerged as the primary molecular marker for
genetic mapping. SNPs are suitable for unbiased
genome-wide assessments as well as fine-scale mapping
because they provide a (nearly) complete coverage over
the whole genome with high density. However, great
challenges exist in analyzing hundreds of thousands of
SNPs from thousands of individuals, not only because of
the high volume and high dimensionality of data, but
also because of their complicated interrelated structure,
known as haplotypes.

Driven by the international HapMap project [1],
considerable information about haplotype structures
and haplotype frequencies among several populations
has been obtained. Haplotype-based association map-
ping approaches, which take into consideration of
correlated SNP structures, have drawn much interests
and many new methodologies have been developed
[2-8]. (For the discussion of the possible advantages of
haplotype-based approaches over single SNP based
approaches, see [8] and references therein.) In particular,
methodologies that explicitly examine haplotype sharing
patterns from case-control samples using various cluster-
ing algorithms have shown initial success [4,6-8], all of
which are based on the assumption that haplotypes from
cases are expected to be more similar than haplotypes
from controls in regions near the disease genes.

In an earlier work, our group has proposed an
algorithmic approach and developed a program called
HapMiner, for haplotype mapping of disease genes
utilizing a density-based clustering algorithm [8]. Hap-
Miner is based on the assumption that, the haplotype
segments with recent disease mutations, tend to be close
to each other due to linkage disequilibrium, while other
haplotypes can be regarded as random noises sampled
from the haplotype space. The algorithm takes haplotype
segments as data points in a high dimensional space.
Clusters are then identified based on a similarity
measure using the density-based clustering algorithm.
Significance of association of each cluster is then
evaluated. It has been shown that HapMiner can
effectively obtain meaningful information from noisy
datasets because of the concept of “density-based”

clusters. More recently, we have extended HapMiner to
quantitative trait mapping based on haplotype informa-
tion from unrelated individuals [9]. Haplotype uncer-
tainties can also be taken into consideration [10].

Almost all haplotype-based methods mentioned above
including HapMiner use the case-control design, and
most of them require haplotype/diplotype information
which must be inferred from genotype data. However,
the case-control design for association studies may suffer
from population stratification [11] and haplotype
inference from un-related individuals may contain
uncertainties [12]. On the other hand, association
approaches based on family data (such as TDT and
their variants [13,14]) are robust against population
admixture, and haplotype inference using family data
normally achieves much more reliable results [12].
Several TDT-type tests using haplotype information
have been proposed (e.g., [15-17]). Recently, Qian [18]
adopted the haplotype sharing correlation (HSC)
method to detect phenotype and haplotype associations
based on family data. The author has shown that the
HSC method achieved higher power than single- and
multi-locus based methods. However, the HSC method
requires phased haplotype data as input and does not
work if no recombination presents within a pedigree.
Given the high densities of existing SNP chips and
moderate family sizes in practice, even for large number
(hundreds, even thousands) of SNPs, recombination
events within a family are extreme rare. In this paper, we
combine our previous work on haplotype inference from
family data and haplotype-based association into one
unified framework. The approach first infers haplotype
configurations for each pedigree assuming no recombi-
nation using our most recent haplotyping algorithm
[19]. A phenotype score is then defined for each founder
haplotype. Assuming all founder haplotypes are inde-
pendent, the HapMiner algorithm is then applied. We
compare the approach, termed F_HapMiner, with the
single-locus and haplotype-based TDT methods imple-
mented in two popular programs [17,20] under a variety
of disease models and penetrance values with realistic
haplotype frequencies and local LD structures. Experi-
ment results show that our approach consistently
achieves higher power than TDT-based approaches.

