
Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Open AccessM E T H O D O L O G Y A R T I C L E
Methodology articleCloud computing for comparative genomics
Dennis P Wall*1,2, Parul Kudtarkar1, Vincent A Fusaro1, Rimma Pivovarov1, Prasad Patil1 and Peter J Tonellato1

Abstract
Background: Large comparative genomics studies and tools are becoming increasingly more compute-expensive as
the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures
are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative
computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and
enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned
a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's
Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of
fully sequenced genomes.

Results: We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to
100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large
and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD.

Conclusions: The effort to transform existing comparative genomics algorithms from local compute infrastructures is
not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with
manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily
adaptable to similar comparative genomics problems.

Background
The onslaught of new genome sequences has begun to
outpace the local computing infrastructures used to cal-
culate and store comparative genomic information. For
example, because the number of genomes has increased
approximately 12 fold over the last 5 years, algorithms
that detect orthologs and assemble phylogenetic profiles
are faced with an increasing computational demand.

One such computationally intensive comparative
genomics method, the reciprocal smallest distance algo-
rithm (RSD), is particularly representative of the scaling
problems faced by comparative genomics applications.
RSD is a whole-genomic comparative tool designed to
detect orthologous sequences between pairs of genomes.
The algorithm [1] (Figure 1) employs BLAST [2] as a first
step, starting with a subject genome, J, and a protein
query sequence, i, belonging to genome I. A set of hits, H,
exceeding a predefined significance threshold (e.g., E <
10-10, though this is adjustable) is obtained. Then, using

clustalW [3], each protein sequence in H is aligned sepa-
rately with the original query sequence i. If the alignable
region of the two sequences exceeds a threshold fraction
of the alignment's total length (e.g., 0.8, although this is
also adjustable), the codeml program of PAML [4] is used
to obtain a maximum likelihood estimate of the number
of amino acid substitutions separating the two protein
sequences, given an empirical amino acid substitution
rate matrix [5]. The model under which a maximum like-
lihood estimate is obtained in RSD may include variation
in evolutionary rate among protein sites, by assuming a
gamma distribution of rate across sites and setting the
shape parameter of this distribution, α, to a level appro-
priate for the phylogenetic distance of the species being
compared [6]. Of all sequences in H for which an evolu-
tionary distance is estimated, only j, the sequence yielding
the shortest distance, is retained. This sequence j is then
used for a reciprocal BLAST against genome I, retrieving
a set of high scoring hits, L. If any hit from L is the origi-
nal query sequence, i, the distance between i and j is
retrieved from the set of smallest distances calculated
previously. The remaining hits from L are then separately
aligned with j and maximum likelihood distance esti-

* Correspondence: dpwall@hms.harvard.edu
1 Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115
USA
Full list of author information is available at the end of the article
© 2010 Wall et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20482786

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 2 of 12
mates are calculated for these pairs as described above. If
the protein sequence from L producing the shortest dis-
tance to j is the original query sequence, i, it is assumed
that a true orthologous pair has been found and their
evolutionary distance is retained (Figure 1).

The algorithm is a multi-step process that composes
several applications (Figure 1) into a straightforward
workflow. The workflow involves the use of BLAST for
initial sequence comparison, clustalW for sequence align-
ment, codeml for estimation of distance calculation, as
well as various intervening conversion programs to
ensure proper formatting of input Keeping the tunable
parameters of the algorithm constant, RSD scales qua-
dratically with the number of genome sequences. How-
ever, to enable more flexibility for ortholog detection
among distantly related organisms and also to enable the
creation of clusters of recent paralogs, RSD should ideally
be run over a range of values for both the divergence and
evalue parameters, spanning from conservative to
relaxed. Thus, the total number of processes that must be
run for N is ((N)(N-1)/2)*M, where M represents the
number of different parameter settings for evalue and
divergence.

