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Abstract

Background: Human Immunodeficiency Virus type 1 (HIV-1), the causative agent of Acquired
Immune Deficiency Syndrome (AIDS), exhibits very high genetic diversity with different variants or
subtypes prevalent in different parts of the world. Proper classification of the HIV-1 subtypes,
displaying differential infectivity, plays a major role in monitoring the epidemic and is also a critical
component for effective treatment strategy. The existing methods to classify HIV-1 sequence
subtypes, based on phylogenetic analysis focusing only on specific genes/regions, have shown
inconsistencies as they lack the capability to analyse whole genome variations. Several isolates are
left unclassified due to unresolved sub-typing. It is apparent that classification of subtypes based on
complete genome sequences, rather than sub-genomic regions, is a more robust and
comprehensive approach to address genome-wide heterogeneity. However, no simple methodol-
ogy exists that directly computes HIV-1 subtype from the complete genome sequence.

Results: We use Chaos Game Representation (CGR) as an approach to identify the distinctive
genomic signature associated with the DNA sequence organisation in different HIV-1 subtypes. We
first analysed the effect of nucleotide word lengths (k = 2 to 8) on whole genomes of the HIV-1 M
group sequences, and found the optimum word length of k = 6, that could classify HIV-1 subtypes
based on a Test sequence set. Using the optimised word length, we then showed accurate
classification of the HIV-1 subtypes from both the Reference Set sequences and from all available
sequences in the database. Finally, we applied the approach to cluster the five unclassified HIV-1
sequences from Africa and Europe, and predict their possible subtypes.

Conclusion: We propose a genomic signature-based approach, using CGR with suitable word
length optimisation, which can be applied to classify intra-species variations, and apply it to the
complex problem of HIV-1 subtype classification. We demonstrate that CGR is a simple and
computationally less intensive method that not only accurately segregates the HIV-1 subtype and
sub-subtypes, but also aid in the classification of the unclassified sequences. We hope that it will be
useful in subtype annotation of the newly sequenced HIV-1 genomes.
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Background
Human Immunodeficiency Virus (HIV) type 1, a retro-
virus, is the causative agent of Acquired Immunodefi-
ciency Syndrome (AIDS). With more than 33 million
individuals living with the virus and more than
25 million deaths since its onset, HIV has led to a global
pandemic [1]. The major problem to curb HIV-1,
through the development of a vaccine, has been its
high genetic variability and evolutionary rates [2]. This
genetic heterogeneity of HIV-1 has been attributed to the
lack of proofreading capabilities of the Reverse Tran-
scriptase enzyme [3,4]. Genetically diverse population of
viral species (‘quasispecies’) dwells inside an infected
individual [4], and HIV can exhibit up to 10% variability
within a single individual [5]. The human host’s
immune system as well as the antiviral drugs used in
treatment regimes also trigger viral evolution.

Analogous to within-individual variability, HIV exhibits
high heterogeneity at the population level. HIV-1
sequences are classified into three phylogenetically
distinct groups - M (Major), O (Outlier), and N (non-M/
non-O) - based upon their sequence diversity. The M
group is globally prevalent and responsible for the
pandemic. Group M is further stratified into nine
genetically discrete subtypes - A to D, F to H, J, and K -
showing up to 25% to 35% sequence level variations
between the genomes in different subtypes [2,5,6]. The
subtypes A and F are further classified into sub-subtypes
(A1, A2) and (F1, F2) based upon differential clustering
[2]. To add to the complexity, two or more HIV-1
subtypes recombine and circulate in the population to
form Circulating Recombinant Forms (CRFs), and new
CRFs continuously emerge over time.

Historically, the subtypes were classified based on the
envelope (env) gene sequence variations and classifica-
tion of subtypes A to F was done on the basis of env gene
alone [7]. All subtypes, except E, could be consistently
classified from the gag region of HIV-1 [8]. The partial
genome sequences and phylogenies based on env and gag
genes further led to designation of subtypes G to J [9-11].
Phylogenetic comparisons of A and F led to determina-
tion of sub-subtypes that form differential clusters
within the corresponding subtypes [12]. Generally,
HIV-1 strains fall into the appropriate phylogenetic
clusters when multiple regions of their genome are
analysed. Subtype K, which was earlier proposed to be a
sub-subtype of F based upon phylogenetic analysis of env
and gag sequences, was later classified as a distinct
subtype when whole genome sequences were analysed
[12]. Subtype I previously classified on the basis of C2V3
region of env sequences was later found to be a subtype A
and G recombinant [10,13]. Some of the recent methods
use env, gag and pol gene sequences, which together span

most of the HIV genome. These studies clearly indicate
that classification of subtypes based on complete
genome sequences, rather than sub-genomic regions,
may be a more robust and comprehensive approach.
However, no simple methodology exists that directly
computes a HIV-1 subtype from the complete genome
sequence, rather than generating gene-based phylogenies
and then analysing the distance matrices [14-16].