Methods
Our primary focus is on candidate gene studies using
highly linked markers (e.g., SNPs). Candidate regions
might be obtained from previous linkage analysis or
some other prior knowledge. We assume no recombina-
tion events within each pedigree in a candidate region.
For each region, family-based approaches (e.g., [18]) in
general cannot distinguish one marker from the other
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because there are no recombination events. However, by
combining family and population information, F_Hap-
Miner can define a statistical score for each marker,
indicating the strength of its association with the trait.
The approach consists of two major steps. Firstly,
pedigree data are used to infer haplotype configurations
for each pedigree [19]. And a phenotype score is defined
for each founder haplotype in a family based on the
phenotypes of family members who possess that
haplotype. (Thus identical founder haplotypes from
different families may have different phenotype scores.)
Secondly, all founder haplotypes from all families,
which can be assumed unrelated, together with their
associated phenotype scores will be evaluated at the
population level using the HapMiner algorithm [9]. Our
proposed approach can deal with families with arbitrary
sizes. Both continuous and binary traits can be con-
sidered. Haplotype configurations will be inferred using
our most recent haplotype inference algorithm named
PedPhase.DSS [19]. Founder haplotypes are then clus-
tered using a position weighted similarity measure [8]
and each cluster is evaluated by comparing its pheno-
typic mean with the overall phenotypic mean [9]. Our
approach is different from TDT-type procedures, because
essentially haplotype-based TDT tests treat each

haplotype as a distinct allele, while our approach
considers haplotype similarities. The overall procedure
is summarized in Figure 1 with details in sequel.

Haplotype inference
Haplotype inference in general is hard, even with family
information. The total number of consistent haplotype
assignments can be very large depending on the size of
the pedigree and missing patterns. When there are no
recombinations within a family and no missing alleles,
efficient optimal algorithms do exist [19,21]. One of our
most recent developments based on disjoint-set struc-
tures (denoted as the DSS algorithm [19]), can effectively
handle family data with no recombinants. For the special
case of data with no missing, it is an (almost) linear time
algorithm for pedigrees with no loops. Briefly, the
algorithm first formulates genotype constraints as a
linear system of inheritance variables. It then utilizes
disjoint-set structures to encode connectivity informa-
tion among individuals, to detect constraints from
genotypes, and to check consistency of constraints.
Here we use an example (Figure 2) to illustrate the
basic idea of the algorithm and details can be found in
[19]. Figure 2.a shows the input genotypes of a pedigree

Figure 1
The computational framework of the proposed approach F_HapMiner. (1) Infer haplotypes on all families based
on the DSS algorithm. (2) Calculate the phenotype score for each founder haplotype from each family based on its
occurrences in affected and normal members. (3) Cluster all the founder haplotypes using a position weighted haplotype
similarity measure. (4) Evaluate the correlation between clusters and the trait using a statistical test.
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with eight members for 2 SNPs. After one applies the
Mendelian law (the paternal allele is separated from the
maternal one by a “|") and fixes one heterozygous locus
in each founder (members 1, 2, 3, 7), there are 5
heterozygous loci left to be determined (Figure 2.b). But
not all of them are free due to the constraint of no
recombination. Those uncertainties about heterozygous

SNPs are represented by p variables. The DSS algorithm
first constructs locus graphs, one for each SNP (Figure 2.
c), which connect each child with their heterozygous
parents through inheritance (h) variables. The 0-recom-
bination constraint is enforced by using a single h
variable for each parent-child pair throughout all SNPs.
The algorithm then traverses these locus graphs to collect

Figure 2
Illustration of the DSS algorithm. a) The input pedigree with 8 members and their genotype data. b) Haplotypes are
partially determined based on the Mendelian law and denoted as (paternal | maternal). In addition, one heterozygous SNP is
fixed in each founder (an individual without parents in the pedigree). Five SNPs are left with freedom. c) Locus graphs for the
two loci. Each graph has the same set of nodes as the original pedigree, where shaded (predetermined) nodes representing
fixed SNPs in b). Each child is linked to its heterozygous parents, with edges labeled using h-variables. Node 5 is duplicated for
easy process. d) Left: constraints on h-variables collected based on the two locus graphs using disjoint-set structures.
Constraints are collected based on each pair of linked predetermined nodes (or duplicated nodes), and only no redundant
ones are kept. Right: Solutions of h-variables can be obtained directly based on the disjoint-set structures. They are
represented by free variables a. In this example, only one degree of freedom. e) Solutions of p variables derived from
h variables in d).
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constraints, to check the consistency/conflict and to obtain
solutions of h variables and then p variables using disjoint-
set structures. At the end, there is only one degree of
freedom in h variables (Figure 2.d). Once that freedom is
fixed, all p variables are also fixed (Figure 2.e).