Assuming that the current number of genomes
sequences, N, is 1000, and the number of different
parameter settings, M, is 12, the total number of pro-
cesses required for a full complement of results would be
5,994,000. Further assuming that each individual process
takes on average 4 hours (generally a lower bound for big
genomes), and constant access to 300 cores of computer
processing power, the total time to complete this task
would be 79,920 hours, or 9.1 years. Therefore, the cost of
operation of the RSD algorithm can be quite extensive
and magnified not only by the influx of new genome
sequences, especially as sequencing technologies con-
tinue to improve in speed, efficiency and price, but also
by the rate at which genomic sequences are updated and
revised. In fact, to keep pace with genome additions and
revisions, ensuring all-versus-all for both new and exist-
ing genomes, the number of processes rises as: f(N,0) =
((N × 0) + (N × (N-l)/2)) × M, where N is the number of
genomes awaiting computation of orthologs, 0 is number
of genomes previously processed, and M is the number of
different parameter settings.

Elastic cloud architectures, for example Amazon's Elas-
tic Computing Cloud (EC2) [7], represent a possible solu-
tion for rapid, real-time delivery of cross-genomic data as

Figure 1 The reciprocal smallest distance algorithm (RSD). Arrows denote bidirectional BLAST runs. After each run, hits are paired with the query
to calculate evolutionary distances. If the same pair produces the smallest distance in both search directions, it is assumed to be orthologous. The
specifics of the algorithm are provided in the Introduction.

ab

bb

cb

c

c

c

a

b

c

vs.

vs.

vs.

vs.

vs.

vs.

Align sequences &
Calculate distances

D=0.2

D=0.3

D=0.1

D=1.2

D=0.1

D=0.9

Orthologs:
ib - jc D = 0.1

HL Align sequences &
Calculate distances

JcIb

Genome I Genome J

RSD algorithm summary

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 3 of 12
the availability of genomic information continues to
climb at a rapid pace. Typical uses of the cloud have been
in the areas of economics, health, and the entertainment
industry, but so far this computing solution has had lim-
ited impact on the field of comparative genomics. Only a
handful of projects have been launched, for example, the
Sanger Institutes fast matching and alignment algorithm
to assemble full human genome [8], Cloud Burst to map
next generation sequencing data [9], Cloud Blast a
"clouded" implementation of NCBI BLAST [10], a virtual
laboratory for protein sequence analysis on cloud estab-
lished at Indiana University [10], and an algorithm to
search for single nucleotide polymorphisms [11]. Yet the
number of cloud resources is on the rise, with service-
based cloud environments from Microsoft [12], Google
[13], Amazon [7], SGI [14], and more, lending an unprec-
edented opportunity to evaluate the capabilities of the
cloud for sustainable and large-scale comparative genom-
ics.

In the present study, we elected to test the capabilities
of EC2 for all-against-all ortholog calculation using the
reciprocal smallest distance algorithm across a wide array
of recently sequenced genomes. Our study examines the
efficacy of the cloud in general, and the best practices for
optimal setup and operation within the EC2 in particular.
We expect that the protocols developed as a consequence
of our research will be readily scalable to other problems
within the space of comparative genomics as well as to
other fields employing similar workflows for large-scale
computation.

Results
Cloud Testing and configuration
Prior to the successful operation of the cloud, it was nec-
essary to choose optimal settings for various parameters
used by the Elastic MapReduce framework (EMR), the
framework that enables parallel processing within the
Elastic Compute Cloud (EC2). The complete configura-
tion of the cloud for both the BLAST and ortholog esti-
mation steps required that 12 parameters be set
(summarized in Table 1). The argument "--jobconf
mapred.map.tasks" was used to specify a priori the num-
ber of map tasks for both the blast step and ortholog
computation step of the RSD cloud algorithm. In our
case, the number of map tasks was the number of BLAST
comparisons and number of ortholog computations,
respectively. In cases similar to ours, for example, situa-
tions where a user is only running BLAST or clustalw,
this setting would still need to be used, but adjusted
appropriately to equal the number of blast comparisons
or clustal alignments required. Since our process flows
did not need a reducer step, the output of the mapper
task was the final output of each job, and the number of

output files (called "part" files in HDFS) generated was
equivalent to the total number of mapper tasks.