In this article, we address this problem by identifying the
variations in the genomic signatures (at various word
lengths) at whole genome level in the different subtypes
of HIV-1 using the Chaos Game Representation (CGR)
method [17]. CGR is a two-dimensional plot, where the
primary sequence organisation of DNA is mapped using
iterative functions. The use of CGR has mostly been
restricted to a visualization tool representing nucleotide
sequences, in which patterns like over- or under-
representation of nucleotides, dinucleotides, trinucleo-
tides etc. can be visually ascribed. Goldman concluded
that the patterns exhibited by CGR are sufficient to
evaluate word length composition of three, i.e., the
frequencies of nucleotides, dinucleotides and trinucleo-
tides [18]. However, it was shown later that longer
oligonucleotide frequencies also influence the patterns
seen in CGR [19]. Recently, a spectrum of word lengths,
in addition to nucleotide and dinucleotide, in CGRs
were identified as factors that can differentiate between
genomes of different species. Several distance measures
were proposed to compare two or more CGRs and it was
employed for studying phylogenetic relationships
among diverse species [19,20]. However, it is not clear
if intra-species genomic variability, which is much less
than between-species variation, can be resolved using
CGRs with similar word lengths. A different class of
methods, using data structures such as, suffix arrays and
suffix tree, have also been used to study specific genomic
signatures using different word lengths [21].

In this study, we demonstrate the applicability of CGR to
address the problem of intra-species variability by
considering the complex issue of HIV-1 subtype classifi-
cation, as these subtypes form a set, which exhibit subtle
differences that are sufficient for displaying differential
infectivity and evolutionary dynamics [22]. We show that
CGR is an effectivemethodology to resolve HIV-1 subtype
variations by first optimising the suitable word length,
and then applying the method to obtain the known and
unknown HIV-1 subtypes by analysing all available
whole genome sequences, along with the Reference
Sequence set that is used by workers in the field [23].
Our studies clearly show that this unusual approach can
effectively be used for studying intra-species variability in
general, and specifically offer an easy-to-use and accurate
method for HIV-1 sub-typing from whole genome data.
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Methods
Data acquisition
HIV-1 sequences were downloaded in FASTA format
from the HIV Sequence Database at Los Alamos National
Laboratory (July 2009) [24]. The word length analysis
was carried out on the dataset containing one sequence
for each year corresponding to a subtype. This resulted in
a set of 75 genome sequences containing 7 of subtype A,
26 of subtype B, 21 of subtype C, 13 of subtype D, and 8
of subtype G sequences. For word length optimisation,
all subtype A and G sequences from the previous set were
taken along with randomly choosing 8 each for subtype
B, C and D. Thus, 39 genomes were used as the Training
Set (Table 1), and the remaining sequences were used to
test the optimised word length.

The Reference Sequences set was taken from the HIV
Database, which were classified using traditional
sequence alignment methods [23]. The Reference set
contains four sequences each for subtype B, C, D and G;
three sequence for subtype H; two each for subtype J and
K; four each for sub-subtype A1, F1 and F2; two for sub-
subtype A2 and four for SIVcpz, where SIVcpz is the SIV
sequence derived from Chimpanzee. The U (unclassi-
fied) sequences were also collected from the database.

CGR plot
CGR of a genome is plotted in a square, with each of the
four vertices labelled as the four nucleotide bases A, T, G
and C, respectively. To initialise, we place the first point
in the middle of the square. The second point is placed
as a mid-point between the initial point and the
coordinates of the vertex corresponding to the first
nucleotide of the DNA sequence. The next point,
corresponding to the second nucleotide, is placed as a
mid-point between the previously plotted point and the
coordinate of the vertex. The process is repeated for the
complete sequence and the entire genome is plotted in a
two-dimensional plot. The frequency of different word
lengths can be extracted by dividing the CGR space with
a grid of appropriate size. To obtain the frequencies of all
the k-letter words, CGR must be divided into a (2k × 2k)

grid. The frequencies are obtained by counting the
number of occurrences in each box of the grid.

