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Abstract

Background: Introduction of spaced speeds opened a way of sensitivity improvement in
homology search without loss of search speed. Since then, the efforts of finding optimal seed which
maximizes the sensitivity have been continued today. The sensitivity of a seed is generally computed
by its hit probability. However, the limitation of hit probability is that it computes the sensitivity only
at a specific similarity level while homologous regions usually distributed in various similarity levels.
As a result, the optimal seed found by hit probability is not actually optimal for various similarity
levels. Therefore, a new measure of seed sensitivity is required to recommend seeds that are
robust to various similarity levels.

Results: We propose a new probability model of sensitivity hit integration which covers a range of
similarity levels of homologous regions. A novel algorithm of computing hit integration is proposed
which is based on integration of hit probabilities at a range of similarity levels. We also prove that
hit integration is computable by expressing the integral part of hit integration as a recursive formula
which can be easily solved by dynamic programming. The experimental results for biological data
show that hit integration reveals the seeds more optimal than those by PatternHunter.

Conclusion: The presented model is a more general model to estimate sensitivity than hit
probability by relaxing similarity level. We propose a novel algorithm which directly computes the
sensitivity at a range of similarity levels.

Background
Finding homologous region is one of the most impor-
tant tasks in current biological works. It is a task to find
similar regions between biological molecular sequences.
This task is translated into local alignment which scores
the similarity between sequences with an edit distance.
The state-of-the-art scoring method for the local

alignment is Smith-Watermann dynamic programming
algorithm [1]. The main drawback of this algorithm is
that it is impractical with large-scale search tasks due to
its high computational complexity.

One practical approach to speeding up local alignment
algorithms is filtering out non-homologous regions before
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aligning sequences. This process consists of a filtering step
and an extension step in general. At the filtering step, short
fixed-length common words that are found at both query
and target sequences are selected. Then at the extension
step, it is determined whether each word can be extended
into a significant alignment. BLAST [2] and FASTA [3] are
the most popular programs among the filtering-based
programs for homology search. Both of them use fixed-
length continuous matches as a template for finding
common words, and the template is called a seed. This
approach has a drawback of sacrificing sensitivity for speed.
The bigger the seed size is, the higher the risk of missing
true alignments gets. At the same time, small-sized seeds
tend to generate more random hits, and then result in
computational slowdown. PatternHunter [4] enabled more
sensitive homology search than BLAST by introducing a
non-continuous seed such as 111*1**1*1**11*111,
so-called a spaced seed.

After the notion of non-consecutive seed was presented, the
spaced seed has been studied by many researchers in
aspects of computational complexity. The studies of
evaluating the performance of spaced seeds over consecu-
tive seeds were investigated by [5-9]. Among these
researches, [8] and [9] showed that finding the optimal
spaced seeds is NP-hard, but the sensitivity of a seed can be
computed in polynomial time. Several algorithms
[5-7,10-12] have been proposed to compute the sensitivity
of a seed exactly. In addition, these algorithms can be
accelerated by several heuristic methods [10,13-19]. The
extension of spaced seeds was achieved by adapting the
seeds for more specific biological sequences [20-24] or
building models to understand the mechanism which
makes spaced seeds powerful [14,22,25,26].

Although many advanced evaluation measures are pro-
posed asmeasures of spaced seed’s sensitivity,Hit probability
proposed by Ma et al. [4] is still being used as a notion
equivalent to the seed’s sensitivity. The hit probability of a
seed is defined as a probability of finding the seed at a
random sequence at a specific similarity level. The limita-
tion of hit probability is that it is computed only at a specific
similarity level even though homologous regions actually
have various similarity levels. As a result, an optimal seed for
a specific similarity level could not be optimal for other
similarity levels. For instance, the seed presented by
PatternHunter (111*1**1*1**11*111) was only optimal
at the range of similarity levels from 61% to 73% [10].
However the homologous regions of genome comparison
havemore diverse range of similarity levels. Therefore, a new
measure of seed’s sensitivity is needed which covers a range
of similarity levels of homologous regions.

This paper proposes an algorithm of computing integra-
tion of hit probabilities at a range of similarity levels. In

order to reflect a range rather than a point, the
integration of hit probabilities is used, and it is named
as hit integration since it is considered as an accumulation
of hit probabilities. We also prove that hit integration is
computable by expressing the integral part of hit
integration as a recursive formula which can be easily
solved by dynamic programming. The experimental
results show that hit integration reveals the seeds more
optimal than those by PatternHunter. The seed
111**1*11**1*1*111 is found to be an optimal seed
for hit integration at the range of similarity levels from
0 to 1. This seed results in about 2% higher sensitivity
than PatternHunter seed.