Phenotype score for founder haplotypes
The general principle in defining a phenotypic value for
each founder haplotype is to ensure that haplotypes
occurring more often in affected/high risk members
within a pedigree will receive higher values. There are
different ways to define phenotype scores for each
founder haplotype and different definitions may have
different effects on subsequent analyses. Let Yij denote
the phenotype of the jth member in the ith family and Ji is
the size of pedigree i. Let hik denote the kth founder
haplotype in the ith family and let sik denote its score to
be defined. Let Hij denote the set of the haplotype pair of
the jth member in the ith family. One simple measure that
resembles the relative risk concept but limited to a single
pedigree can be defined as:

s t log
I Yij tj hik Hij
I Yij tj hik H

ik( ) (
( ),
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=

>∈∑
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where I(x) is the indicator function and t is a user
defined threshold. Alternatively, one can define
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∈
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as suggested by Qian [18], where Yi = ΣjYij/Ji is the
average of the trait values in family i. The phenotype
value Yij can be the quantitative trait value itself or 1/0
for affected/normal individuals. We have tested both
measures and preliminary results show that the latter
measure has slightly better results. Therefore, we
report only results using the second measure in our
experiments.

Mining founder haplotypes
The founder haplotypes are treated as independent.
Together with their phenotypic scores, they serve as the
input of the HapMiner program [8,9]. The basic assump-
tion of HapMiner is that due to linkage disequilibrium,
disease-associated haplotypes are expected to be more
similar to each other than haplotypes randomly drawn
from the population. Therefore, HapMiner directly
explores the sharing of haplotype segments that observe
extreme phenotypes. The measure of sharing between two
haplotypes is defined by a position weighted similarity
score, which combines the length of the shared segments
and the number of identical alleles around a given marker
position. For each marker position, a haplotype segment

centered at the position will be clustered based on the
similarity measure. Each cluster is evaluated using a Q-
score, which is defined based on the deviation of the
phenotypic mean of the cluster from the mean of all
samples (t-statistic). The highest score among all clusters is
taken as the score of that marker position. The significant
level can be obtained via a permutation test (However
Bonferroni correction for multiple testing is used in the
simulation for efficiency). More details about the algo-
rithm can be found in [8,9].

Simulations
We evaluate the performance of F_HapMiner using
extensive simulations with realistic parameters. The
simulation consists of three steps. We first obtain
population haplotype frequencies from two datasets,
representing different marker densities and haplotype/
genotype frequencies. The first dataset is based on the
Cystic Fibrosis (CF) study [22] and the second one is the
simulated dataset from the Genetic Analysis Workshop
(GAW) 15 [23]. CF data is a well-known dataset that has
been examined by many researchers. We take the same
29 haplotypes and their frequencies estimated by Becker
and Knapp [24] (also see Table A1 in Additional file 1).
The total length of the region is 1.8 Mb with 19 loci, but
marker interval distances vary dramatically. The second
dataset is a portion of the simulated data from the GAW
15, which was used to model the complex genetic
architecture of rheumatoid arthritis (RA). We randomly
choose 500 families from the first replicate, and take a
segment of 20 SNPs from chromosome 6 centered at the
HLA-DRB1 locus. The average marker interval distance is
about 10 kbp. The haplotypes of each individual are
known and their frequencies are estimated based on
their counts in parents. The total number of distinct
haplotypes is 65 (Table A2 in Additional file 1). For both
datasets, only haplotypes and their frequency distribu-
tions (Tables A1 & A2 in Additional file 1) are used in
our simulation. We refer data generated based on these
frequencies as CF and GAW dataset, respectively. To
generate a set of realistic pedigrees in step two, we
directly sample family structures from the 65 pedigrees
of the CEPH study [25]. A family in this dataset may
have two (13 out of 65) or three (52 out of 65)
generations with 4-20 members (average 13). Figure A1
in Additional file 1 shows one typical CEPH family
structure. Given a set of parameters, we generate
pedigrees one by one as follows. First, one CEPH
pedigree is randomly selected. Second, for the pedigree
structure selected, each founder will be assigned two
haplotypes, sampled independently based on the popu-
lation haplotype distribution defined in step one.
Haplotypes of non-founders are obtained based on
Mendelian law assuming no recombination. In the
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third step, we assign phenotypes to each member in each
family based on two different disease models: a single-
locus model and a rare haplotype model. For the single
locus model, we assume only one SNP in the region will
increase the risk of being affected. The penetrance, which
defines the probability of being affected given a specific
genotype at the risk locus, will take realistic values. The
disease status of each individual will be determined
based on the genotype at the risk locus. To evaluate the
effect of disease allele frequencies, we take each SNP in
turn as the risk SNP, which will then be removed before
applying any statistical methods. Therefore, statistical
power will mainly depend on local LD strength and
structures. In addition, we also consider a rare haplotype
model, i.e., a few rare haplotypes may increase the risk of
being affected. This model is to simulate some common
complex diseases that might have haplotype effect or
allele heterogeneity, or simply common diseases caused
by multiple rare mutations [26]. For the haplotypes
obtained from the CF dataset, there are 22 rare
haplotypes with the same frequency (0.01786). For the
haplotypes obtained from GAW 15, a haplotype is
regarded as a rare haplotype if its population frequency
is less than 0.02. A certain number of (2 to 6) haplotypes
from these rare haplotypes are randomly selected as risk
haplotypes with the same effect. Individuals carrying one
or two disease haplotypes will have higher risks to be
affected. The effect of each risk haplotype is also defined
based on penetrance. Only pedigrees with at least one
affected member will be retained. More pedigrees with
genotypes/haplotypes and phenotypes can be generated
in the same way, until a specified number of pedigrees
(which is a parameter) can be reached.