For our work, a (800 × 800) square was constructed to
map the genomes. The four nucleotides were assigned
CGR vertices as A (0,0); T (800,0); G (800,800); and C
(0,800). For a genome g of length n, the position for
nucleotide gi in the CGR is calculated as

CGR CGR CGR gi i i i= + +− −1 10 5. *( ),

where the initial point CGR0 is the mid point of the
square (i.e., 400,400) and i varies from 1, .... n. In order
to have greater resolution to study the effect of different
word lengths, we have taken 800 divisions to construct
the CGR.

While calculating the dinucleotide frequencies, each of
the quadrants corresponding to a nucleotide is divided
into four parts. The first nucleotide of each part is then
labelled as for the original CGR quadrant, while the
second nucleotide is labelled as the quadrant for which
the divisions are being made. The process is explained in
Figure 1, where G quadrant is divided into the
corresponding G ending dinucleotides, which can
further be divided into corresponding trinucleotides, as
shown for TG. Thus, for word length 2, the CGR is
divided into 16 divisions, and inside each division, the
frequency of occurrence is calculated. Similar iterative
procedure is followed for higher word lengths. We have
analysed the CGR up to word length k = 8.

Distance calculations
To evaluate the relatedness of different HIV-1 subtypes,
we calculate pair-wise distance between CGRs. We used
simplest of the distances, the Euclidean distance d,
between a pair of CGRs (A and B) using the formula:
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Table 1: Accession numbers of training set sequences used for word length optimisation

Sr. No. A B C D G

1 AY521630 AF004394 U46016 AY773338 U88826
2 AM000053 AF042101 AY713415 AY773341 AF061642
3 AM000054 AF256204 AY713416 EF633445 AY772535
4 AY521629 AF086817 AY255826 AY322189 AY586549
5 AY521631 AF042103 EF514713 AF484516 AF423760
6 AM000055 AB428555 DQ207941 AJ488927 AY371121
7 DQ396400 AB287363 DQ369994 AY371157 AB231893
8 EU786678 EU786673 AY795907 EU786670
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where, k is the word length; aij and bij are the frequency
values corresponding to the first and second CGR. For a
given set of CGR, we constructed pair-wise distance
matrices for each pair, and used it for further analysis. All
calculations were performed using MATLAB R2007b
[25].

Clustering
Pair-wise distance matrices were used to cluster different
HIV-1 subtypes using Neighbor-Joining (NJ) method
and the “Neighbor” programme of PHYLIP [26] was
used to construct the dendrograms.

Results and discussion
Here we present the results of our study on the
classification of HIV-1 subtypes using the CGR approach.
First, we generated the CGR plots for the first HIV-1
complete genome sequence to highlight the features
exhibited by a typical HIV-1 genome. Then we used the
training set of HIV-1 subtype genome sequences, given
in Table 1, to optimise the word length required to
correctly segregate the different subtypes. We further
tested the optimised word length on the Reference
Sequence Set used for HIV sub-typing, and also for
other subtype sequences available in the database.
Finally, we analysed all the unclassified sequences for
HIV-1 implementing our methodology of CGR.

CGR for HIV genome
The first complete HIV-1 genome sequence (HXB2 -
Accession number K03455) was taken to generate the
corresponding CGR (Figure 2A). HIV-1 is a A-rich virus,
which can be easily seen from the high density of points

in the A-quadrant of the CGR. General properties like
CG, CGG and CGT under-representation in this genome
can be determined directly by looking at this CGR. As a
control, we generated a randomised CGR keeping the
single nucleotide composition as in HXB2 genome
(Figure 2B). Given the constraint of single nucleotide
composition, the random CGR comprises homogeneous
frequency distribution. This random control also does
not depict under-representation of CG, CGG and CGT
dinucleotides. Clearly, CGR constructed for HIV-1
sequence highlights the prominent genome signatures.