The rest of this paper is organized as follows. Hit
integration is first introduced and dynamic program-
ming algorithm to compute hit integration is presented
formally. Next, the optimal seeds under hit integration is
compared with the seeds recommended by other
probability models. Then, the quantitative comparison
between seeds is explained. In Methods after conclusion,
the way of the experiment using biological data follows.

Results and discussion
Hit integration
Hit probability of a seed is defined as the probability of
finding the seed at a L-length bernoulli random sequence
at a similarity level p. It has been used as a synonym of the
sensitivity of a seed. However, hit probability is tightly
linked with a specific value of similarity level, whereas
sensitivity refers to the probability that a seed hits a region
without consideration of the similarity level p. We define a
more general probability model to measure sensitivity than
hit probability by extending a specific value of similarity
level to a range of similarity levels.

Definition of hit integration
As the sensitivity covers a range of similarity levels, hit
integration is defined to be the integration of hit
probabilities over a range of similarity levels. The cumula-
tion of the hit probabilities over a range of similarity levels
is illustrated in Figure 1. The gray area below the curve
represents integration of the hit probabilities from
similarity level 0 to p. It indicates clearly hit integration
of a seed below a similarity level p. Therefore, hit
integration can be computed by integration of
hit probabilities. In order to simplify the expression of
hit integration, we denote hit integration over a range of
similarity levels from a to b as HI [a, b] where 0 ≤ a <b ≤ 1.
Because the presented algorithm in this paper can compute
the hit integration from similarity level 0 to p, hit
integration for an arbitrary range of a and b is defined as
below. Given both HI [0, a] and HI [0, b], HI [a, b] is
computed by (HI [0, b]HI [0, a])/(b - a). A special case of
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hit integration is when it covers all similarity levels, from 0
to 1. In this case, the similarity parameters a and b are not
needed. We will call it as similarity-level-free sensitivity.

Computing hit integration
The computing algorithm for hit integration is derived
from the dynamic programming algorithm of hit
probability. At least to our knowledge, it is impossible
to obtain an integral form directly from the hit
probability because of its recursive form. We propose a
novel idea of integrating the recursive form. Before
describing our novel algorithm, we briefly describe the
algorithm to compute hit probability proposed by Keich
et al. [7]. And then extend the algorithm to compute hit
integration.

Notations
The notations for defining hit integration follow from
those in [12]. A spaced seed Q of which length is m is a
string consisting of 1’s and *’s. 1 stands for a ‘require
match’ and * for a ‘don’t care’. The number of 1’s in Q is
called as its weight denoted as w. Conventionally, the first
and last letter of Q are defined as 1. For example, the
length and the weight of a seed 111*1**1*1**11*111
are 18 and 11 respectively. From this point on, a seed is
assumed to be a spaced seed for convenience. A
homologous region R with a length L is represented as
a binary string in which 1 stands for a match and 0 for a
mismatch. R [i:j] represents a subregion of R from i-th to
j-th position. We assume that R is a Bernoulli random
string. Then, the probability of occurrence of 1 in a

position R [i] is denoted as p, and this p is called as the
similarity level of R. For a seed Q and a homologous
region R, Q is said to hit R if R has a substring R [i:i +
m - 1] which satisfies R [i + j] = 1 whenever Q [j] = 1.
Given a homologous region R with a length L and a
similarity level p, the hit probability of a seed Q is the
probability that Q hits R at or before the position L.

Computing hit probability
For a seed Q, a string b is said to be compatible with Q if b
[|b| - j] = 1 when Q [m - j] = 1 for all 0 ≤ j ≤ min(m, |b|).
Let B be a set of all b’s compatible with Q. For a string
b Œ B, let f(i, b) be the probability that Q hits region
R [1:i] which has b as its suffix. In case of |b| = m, f(i, b) is
1 since Q always hits b if b belongs to B. That is,

f i b b B b m( , ) , .= ∈ =1 if  and (1)

In the cases where i is smaller than m, f(i, b) is always 0
since Q can not hit any region shorter than |Q|. Thus,

f i b i m( , ) , .= <0 if (2)

When 0 ≤ |b| ≤ m, there are two cases: (i) the position
before b has value 0, and (ii) the position before b has
value 1. Thus, f(i, b) can be recursively expressed as

f i b p f i b p f i b( , ) ( ) ( , ) ( , ).= − + ⋅1 0 1 (3)