Results
Parameters
We investigate the performance of F_HapMiner by
considering different population parameters, and in
comparison with two variants of TDT-based methods.
Some important factors that affect the statistical power of
any approach include linkage disequilibrium and haplo-
type patterns within the region, risk allele/haplotype
frequency, disease penetrance, and sample size. We
model LD/haplotype patterns by directly sampling founder
haplotypes from haplotype distributions of real data (CF)
and simulated data (GAW 15). In terms of risk allele
frequencies, each SNP has been taken as the risk locus once

for the single-locus model, with minor allele frequencies
range from 0.00045 to 0.482. For the rare haplotype
model, 2-6 haplotypes with small frequencies are ran-
domly chosen as risk haplotypes. Penetrance, which
represents the effect size of a disease locus, is another
important parameter. One can specify an ordered triple
(pA|dd, pA|dD, pA|DD) as the penetrance set, where each
element represents the penetrance of having 0, 1, or 2
disease alleles or haplotypes. We use three penetrance sets
(Table 1). Set C is adopted from Qian’s study [18], which
happens to correspond to a population prevalence around
0.1 when the risk allele frequency is 0.1. We further choose
two additional sets with smaller penetrance (A and B in
Table 1), and their population prevalence ranges from 0.07
to 0.15 and 0.028 to 0.09 respectively, for allele/haplotype
frequency from 0.1 to 0.5. Their relative effect sizes can also
be illustrated using the concept of genotype relative risks
(l1 = P (A|Dd)/P (A|dd) and l2 = P (A|DD)/P (A|dd)), as
illustrated in Table 1. Table 1 also provides the distribution
of different genotypes given the affected status when the
disease allele frequency pD = 0.1. Different sample sizes
(i.e., number of pedigrees) are considered for power
comparisons of three approaches: F_HapMiner, a single-
locus TDT implemented in PLINK [20], and a haplotype-
based TDT implemented in FBAT [17]. The power of an
approach is defined as the percentage of detecting
significant associations in 100 replicates after adjustment
of multiple testing.

Type I error
To assess the power of different approaches of detecting
significant associations between SNPs and traits, it is
important to have a proper control of false positive
discoveries due to chance (i.e., type I errors). In this
study, we set the overall error rate to be 0.05 after
Bonferroni correction of multiple testing for all experi-
ments. The type I error rate of each method was
estimated as the proportion of significant associations
reported in all replicates under the null model in which
no SNP or haplotype carries disease risks. The average
false positive rates over all parameter combinations
tested for F_HapMiner (with the haplotype segment
length of 1), the single-locus TDT and the haplotype-
based TDT are 1.1%, 3.6%, and 6.3% respectively.
Single-locus TDT is slightly conservative and F_HapMi-
ner is quite conservative. We suspect that the primary
reason for this is due to Bonferroni correction of

Table 1: Penetrance sets and their effects. G: genotype, d: normal allele/haplotype, D: disease allele/haplotype, A: affected

Penetrance Set Values l1 l2 Pr(G = dd|A) Pr(G = dD|A) Pr(G = DD|A)

A (0.05, 0.15, 0.25) 3 5 0.579 0.386 0.036
B (0.01, 0.1, 0.15) 10 15 0.293 0.652 0.054
C (0.05, 0.3, 0.5) 6 10 0.407 0.543 0.050
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multiple testing. On the other hand, no correction is
needed for the haplotype-based TDT and it tends to have
a slightly inflated type I error rate.