Clustering of HIV-1 group M subtypes using different
word lengths
The Training Set of HIV-1 subtype sequences used to find
the optimum word length sufficient to resolve various
subtypes is given in Table 1. CGR corresponding to all
Training Set genomes were constructed and the frequen-
cies corresponding to word lengths k = 2 to 8 were
calculated. Dendrograms constructed using the Neigh-
bor-Joining algorithm for word lengths 4, 5 and 6 are
shown in Figure 3. The SIVCPZ sequence is used as an
out-group to root the Tree. Out of the 39 sequences,
word lengths of 2 and 3 produced Trees with incorrect
clustering of HIV-1 group M subtypes for 28 and 22
sequences, respectively. Word length of 4 generated a
mixed cluster where 14 sequences do not cluster along
with their respective subtypes (circled in Figure 3A). Here
the cluster containing the maximum sequences for a
particular subtype was assigned the “main” subtype
cluster, and the rest of the sequences for that subtype
were counted as being “incorrectly clustered”. With word
length 5, one sequence belonging to subtype B exhibit
incorrect clustering with the subtype C cluster (Figure 3B).
Accurate clustering was achieved with word length k = 6,
where all Training Set subtypes segregated in distinct
clusters. Similar clustering patterns were observed for
subtypes with word length 7 and 8 (results not shown).
Thus, increasing the word length did not provide any

Figure 1
Schematic explaining Chaos Game Representation.
The division of CGR to obtain dinucleotide and trinucleotide
frequencies with the G quadrant shown sub-divided into the
corresponding G-ending dinucleotides. The first letter is
arranged following the pattern of single nucleotide used to
plot the CGR, with G, C, A and T given from first to fourth
quadrant respectively.

Figure 2
Chaos Game Representation plots. (A) HXB2, the first
HIV-1 genome sequenced, and (B) random control of HXB2.
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additional information. Hence, based on the Training Set
sequences and the knowledge of existing subtype speci-
fications, we chose word length k = 6 to be the optimum,
as it can distinguish between HIV-1 subtypes with
minimum computational cost.

Resolving subtypes from the reference dataset
In order to classify new HIV-1 sequences, a Reference
Sequence Set, apart from the above-mentioned
sequences, is often used [23]. CGR corresponding to all
Reference Set genomes were constructed and the
frequencies corresponding to word length 6 were
calculated. Figure 4 shows the dendrogram of the
Reference Set of HIV-1 group M sequences. It clearly
resolves all the distinct clusters as per different subtypes
given in the Reference Set [23]. Thus, the optimised word
length generates consistent classification with the Refer-
ence Set sequences, which were classified using tradi-
tional sequence alignment methods. The data set was
found to be free of any reticulate component by verifying
it using the neighbor-net algorithm as implemented by
SplitsTree4 [27].

Resolving subtypes from all available genome sequences
After confirming the efficacy of our method with word
length of 6 with the Reference Sequence dataset, which
comprised of homogenous representation of each

subtype, we constructed the CGR of all available whole
genome sequences from subtypes A to K (Test Set). We
randomly picked up 45 sequences, with unequal
representation of different subtypes, from the complete
whole genome dataset and obtained the dendrogram
with k = 6, as shown in Figure 5A. It is clear from Figure 5A
that the Test sequences for HIV-1 subtypes segregated
into different clusters with 100% accuracy - sequence 1
to 18 belonged to subtype B; 19 to 31 to subtype C; 32 to
36 to subtype D; 37 to 39 to subtype H; 40 to 42 to
subtype J; 43 and 44 to subtype K and 45 was SIVCPZ

sequence. We performed the same analysis to test
whether taking lower word lengths can resolve the
subtypes, and found that k = 5 gave incorrect clustering
for one subtype C sequence (circled in Figure 5B). Thus,
word length 6 can differentially segregate HIV-1 subtypes
with both equal and unequal representation of subtype
sequences. It may also be noted that the method was
developed based on test sequences belonging to sub-
types A, B, C, D, and G (Figure 3). Still it is able to
identify and differentially cluster other subtypes, such as
H, F, J and K, and sub-subtypes correctly.