The hit probability of Q on R is then equal to f [L, �],
where L is the length of R and is an empty string. That is,
f [L, �] is the probability that Q hits the region R when
a suffix is not given. The suffix 1b is always within B if
|1b| ≤ m, but the suffix 0b could not be within B. Keich
et al. [7] showed that f [i, 0b] is equivalent to f [i, 0b’],
where b’ is the longest prefix of an element in B. When
B(x) is the longest proper prefix of a string that is in B,
this relation is written as follows.

f i b f i b b b b B b( , ) ( | | | |, ), ( ).0 0 0 0= − + ′ ′ ′ =where (4)

Computing hit integration: the integration of hit probabilities
HI [0, p] is the integration of hit probabilities of
similarity levels from 0 to p where 0 ≤ p ≤ 1. The integral
form is derived from the recursive function of hit
probability by following modifications. According to
Equation (3), the integration of f [i, b] can be represented
as a linear combination of other integral forms.

f i b dp p f i b p f i b dp

p f i b dp f i b d

[ , ] ( [ , ] ( ) [ , ])

[ , ] [ , ]

∫ ∫= ⋅ + −

= ⋅ +

1 1 0

1 0 pp p f i b dp− ⋅∫∫∫ [ , ] .0

(5)

Figure 1
An illustration of hit integration. Solid line and dashed
line stand for the curve of hit probability and hit integration,
respectively. Gray area underneath the curve of hit
probability implies the amount of hit integration at p. p is the
upper limit of hit integration.
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Let In [i, b] be an integral of the multiplication of pn and
the hit probability function f [i, b], where n is the degree
of the function I. That is,

I i b p f i b dpn n[ , ] [ , ] .= ∫ (6)

I0 is equivalent to the integration of hit probabilities.
Therefore, I0 with length L and an empty suffix � gives the
exact solution of the integral of hit probabilities. From
the equation I0 = ∫ f[i, b]dp and Equation (5), Equation
(6) is expanded as

I i b I i b I i b I i bn n n n[ , ] [ , ] [ , ] [ , ].( )= + −+ +0 1 01 1 (7)

This function corresponds to Equation (3). Equation (1),
Equation (2), and Equation (4) are also translated into
the following forms.

I i b
p n

n
b B b mn[ , ]

( )
, ,| |=

+

+
∈ =

1

1
if (8)

I i b i mn[ , ] ,= <0 if (9)

I i b I i b b b b B bn n[ , ] [ | | | |, ], ( )0 0 0 0= − + ′ ′ ′ =where (10)

Mathematical proofs of Equation (7)~(10) are described
at Additional file 1.

Dynamic programming of hit integration
The dynamic programming algorithm for hit integration
is obtained from the dynamic programming of hit
probability by substituting Equation (7)~(10) for
Equation (1)~(4). The algorithm to compute the hit
integration of a seed Q is given below. The goal of this
algorithm is to find I0 [L, �], since it is equivalent to
HI [0, p].

Input Seed Q, Positive probability p, Length L
Output Hit Integration of Q

1. Compute the suffix set B compatible with Q.
2. For i = 0 to L do
3. For b Œ B from largest to shortest do
4. nmin = the number of 1’s in b
5. nmax = L - i + |b|
6. For n = nmin to nmax do
7. If i < |b| Then
8. In [i, b] = 0
9. Else If |b| = m Then

10. I i bn p n

n[ , ]
( )

=
+

+

1

111. Else
12. In [i, 0b] = In [i - |b| + |b’| 0b’] where 0b’ = B(0b)
13. I(n+1) [i, 0b] = I(n+1) [i - |b| + |b’|, 0b’] where 0b’ = B(0b)
14. In [i, b] = I(n+1) [i, 1b] + In [i, 0b] - I(n+1) [i, 0b]
15. End If

16. End For
17. End For
18. End For
19. Return I0 [L, �]

The suffix set B need to be obtained before entering the
first loop at line 2 since B is not changed during the
execution of the algorithm. B can be easily obtained by
getting all combinations of binary suffix strings. All
strings b Œ B have to meet the following constraints.
For all 0 ≤ i ≤ |b|, b [i] = 1 if Q [i] = 1, and b [i] is 0 or 1 if
Q [i] = 0. For each suffix b, its longest prefix B(0b) need
to be computed in advance. The computational proce-
dure for B is same as that in the dynamic programming
for hit probability. Thus, the details of computing B is
skipped in this paper. Refer to [7] for this procedure.