Power
We performed extensive experiments to evaluate the
proposed approach. The results were organized into two
subsections based on different disease models (i.e., single
SNP vs. rare haplotype model). For each model, we first
evaluated the effect of the haplotype segment length
parameter of F_HapMiner and chose a proper length for
each of the models for remaining tests. For the single-locus
disease model, we have examined the relationship of LD
structure and mapping precision. We then compared the
power of our approach and the single-locus TDT approach
using different penetrance values and examined the effect
of allele frequencies. For the rare haplotype model, we have
investigated the power of the three approaches using
different penetrance values, different number of rare
haplotypes and different sample sizes.

Single locus model
When evaluating the association of phenotypes and
haplotypes, F_HapMiner uses a sliding window approach
with an important parameter of the haplotype segment
length. The motivation of using haplotype segment is to
capture untyped risk SNPs or haplotype effect. Ideally one
should use a variable window size to closely capture the
variation of local LD structure (which is currently under
consideration). In the existing implementation of
F_HapMiner, users have to use a fixed window size. We
first tested the effect of this parameter on both datasets.

Results indicated that the precise behaviors critically
depend on LD structures. Figure 3 shows the results of
different segment lengths using the CF dataset for the
penetrance set A with a sample size of 50 pedigrees. For
easy illustrations, SNPs were separated into three groups
based on their minor allele frequencies. The information
about minor allele frequencies, group memberships, as
well as power for each individual SNPs (for the segment
length of 1, i.e., a single SNP) can be found in Table 2.

Figure 3
The effect of sliding window sizes. The power of
F_HapMiner on the single locus model using different sliding
window sizes, grouped according to MAF (Table 2). The
power may be adversely affected with large window sizes
when haplotype blocks are short (the case of SNPs in the
group with high MAF). Result is based on 50 pedigrees on the
CF dataset using the penetrance set A.

Table 2: The power of F_HapMiner and the single-locus TDT (SL-TDT) on each SNP for different penetrance models using the CF
dataset (sample size = 50 pedigrees). SNP are ordered and grouped based on their minor allele frequencies (MAF)

Penetrance Set A Penetrance Set B Penetrance Set C

Group MAF SNP SL-TDT F_HapMiner SL-TDT F_HapMiner SL-TDT F_HapMiner

Low 0.03572 16 0.07 0.07 0.44 0.56 0.24 0.38
0.05358 2 0.08 0.02 0.34 0.39 0.31 0.23
0.08925 13 0.40 0.55 0.96 1.00 0.89 1.00
0.10711 11 0.51 0.55 0.95 1.00 0.98 1.00
0.12502 8 0.42 0.60 0.99 1.00 0.95 1.00

Medium 0.14283 9 0.52 0.74 0.98 1.00 0.99 1.00
0.14283 15 0.41 0.55 0.94 1.00 0.97 1.00
0.14287 14 0.38 0.42 0.88 0.95 0.93 0.98
0.14288 10 0.59 0.80 0.98 1.00 1.00 1.00
0.16074 7 0.28 0.31 0.67 0.85 0.77 0.95
0.21425 4 0.06 0.02 0.14 0.08 0.16 0.17
0.26789 12 0.46 0.64 0.77 0.94 0.97 1.00