Certain parameters including "--jobconf
mapred.task.timeout" required tests to identify the best
value for optimal performance and cost effectiveness of
the compute cloud. This parameter was used to specify
the maximum number of hours needed to execute the
RSD cloud algorithm on a single pair of genomes. If the
value for this parameter was set to be too low, ortholog
comparisons exceeding this setting were marked as failed
by the EMR program causing after 4 consecutive tries the
node to be blacklisted by EMR and no longer available for
further computational processes. On the other hand, if
the value for this parameter was set to be too high, jobs
that had failed due to transient filesystem errors or other
reasons were left running in a zombie state, thereby burn-
ing time and resources. In either case, the size of the com-
pute cloud and the speed of the calculations were
negatively impacted. Therefore, we empirically deter-
mined an optimal setting for this parameter by bench-
marking the time period needed to complete the largest
pairs of genomes available in our Roundup data reposi-
tory [15]. We determined the best "goldilocks" setting to
be 86400 seconds (~24 hours). This ensured that the
EMR process would distinguish between long-running
and failed jobs without impacting the availability of nodes
within the cluster.

In addition, the allocation of the heap space was of crit-
ical importance to ensure proper function of the compute
cloud. Through various test runs we discovered that the
JobTracker daemon would frequently run out of memory
and require manual restarts. Because this occurred on the
master node, the entire cluster would be negatively
impacted. To avoid this, we used a bash script that would
automatically reconfigure the memory allotted to the
daemon at launch time. We placed the script on S3 and
passed it to the EMR program using the "--info" option.
The script accepted a simple argument designed to real-
locate the memory assigned to the JobTracker daemon
from the default setting of 1GB to 3GB for BLAST pro-
cesses and 5GB for RSD processes. These values repre-
sented upper bounds and successfully avoided memory-
related compute cloud failures.

Compute cloud processing
We selected 55 small bacterial genomes that had not
already been incorporated into the existing Roundup
repository [15]. To provide a comprehensive test of the
capabilities of the EC2, we computed orthologs for all
pairs of these 55 new genomes, plus the number of pro-
cesses needed to compare these 55 with the existing set of
genomes included in the Roundup repository, 399 at the
time of writing, bringing the total number of genomes
compared to 454. As such, the total number of computa-

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 4 of 12
tional jobs run on the cloud was 328,020 computed as
((N*N-l/2)+(N*399))*2 +CCN*N-l/2)+(N*399))*X, where
N is the number of new genomes and X represents the
number of parameter combinations typically calculated
by the Roundup tool, in this case 12. The first part of the
formula corresponds to the BLAST procedure and the
second corresponds to the ortholog estimation step.
Although the 55 new genomes used for our study were
relatively small, the genomes contained in the Roundup
repository against which these were compared spanned a
wide range of large eukaryotic and smaller bacterial
genomes. The smallest genome contained 477 sequences

and the largest contained 46892, and the time for comple-
tion of any genome comparison ranged from approxi-
mately 5 minutes to 4 hours. Table 2 provides a detailed
summary of the process time and cost per step.

Throughout the execution of both the BLAST and
ortholog estimation steps, we were able to monitor the
health of our compute cloud through the user interface
for the JobTracker Daemon on the master node (Figure
2). This UI enabled us to see that our map tasks executed
properly and to monitor their status as they completed.
We were also able to monitor individual running BLAST

Table 1: Elastic Map Reduce commands

Argument Description Input

--stream Activates the "streaming" module N/A

--input File(s) to be processed by EMR hdfs:///home/hadoop/blast_runner hdfs:///home/
hadoop/ortho_runner