The algorithm has three nested loops. Line 2 is the outer-
most loop which increases the region length parameter i
from 0 to L. The second loop at line 3 considers all
suffixes b Œ B. This loop also runs in descending order
from the longest to the shortest suffix, an empty string.
Line 4 and 5 are the bound of all possible degrees of a
function I where i and b are given. The minimum bound
of the degree is limited to the number of 1’s in a suffix b.
The maximum bound of the degree is limited to the size
of L - i + |b|. Line 6 is the inner-most loop for a degree of
n which computes In. Line 7~8 compute Equation (9),
and line 9~10 compute Equation (8). At line 12~13, In

for 0b and I(n+1) for 0b are obtained from the previously
computed I’s by following Equation (10). Line 14
computes In [i, b] using Equation (7). This algorithm
finally returns I0 [L, �] at line 19.

Time complexity
The following proof will show that hit integration can be
computed exactly with only L additional time in compare
with hit probability. Time complexity of this algorithm is
derived by the loops of three variables, i, b, and n, and the
precomputation time of the suffix set B, the longest prefix
set B(0b), and all possible values of Equation (8). The

number of all elements of B is 2(| | )b b
b B

w−
∈∑ where bw is

the number of 1’s in a suffix b, and |b| is the length of
suffix b. It is bounded by m·2(m - w) where m is the length of
the seed Q and w is the weight of Q since the maximum
length of b is equal to the length of Q. Therefore the suffix
set B at line 1 is computed at O(m·2(m - w)). All possible
values of Equation (8) at line 10 can be computed within
L + m times because it is bounded by the variable n and its
maximum value is L + m. For all b, the longest prefix B(0b)
at line 12 and 13 can be computed in advance in time
O(m2·2(m - w)). The time needed to compute the three
nested loops at line 2, 3, and 6 is O(L·m·2(m - w)·(L + m)).
The number of iterations of the outer-most loop for
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variable i at line 2 is L + 1. Since the loop for variable b
at line 3 iterates the number of all elements of B, it runs at
most m·2(m - w)times. The innermost loop for variable n at
line 6 iterates L + m times. Notice that the time complexities
of all precomputations are less than the time complexity of
the loops. Therefore, the total time complexity of the
algorithm is O(L2·m·2(m - w)). Because the time complexity
of dynamic programming of hit probability isO(L·m·2(m - w))
[7], hit integration can be computed exactly with only
L additional time in compare with hit probability.

Validity of the proposed algorithm
The proposed dynamic programming can be validated
by comparing it with another accumulation methods,
Riemann sum and Gaussian quadrature. Riemann sum is
a well-known method for approximating the total area
underneath a curve on a graph [27]. Gaussian quadrature
is also well-known approximation method of the
definite integral of a function, usually stated as a
weighted sum of function values at specific points
within the domain of integration [28].

Thus, for the validity of the proposed algorithm, HI [0, p]
is compared with Riemann sum of hit probabilities. If a
range [0, p] is partitioned into N sub-ranges, Riemann
sum of hit probability is defined as

S f L p pp i i

i

N

= − −
=
∑ ( , )( ),ε 1

1

where pi is a similarity level within [0, p]. The
difference between the outcome of hit integration
and Riemann sum is averagely lower than 10-5 when
N is set to 1000. For instance, the Riemann sum of the
hit probability for the default seed of PatternHunter at
the range from 0 to 1 is 0.300029 whereas the hit
integration is 0.300031. This small difference is
believed to be made by the approximation error of
the Riemann sum.

The proposed algorithm is also compared with Gaussian
quadrature of hit probabilities. When a range [0, p] and
the sequence length L are given, we compute L-point
Gaussian quadrature where lower limit is 0 and upper
limit is p. First, the weights and similarities are calculated
for L points. And then all integrands are computed by
multiplying the corresponding weights after computing
hit probabilities for the similarities, respectively. The
integration is the sum of the integrands. The approxima-
tion of integration using Gaussian quadrature gives
nearly identical result by comparing with the result of hit
integration. The approximation error is lower than 10-14

(data not shown). Therefore the integration using
Gaussian quadrature is a good alternate method of the

dynamic programming of hit integration, whereas the
integration using Riemann sum is inadequate to be used
in practical because it needs much more computing
time.