High 0.35716 3 0.42 0.58 0.64 0.84 0.95 1.00
0.41073 18 0.74 0.85 0.65 0.90 0.99 1.00
0.42859 19 0.69 0.85 0.73 0.87 1.00 1.00
0.4286 1 0.38 0.58 0.52 0.67 0.86 1.00
0.46427 6 0.64 0.82 0.68 0.80 0.98 1.00
0.48213 5 0.57 0.78 0.55 0.81 0.99 1.00
0.48216 17 0.43 0.68 0.54 0.67 0.89 1.00
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Based on Figure 3, one might conclude that with high
MAF, the power of F_HapMiner deteriorates significantly
when one increases the segment length, while it shows no
or only slight decreases with low to medium MAF.
However, by carefully examining the LD structure of the
region (Figure A2 in Additional file 1), we believe that the
real reason behind this result is that the SNPs with high
MAF (SNPs 1, 3, 5, 16, 17, 18, and 19) happen to be in
short haplotype blocks. Therefore, extending haplotype
segments beyond block boundaries actually brought
noises to the analysis. Results based on GAW 15 dataset
also showed the consistent trend. Therefore, for the single
locus disease model, we chose the window size of 1 for
F_HapMiner and only compared its performance with the
single-locus TDT approach. The results are shown in Table
2 and Figure 4. In almost all cases (Table 2), F_HapMiner
constantly outperforms the single-locus TDT, regardless
of penetrance models, allele frequencies, or LD structures.
The improvement is more significant when the power of
the single-locus TDT is in the range of 35% to 85%. We
believe that the gain of F_HapMiner is mainly from two
sources. First, we inferred the inheritances and haplotypes
by considering all SNPs jointly while TDT only took into
accounts of individual informative markers. Second, the
phenotype scores defined earlier indeed captured the
correlations between the disease and the risk SNP. In
terms of disease effects (the three penetrance sets), both
approaches have worst performance on Set A, reflecting its
weak signals. Allele frequencies also greatly impact the
results. Both approaches have very low power for the two
SNPs with extremely low MAF (≤ 5.5%, first two rows in
Table 2). On average, the power increases with the
increase of allele frequencies for penetrance Sets A & C

(Figure 4). However, LD patterns can greatly affect results,
even for SNPs with similar allele frequencies. For
example, SNP 4 has a MAF of 0.21. But the power is
very low for both approaches and for all three penetrance
models. LD analysis illustrates that SNP 4 has very low LD
with other SNPs (Figure A2 in Additional file 1). For the
penetrance set B, the power (vs. allele frequencies) of both
approaches behaves differently: the average of power
actually declined when allele frequencies increased (the
Medium MAF group vs. the High MAF group). Further-
more, both approaches were more powerful on the low
MAF group and less powerful on the high MAF group for
the set B, comparing to the results on the set C. These
differences actually reflect the fact that approaches behave
differently for different models with respect to allele
frequencies (many previous papers have shown that in
the extreme case of recessive models versus dominant
models, approaches behave differently when allele
frequencies vary). Our results demonstrate that detection
of genetic variants responsible to diseases is tricky even
for a single risk SNP if it is not typed. The success (power)
depends on many interrelated factors including disease
models, allele frequencies and LD patterns. Results (Table
A3 in Additional file 1) on the GAW dataset also support
our observations.

Both F_HapMiner and the single-locus TDT reported
p-values for each marker position. We then examined the
mapping precision of both approaches, defined as the
genetic distance between the SNP with the lowest p-value
and the real risk SNP based on the original map file of
the CF study. On average, results from F_HapMiner are
more accurate than those from the single-locus TDT
(Figure 5), which is consistent with the results that
F_HapMiner archived higher power. Overall, the predic-
tion of F_HapMiner on penetrance set A is about 28%
closer comparing to the TDT. Higher minor allele
frequencies in general improve the mapping precision.

Rare haplotype model
In this experiment, we randomly selected 2 to 6 rare
haplotypes from each dataset as risk haplotypes. For each
number of risk haplotypes, we made 10 random
selections from the dataset. For each selection, 100
replicates were generated. The results were grouped and
averaged based on the number of risk haplotypes. We
compared the performance of F_HapMiner, the single-
locus TDT and the haplotype-based TDT. For F_HapMi-
ner, we first tested the effect of the sliding window size of
5 to 10. Preliminary results (data not shown) demon-
strated that F_HapMiner achieved slightly higher power
for longer haplotype segment lengths, but with increased
running time. By considering all these factors, as well as
the block structures, we decided to use the window size

Figure 4
Power comparison on the single-locus model. Power
of F_HapMiner and the single-locus TDT on the CF dataset
using three different penetrance models. Result is based on
50 pedigrees and grouped according to MAF. The letter
inside the parentheses indicates the penetrance set.
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of 10. Because the total frequency of all risk haplotypes is
low, one would expect that it is harder to detect
associations. Indeed, we had to increase the sample
size to at least 100 families to ensure all methods had
some power to detect signals for the penetrance set A.