Predicting the subtypes of unclassified sequences
Some of the HIV-1 group M sequences are regarded as
Unclassified sequences (U). These sequences either
represent a variant that may belong to a new subtype,

Figure 3
Clustering of HIV-1 subtypes using different word lengths. (A) k = 4, (B) k = 5 and (C) k = 6. SIVCPZ sequence
was used as out-group to root the tree. The circled entries show the inaccurate clustering.
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or has been left unclassified due to lack of proper
classification methodology. We constructed the CGRs
from the whole genome sequences of the five Unclassi-
fied entries (U1-U5), and used the HIV-1 Reference
Sequence set to cluster them. The dendrogram is shown
in Figure 6. The two unclassified sequences (U1 and U2)
are from Democratic Republic of the Congo, and were
sequenced in year 1983 and 1990 respectively. They
form a distinct cluster close to subtype H cluster. From
the sub-subtypes clustering patterns in the dendrogram,
we suggest that these sequences may be regarded as
subtype H variants. In this respect, it may be noted that
H subtype is also found in the Central Africa and is
prevalent in Democratic Republic of Congo. The
unclassified sequences U3 and U5, from the Nether-
lands, were sequenced in year 1995 and 2001, respec-
tively. These two form a distinct cluster close to
subtype K. Similar to U1-U2, these two (U3 and U5)
can be regarded as subtype K variants. It may be
mentioned that U3 and U5 have been shown to be
similar to subtype K in certain limited regions of the
sequence length of 100 to 200 nucleotides [28]. In that
study, the authors pointed out that these sequences
might be designated as subtype K variants, provided
more sequences are obtained from unrelated individuals,
as it was not commonly found in Netherlands [28].
Unclassified sequence U4, isolated from Greece, is
closest to subtype A cluster, however, it does not cluster
along with either of the A sub-subtypes. Our result
indicate that this may be another A sub-subtype. Studies
have shown that subtype A has become prevalent in
Greece and these variants, though similar to subtype A,
do not belong to any of the subtype A sub-clusters [29].

Figure 4
Clustering for HIV-1 subtype reference sequence set
for k = 6. SIV was used as an out-group to root the tree.

Figure 5
Clustering of HIV-1 subtypes. Clustering of HIV-1 subtypes for - (A) k = 6 and (B) k = 5, randomly picked from all available
complete genome sequences
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Conclusion
The exponential growth of HIV-1 genome sequences
manifest variable geographical distribution of the sub-
types. Subtype C dominates the regions of South Africa,
India, China, etc. and is the most prevalent subtype that
causes HIV-1 epidemic. On the other hand, HIV-1
subtype B is the most studied subtype predominant in
Americas, Australia, Western Europe, Japan etc. The high
variability of HIV-1 has major influence on infectivity
and transmissibility of the virus, with subtypes exhibit-
ing variable treatment response and differential selection
of drug resistance mutations as seen for subtype B and C
[7]. Therefore, accurate classification of HIV-1 genomes
is important as it facilitates the efficacy of monitoring the
epidemic and developing treatment strategies.

CGR in the past has been used as a visualization tool,
and it was shown that it could highlight inter-species
differences. However, here we propose that CGR is a
simple and computationally less intensive method,
which can even identify genomic signatures marking
intra-species variability, which are much less as com-
pared to the inter-species variability. We demonstrate
that CGR is a suitable method to correctly separate HIV-1
group M subtypes, using whole genome sequences. We
demonstrate the applicability of different word lengths,
and prove that word length of six is sufficient to
differentially segregate HIV-1 subtypes and sub-subtypes
into distinct clusters. In HIV-1, regions of high variability
have been known to exhibit non-random distribution of
certain 6 base pair long nucleotide sequences, which may
undergo non-synonymous mutations leading to changes
in the amino acids [30]. CGR computed from genome
sequences, however, can recognize both synonymous
and non-synonymous changes highlighting both neutral
as well as selective mutations. It remains to be studied if
a similar analysis of the proteome, instead of the genome
sequence, would be useful in obtaining the functional
basis of the sub-type classifications.

This methodology utilizes genome-wide information
rather than gene- or region-specific information to
classify HIV-1 subtypes. Using CGR, we could replicate
the clustering of Reference Sequence set, and also all other
HIV-1 group M subtype sequences. Importantly, we show
that using this method we could also classify the five
Unclassified sequences to subtypes, which fit with
additional information available in literature. Thus, we
demonstrate the applicability of this newmethod to solve
the complex problem of HIV-1 sub-typing, and propose
its use in subtype annotation of the newly sequencedHIV-
1 genomes. The proposed methodology, with suitable
word length optimisation, can also be applied to classify
intra-species variants in other organisms.
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