Identification of optimal seeds
In this subsection, we identify optimal spaced seeds
under hit integration. Then the performance of this
model is compared with those of the other probability
models which compute sensitivities in their own way.
On a random region with length 64, 46,252 seeds of
weight 11 and length at most 20 are studied by three
probability models to measure sensitivities: hit integra-
tion model, PatternHunter’s model, and markov model
for non-coding regions [5]. One thing to note is that
both hit integration and PatternHunter are based on
Bernoulli random sequence. The models based on
Bernoulli random sequence has a characteristic of
estimating a seed and its reversed seed with the same
sensitivity. Therefore we selected the 46,252 seeds in
order not to include the reversed seeds. We tested three
ranges of similarity levels for hit integration: p = 0~1,
0.5~1, 0.3~0.7. The first range covers all similarity levels,
from 0 to 1. It is selected for getting the performance of
similarity-level-free sensitivity. The second is selected to
evaluate the hit integration over the actual similarity
range of the genome alignments, from 0.5 to 1, in
accordance with the biological data used in the experi-
ment. The last range, 0.3 to 0.7, is the range which shows
the best average performance among several range of
similarity levels. These three instances are indicated as
HI [0, 1], HI [0.5, 1], and HI [0.3, 0.7] respectively.
PatternHunter’s model is equal to the hit probability at a
similarity level 0.7. It can be denoted as PH [0.7] which
means PatternHunter’s model at similarity level 0.7. To
indicate briefly the last model, markov model for non-
coding regions will be denoted as Markov.

Sensitivities of the identified optimal seeds
We identified the optimal seeds by computing sensitiv-
ities according to hit integration and compared the
sensitivities calculated by different probability models.
Table 1 shows top 5 optimal seeds according to a hit
integration HI [0, 1] and four additional seeds which are
chosen from the other models. The sensitivities of the
seeds listed in the table 1 are computed by the five
evaluation measures: HI [0, 1], HI [0.5, 1], HI [0.3, 0.7],
PH [0.7], and Markov. The three measures of hit
integration HI [0, 1], HI [0.5, 1], HI [0.3, 0.7] were
used to evaluate the sensitivities with the dynamic
programming of hit integration. The measure of Pat-
ternHunter PH [0.7] was used to estimate the sensitiv-
ities with the dynamic programming of hit probability.
As the measure of Markov, we used the latest version
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(1.1.1) of mandala provided by Buhler et al. [5]. It is a
sensitivity estimation software based on markov model,
and we used 5th-order non-coding model which is
included in the software.

Noteworthy seeds of the table 1 are listed below. The
first seed marked with ‘a’ is the optimal seed of the hit
integration HI [0, 1] and HI [0.5, 1]. The second seed
marked with ‘b’ is the optimal seed of PatternHunter PH
[0.7] as well as the default seed of PatternHunter. The
fifth seed marked with ‘c’ is the optimal seed of the hit
integration HI [0.3, 0.7]. Although it is ranked fifth
among the top 5 seeds, it is ranked at the relatively high
position in Markov. We added four seeds ‘d ~g’ to
compare with the top 5 seeds. The seed marked with ‘d’ is
the best seed of the 5th-order non-coding markov model
using mandala. Seed ‘e’ and ‘f’ are the representative seeds
in Buhler et al. [5]; the former is the seed representing
5th-order non-coding markov model in [5] and the latter
is the seed representing 0th-order non-coding markov
model in [5]. The last seed marked with ‘g’ is the BLAST’s
default seed. We need to point out the difference of the
seed ‘d’ and ‘e’ which are representing the same model.
The former is computed from the software provided by
Buhler et al. [5] whereas the latter is proposed by the
authors’ paper. We conjecture that the markov model in
the software was updated after published the paper.
Another notable point is the difference of the seed ‘a’ and
‘f’. They have very similar forms such that the latter has
one additional don’t care position at 13 by comparison
with the former. However the performance of the two
seeds are not similar. The seed marked with ‘a’ showed
better performance in theory and in practice than the
seed ‘f’.

We compared the ranking of the seeds for each model
because the sensitivities between models are so different
to compare quantitatively. The seeds which are ranked

high in hit integration are also ranked high in
PatternHunter’s model. It is caused by the fact that
both models compute sensitivity based on Bernoulli
random sequence. Although HI [0, 1] and PH [0.7] gave
similar ranks to the seeds, they chose different seeds as
an optimal seed. Despite of the wide superior range of
similarity levels, PH [0.7]’s optimal seed was ranked
second under HI [0, 1]. Therefore, considering all range
of similarity levels, it reflects the cumulative sensitivity of
PH [0.7]’s optimal seed is lower than that of HI [0, 1]’s
optimal seed. Markov model showed the very different
estimation ranks comparing to the models based on
Bernoulli random sequence. The Markov model usually
adapts to some domain-specific information. Thus, its
performance is dependant on the contents of the
biological data. It means that the performance is
fluctuated by different data sets. We ascertained the
existence of the fluctuation from the experimental
results.