As expected, for the rare haplotype model, both
haplotype-based approaches performed significantly
better than the single-locus TDT (Figures 6 &7). In
particular, for all three penetrance models, F_HapMiner
outperformed the single-locus TDT by a margin of 9% to
130% using the CF dataset (Figure 6). The result certified
that F_HapMiner had mostly captured the haplotype
effect, comparing with the single-locus TDT, which
examined each SNP one at a time. Such an advantage
is more significant when the number of rare risk
haplotypes is small. For example, the power of F_Hap-
Miner has doubled with 2 risk haplotypes. Similar trend
has been observed using the GAW dataset (Table 3).
There are other interesting observations. One has to
double the sample size when using the GAW data
(Table 3, 200 families/replicate) to achieve comparable

power as the CF data (Figure 6, 100 families/replicate).
The primary reason is that the estimated rare haplotype
frequencies in the GAW data are much lower than those
from the CF data (Tables A1 & A2 in Additional file 1).
All approaches have lower power with low frequencies
from GAW data. Furthermore, because of the low
frequencies, both F_HapMiner and the single-locus
TDT performed much better using the penetrance set B
comparing with the set C, which was also consistent with
our earlier observation that approaches tended to
perform better for the model B when allele frequencies
were low (Table 2). The haplotype-based TDT also
outperformed the single-locus TDT (Figure 7). For the
two haplotype-based approaches, their power was
comparable when using 300 pedigrees. However,
F_HapMiner achieved much higher power than the
haplotype-based TDT in the case of 200 pedigrees, with
one exception when using 6 rare haplotypes, in which
case they had the same power (Figure 7). The result

Figure 5
Mapping precision on the single-locus model. Average
distances in centimorgan from the predicted SNP to the true
risk SNP for F_HapMiner and the single-locus TDT using the
CF data. Result is based on 50 pedigrees using using the
penetrance set A and grouped according to MAF.

Figure 6
Power comparison on the rare haplotype model.
Power of F_HapMiner and the single-locus TDT on the CF
dataset using three penetrance sets, grouped based on the
number of risk haplotypes. The letter inside the parentheses
indicates the penetrance set. Result is based on 100
pedigrees per replicate.

Table 3: Power of F_HapMiner and the single-locus TDT (SL-TDT) using the GAW dataset on the rare haplotype model (sample size =
200 pedigrees)

Penetrance Set A Penetrance Set B Penetrance Set C

Risk Haplotype # SL-TDT F_HapMiner SL-TDT F_HapMiner SL-TDT F_HapMiner

2 0.06 0.12 0.36 0.58 0.17 0.30
3 0.08 0.07 0.54 0.73 0.27 0.42
4 0.09 0.13 0.65 0.90 0.41 0.68
5 0.11 0.17 0.60 0.92 0.63 0.88
6 0.10 0.30 0.90 0.97 0.55 0.73
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demonstrates that F_HapMiner has higher sensitivity to
moderate signal. Figure 7 also shows that the perfor-
mance of the haplotype-based TDT gradually increased
with more rare haplotypes, while the power of F_Hap-
Miner deteriorated with high number of risk haplotypes
(e.g., 5 and 6). On one hand, this seems to make sense
because F_HapMiner only outputs the most significant
cluster. On the other hand, the behaviors of both
approaches actually depend more on the fact that
which haplotypes are selected as risk haplotypes and
how similar they are (Figures 6, 7 and A3 in Additional
file 1), not so much on the number of rare haplotypes. As
expected, the power of all approaches will increase with
the increase of sample sizes (Figures 7 and A3 in
Additional file 1). We notice that a better method
might achieve higher power even with smaller number of
samples (F_HapMiner with 200 families vs. the single-
locus TDT with 300 families in Figure 7). Furthermore,
the power usually does not have a linear relationship
with the sample size. With the same number of increased
samples, an approach will gain much more when its
power is low (Figures 7 and A3 in Additional file 1).