Testing on biological data
To validate that the optimal seeds show really good
performance for real biological data, we computed for
each seed how many alignments from the biological data
set contain at least a hit of the seed. It means that the
alignment can be potentially found by an alignment
program using this seed. Therefore the percent of the hit
occurrences for a seed from a set of biological data is
considered as the experimental sensitivity for the seed.
We tested the optimal seeds of the evaluation models on
the following five biological data sets: mm1 and mmX are
selected from human and mouse genomes, gal is selected
from human and chicken genomes, pan is selected from
human and chimp genomes, and mixed is the cumulative
data set of the four prior data sets. As we want to test the
performance of the optimal seeds for similarity search in
various genomic comparison, we randomly chose the
data sets at the alignments of the genomes which have

Table 1: Top 5 optimal spaced seeds

seed HI [0,1] HI [0.5, 1] HI [0.3, 0.7] PH [0.7] Markov

111**1*11**1*1*111a 0.300273 (1) 0.598730 (1) 0.0875373 (6) 0.466982 (2) 0.68499 (2482)
111*1**1*1**11*111b 0.300265 (2) 0.598713 (2) 0.0876001 (3) 0.467122 (1) 0.68869 (1425)
11*1*1*11**1**1111 0.300064 (3) 0.598314 (3) 0.0874004 (12) 0.466131 (3) 0.68301 (3359)
111**11*1**1*1*111 0.300031 (4) 0.598247 (4) 0.0873905 (13) 0.466015 (4) 0.68588 (2145)
111*1**1*111*111c 0.300031 (5) 0.598204 (6) 0.0876591 (1) 0.465521 (13) 0.70225 (52)
1111*111*1111d 0.2950 (22472) 0.5882 (22829) 0.0832 (19513) 0.4421 (25033) 0.7094 (1)
1111*111**1*111e 0.2988 (470) 0.5957 (508) 0.0866 (249) 0.4596 (747) 0.7089 (3)
111**1*1**11**1*111f 0.2999 (17) 0.5980 (14) 0.0870 (65) 0.4656 (12) 0.6802 (4907)
11111111111g 0.2590 (46252) 0.5167 (46252) 0.0538 (46252) 0.3002 (46252) 0.6066 (46133)

Top 5 optimal spaced seeds with weight 11 which are identified by hit integration are listed. The 5 seeds are ordered by HI [0, 1]. Each value indicates
the sensitivity of the seed at the same row which is determined by the sensitivity measure at the same column. The number in the parentheses
indicates the rank of the seed for each measure. The descriptions of the labeled seeds are as below; a: the optimal seed of HI [0, 1] and HI [0.5, 1],
b: the default seed of PatternHunter, c: the optimal seed of HI [0.3, 0.7], d: the optimal seed computed by mandala, e: the seed representing 5th-order
non-coding markov model in [5], f: the seed representing 0th-order non-coding markov model in [5], g: the default seed of BLAST.
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various genetic distances (from human ~ chimp to
human ~ chicken). The similarities of the alignments are
distributed widely over the similarity levels from 50% to
100% (see Figure 2). Detailed explanation of the data
sets and the experimental process is described in
Method.

Table 2 presents the experimental results of the seeds
labeled in the table 1. Considering all data sets, the
average performance of the seeds exhibits that the
optimal seeds under hit integration model are better
than the other models’ seeds. The seed ‘a’ which is the
optimal under HI [0, 1] and HI [0.5, 1] shows the highest
sensitivity among the five seeds. The seed ‘c’ which is the
optimal under HI [0.3, 0.7] is ranked the second. The
optimal seed under PatternHunter’s model marked with
‘b’ shows the fifth performance among the seeds. The
optimal seed under Markov model marked with ‘d’ is

ranked at the third. Another seed based on Markov model
marked with ‘e’ is ranked at the fourth. Because both ‘d’
and ‘e’ are selected from the 5th-order non-coding
markov model, we conjecture that 5th-order markov
model may be better than PatternHunter in practice.

The seed ‘a’ is the optimal seed in considering all data
sets because it is ranked first or second for all data sets.
The ‘a’s average sensitivity is superior to that of the
PatternHunter’s seed ‘b’ by the amount of 2% and that of
the BLAST’s seed ‘e’ up to 12.5%. Another seed of hit
integration marked with ‘c’ shows also good perfor-
mance against the seeds of the other models. In spite of
the regular superiority of hit integration, Markov model’s
seeds ‘d’ and ‘e’ show irregular performance according to
data sets. The seed ‘d’ records the best average sensitiv-
ities for gal and pan data sets, but shows the worst
sensitivities for mmX data sets except the consecutive
seed. It is even worse than the seed ‘b’ for this data sets.
Consequently, the seed chosen by hit integration shows
good performance for all data sets, and outperforms
both the seed chosen by hit probability and the BLAST’s
seed. In a word, hit integration shows regularly good
performance for real data sets compared with Pattern-
Hunter and Markov model.

Quantitative comparison of seed sensitivity
A recent work by Mak and Benson [16] presented the
notion of dominance between a class of seeds with
the same weight and length. This work showed that the
similarity levels can be partitioned by two or more
dominant seeds. For instance, a seed is said to dominate
another seed if the former hits at least as many
homologous regions as the latter. In this situation, the
latter can never be an optimal seed. Mak and Benson also
proposed a method to determine the dominant ranges of
similarity levels by comparing a seed with another.
However, they did not show how much dominant the
seed is. Hit integration enables quantitative evaluation
of the seeds over the range of similarity levels.

Figure 2
Distributions of biological data alignments. The
distributions of the similarities of five biological data
alignments are plotted by scale of 5%: mmX, mm1, gal, pan,
and mixed (see Method).

Table 2: Experimental sensitivities of the optimal seeds

seed mixed gal mm1 mmX pan average

111**1*11**1*1*111a 0.73837 (1) 0.78102 (2) 0.79375 (2) 0.71692 (1) 0.71909 (3) 0.74983 (1)
111*1**1*1**11*111b 0.71615 (5) 0.77729 (3) 0.76228 (6) 0.69906 (2) 0.69820 (6) 0.73060 (5)
111*1**1*111*111c 0.73103 (2) 0.77070 (4) 0.80484 (1) 0.69386 (3) 0.71802 (4) 0.74369 (2)
1111*111*1111d 0.72246 (4) 0.78234 (1) 0.78821 (3) 0.67856 (5) 0.72535 (1) 0.73939 (3)
1111*111**1*111e 0.72300 (3) 0.76938 (6) 0.78317 (4) 0.68591 (4) 0.72156 (2) 0.73660 (4)
111**1*1**11**1*111f 0.71110 (6) 0.76719 (5) 0.77384 (5) 0.67652 (6) 0.70356 (5) 0.72644 (6)
11111111111g 0.60068 (7) 0.70459 (7) 0.66819 (7) 0.57455 (7) 0.57556 (7) 0.62471 (7)

The experimental sensitivities of the optimal seeds are calculated from the five biological data sets(mixed, gal, mm1, mmX, and pan). The tested seeds
are listed as below: a: the optimal seed of HI [0, 1] and HI [0.5, 1], b: the default seed of PatternHunter, c: the optimal seed of HI [0.3, 0.7], d: the
optimal seed computed by mandala, e: the seed representing 5th-order non-coding markov model in [5], f: the seed representing 0th-order
non-coding markov model in [5], g: the default seed of BLAST.
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Table 1 in Additional file 2 lists the five optimal seeds
proposed by Mak and Benson [16] and the range of
similiarity levels where they are optimal for the
seeds with length 18 and weight 11. Seed A
(111*1**11*1*1**111) is dominant at the similarity
levels of [0, 0.05], seed B (111*1*1**11*1**111) is
dominant at the similarity levels of [0.05, 0.07] and
[0.73, 0.98], seed C (111*11**1*1**1*111) is domi-
nant at [0.07, 0.73], seed D (11**111*1**1*111*1)
i s dominant a t [0 .98 , 0 .999] , and seed E
(1111*1*11**1***111) is dominant at [0.999, 1.0].
A notable point is that two seeds B and C belong to the
optimal seeds presented in Table 1. Seed B is the optimal
seed under hit integration represented the seed marked
with ‘a’ and seed C is the default seed of PatternHunter
which is the seed marked with ‘b’. According to the table
1 in Additional file 1, which shows the hit integrations of
the five seeds, seed C is the best seed by HI [0.07, 0.73]
while seed B is best by HI [0.73, 0.98]. This complies
with the work of Mak and Benson. At the similarity levels
of [0.07, 0.73], seed C is better than seed B by the
amount of 0.00004 and than seed D by 0.00067
respectively. In the same way, seed B is better than
seed C by the amount of 0.00014 and than seed D by
0.00135 at [0.73, 0.98].

When hit integration is presented as a graph, it can be
easily known which is the best seed at a specific range.
Figure 3 shows the quantitative comparison of the five

seeds at two dominant ranges, 0.07~0.73 and 0.73~0.98.
Because the differences of the other ranges are too small
to compare graphically, we omitted them in the figure.
In order to see the results more clearly, the lowest
probability at each range is set to be 0 and the others are
substituted by the lowest probability. A noteworthy
observation is that the amount of the difference between
seed B an C at the range of 0.07~0.73 is much smaller
than at the range of 0.73~0.98. although the dominant
range of seed C is much larger than that of seed B.
Therefore, it can be concluded that the optimal seed
under hit integration is a better seed in practical use than
the PatternHunter’s seed since the former’s performance
is much better than the latter’s over the entire range of
similarity levels and the range of actual biological data.