Discussion
We have proposed a new approach for family-based
haplotype association testing and fine mapping. For a
given candidate region, we assume that no recombination
has been observed within each pedigree. The approach
consists of three steps. First, we use a novel algorithm to
infer diplotype pairs of each individual in each pedigree.
Our previous experiments have shown that the DSS

haplotype inference algorithm is very efficient and accurate
when there are no recombinations and when missing
genotypes are randomly distributed across SNPs and
members. The DSS algorithm can also handle families
with a few recombinants. In the current implementations,
when there exist multiple haplotype assignments with zero
recombinant, we randomly select one as the true solution.
This might adversely affect the results. More recently, we
extend DSS to use population information to select the
most likely solution [27], which may further improve the
power. However, even this new approach cannot effectively
handle data with many untyped members (usually
founders) that may happen in real data. The difficulty
lies in the fact that in this case one cannot use the zero
recombinant assumption to effectively limit the search
space. We currently investigate new formulations and
approaches for such cases. In the second step, a phenotype
score is defined for each founder haplotype to measure its
correlation with the phenotype. Haplotypes that appear
more frequently in affected/high risk members tend to
receive higher scores. On the contrary, haplotypes in
normal members will get lower scores. This way, the
haplotype-phenotype correlation embedded in descen-
dants is collected and accumulated to founder haplotypes.
Such information is then used in subsequent haplotype-
based association tests using a clustering approach based
on haplotype similarities in step three. Extensive experi-
ments demonstrate that our approach outperforms the
single-locus and haplotype-based TDTs, on both the single-
locus disease model and the rare haplotype model.
F_HapMiner has several advantages over the haplotype-
based TDT approach implemented in FBAT. Our experi-
ence shows that FBAT requires large number of samples to
obtain haplotype population frequencies. For instance,
FBAT cannot process about 7% of the total replicates when
the sample size is 200. Additionally, FBAT also has limits
on the total number of different haplotypes, which implies
that it cannot handle large regions with more SNPs.

We generated simulated data based on the haplotype
frequency distributions of two datasets (CF and GAW 15).
Our experiments show that haplotype patterns (diversity,
frequencies, LD structures) have profound impacts on the
power to detect associations. On the contrary, marker
interval distances have less effect. Our disease models
probably have higher relative risks comparing to real
complex diseases. The sizes of CEPH pedigrees are much
larger than many real studies. In practice, for genotype
relative risks of 1.2 to 1.5, and/or for families with smaller
sizes, a much large number of samples are needed. More
tests on different disease models and pedigree sizes are
warranted. Furthermore, a test of the approach on a real
data set from our collaborators is currently underway. We
also observe that the single-locus TDT also has some power
in detecting associations for the rare haplotype model

Figure 7
Power comparison with the haplotype-based TDT.
Power of F_HapMiner, the single-locus TDT and the
haplotype-based TDT on the CF dataset using the rare
haplotype model with the penetrance set A for different
sample sizes.
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(Figure 6). Further detailed analysis tells us that the power
actually came from different SNPs, whose frequencies
happen to be close to the frequencies of rare haplotypes.

F_HapMiner can be extended in a few ways. Firstly, it relies
on users to specify the sliding window size for the clustering
procedure. The optimal value depends on the input data
(e.g., local LD structures) and the characteristics of the
underlying disease. One solution is to determine the sliding
window size based on the LD structure of the data. The
sliding windowmay extend in both directions until current
SNP is in low LD with next one. We are currently
investigating new approaches to automatically adjust this
parameter. Secondly, a phenotype score is calculated for
each founder haplotype to represent its correlation with the
disease. Whether a score can reflect the real correlation is
crucial to the performance of F_HapMiner. Ideally, pheno-
type scores of disease-related haplotypes should have higher
values with small variance. In the future, we will investigate
new phenotype scores to further improve the power of
F_HapMiner. Finally, we assume zero recombination in the
candidate region and infer haplotype based on this
assumption. This assumption can be relaxed as we are
extending our haplotype inference algorithm to allow
recombinations.

Conclusion
In summary, we have presented a novel haplotype-based
approach of association testing and fine mapping using
family data. Simulation results have shown that our
approach F_HapMiner outperforms the single-locus TDT
for both the single locus model and the rare haplotype
model. F_HapMiner also has advantages over the
haplotype-based TDT when the sample size is moderate.
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