Conclusion
We introduced hit integration, a novel idea of estimating the
sensitivity of a seed at a range of similarity levels, and
proposed a new algorithm of computing hit integration
which is equivalent to the accumulation of hit probabilities
at a range of similarity levels. Hit integration is successfully
formulated as the integration of hit probability. From this
formula, a dynamic programming algorithm of hit integra-
tion was developed. We identified the optimal seeds for hit
integration and evaluated them for real biological data. In
our experiments we studied 46,252 seeds of weight 11 and
length at most 20. Through experimental studies of real
biological data, the optimal seed recommended by hit
integration, 111**1*11**1*1*111, showed better sensitiv-
ity than PatternHunter’s seed. Moreover the average
sensitivity of this seed was always superior to the
PatternHunter’s seed. An alternative evaluation measure,
5th-order markov model for non-coding regions, showed
fluctuating performance depending on the different data set.
Therefore, the optimal seed of hit integration is really
optimal when the the similarity level of homology region is
unknown.

Although we presented an exact algorithm of evaluation
hit integration of a seed, it has a room to improve and
optimize. The computing time increases quickly as the
number of don’t cares in the seed increases. We are now
studying for more efficient algorithm to accelerate the
computing time without loss of information. Hit
integration is a newly proposed measure of seed’s
sensitivity. Therefore we expect that many possible
extensions and applications for hit integration will be
studied in near future.

Methods
Experimental process
Hit integration and the other models are evaluated on
real biological data sets. For the evaluation of hit

Figure 3
The comparison of quantitative differences. The
quantitative differences of hit integrations for five dominant
seeds are compared each other: A: 111*1**11*1*1**111,
B: 111*1*1**11*1**111, C: 111*11**1*1**1*111,
D: 11**111*1**1*111*1, and E: 1111*1*11**1***111. The
value of seed D is set to be 0 because it showed the lowest
probability at all ranges. The values of the others are
subtracted by the value of the seed D.
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integration, five data sets for genome alignments are
prepared; mmX: A 6.9 Mbps segment in Human
chromosome X (103.6 M~110.5 M) and 6.4 Mbps
segment in Mouse chromosome X (134 M~140.3 M),
mm1: A 6 Mbps segment in Human chromosome 1
(61 M~67 M) and 5.5 Mbps segment in Mouse
chromosome 4 (97 M~102 M), gal: A 6 Mbps segment
in Human chromosome 1 (61 M~67 M) and 1.7 Mbps
segment in Chicken chromosome 8 (27.7 M~29.4 M),
pan: A 3.6 Mbps segment in Human chromosome 6 (7
M~10.6 M) and 3.5 Mbps segment in Chimp chromo-
some 6 (7.2 M~10.7 M), mixed:A 16.5 Mbps mixed
segment of above four segments in Human genome and
17.1 Mbps mixed segment of above four segments in the
other genomes. According to Figure 2, the similarities of
the alignments are distributed normally from 50% to
100%. The peak points of the data sets are spreaded
widely such as the similarity of the peak point for mmX is
about 65% and for gal is about 80%. These data sets are
downloaded from GenomeBrowser [29]. The down-
loaded versions of genome projects are: Human genome
(version 18), mouse genome (version 9), chicken
genome (version 3), and chimp genome (version 2).

Alignments are found using PatternHunter2 [11] with
options -phmaskj and -W 7. The first option is used to
filter repeats. The second option forces to find the most
sensitive alignments in this program. Human genome is
considered as a database and the other genome is
considered as a query. Then, the resulting alignments are
converted into the binary strings respectively. The
matched positions are marked with 1 while the
mismatched positions are marked with 0. The binary
string is considered as the homologous region by its
definition described in subsection ‘Notation’. To evalu-
ate the seed performance, we compute for each seed how
many alignments from the data set contain a hit of the
seed. We conduct an exhausted search to find a hit in a
homologous region (a binary string of an alignment) by
sliding a seed from the start of the region to the end. If at
least a hit is occurred, we determine that this alignment
can be potentially found by an alignment program using
the seed. We compute the ratio of the number of the
alignments which are hit by the seed against the number
of all alignments. It is considered as the experimental
sensitivity of the seed on a set of alignments.
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