--mapper Name of mapper file s3n://rsd_bucket/blast_mapper.py s3n://
rsd_bucket/ortho_mapper.py

--reducer None required, reduction done
within RSD algorithm

N/A

--cache-archive Individual symlinks to the
executables, genomes,

s3n://rsd_bucket/executables.tar.gz
#executables,#genomes,
#RSD_standalone,#blastinput,#results

--output hdfs:///home/hadoop/outl

-- jobconf mapred.map.tasks Number of blast and ortholog
calculation processes

= N

-- jobconf mapred.tasktracker.map.tasks.maximum Total number of task trackers = 8

--jobconf mapred. task, timeout Time at which a process was
considered a failure and restarted

= 86400000 ms

--jobconf mapred.tasktracker.expiry.interval Time at which an instance was
declared dead.

3600000 (set to be large to avoid instance shut
down with long running jobs)

--jobconf mapred.map.tasks.speculative.execution If true, EMR will speculate that a job
is running slow and run the same
job in parallel

False (because the time for each genome-vs-
genome run varied widely, we elected to set this
argument to False to ensure maximal availability of
the cluster)

Specific commands passed through the Ruby command line client to the Elastic MapReduce program (EMR) from Amazon Web Services. The
inputs specified correspond to (1) the BLAST step and (2) the ortholog computation step of the RSD cloud algorithm. These configurations
settings correspond to both the EMR and Hadoop frameworks, with two exceptions: In EMR, a --j parameter can be used to provide an identifier
for the entire cluster, useful only in cases where more than one cloud cluster is needed simultaneously. In Hadoop, these commands are passed
directly to the streaming.jar program, obviating the need for the --stream argument.

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 5 of 12
and ortholog estimation jobs in more detail using the job
summary user interface (Figure 3).

Our decision to use High-CPU extra large instances
proved both cost and time effective. Although alterna-
tives such as the standard small instances were cheaper
per hour, our calculations demonstrated that these alter-
natives would have required substantially more compute
time to complete, ultimately resulting in the same cost
totals (Table 3).

Discussion
Comparative genomics will continue to demand high per-
formance computing solutions. This is especially true as
new genome sequencing technologies continue to drive
down costs and ramp up volume. The work we present
here represents one of the first successful deployments of
a standard comparative genomics tool, the reciprocal
smallest distance algorithm (RSD), to Amazon's Elastic
Compute Cloud (EC2) via the web service Elastic MapRe-
duce (EMR).

To date, most use cases on the cloud have fit the para-
digm embodied by the Hadoop and EMR frameworks.
The applications are written in Java and are generally
"pleasingly parallel" compute problems, such as text or
image processing. As such, they conform well to the con-
figuration expected. Our tool, which is likely to be similar
to many other comparative genomics algorithms, devi-
ated sharply from these Hadoop and EMR standard use
cases. The largest deviation was that the RSD algorithm
involves a pipeline of programs written in languages
other than Java, including python, perl, and C. At first
glance, the streaming functionality provided by EMR
appeared to be a viable out-of-the-box solution. However,
this function also was not designed to handle complex
operations like that inherent to RSD. The original intent
of the streaming function was to pass input via standard-
in to the mapper for processing, the results of which
would be passed via standard-out to the reducer for sum-
mation. As such, the object of the mapper was expected
to reside within an input directory on the Hadoop Dis-
tributed File System used by EMR. Given the complex

Table 2: Summary of time and cost for Elastic MapReduce runs.

Process Type processes instances Time Total ($)

Blast 21945 100 40 hours 0 mins $ 3,680

Ortholog Estimation 281160 100 28 hours 21 mins $ 2,622

These cost estimates are based on the use of the High-CPU Extra Large Instance at 0.80 per hour and use of EMR at 0.12 per hour. These costs
assume constant processing without node failures. Total costs = $6302.

Figure 2 Example of the Compute Cloud user interface for monitoring the health of the cluster and progress of mapped cloud tasks. (A) The
Cluster summary provided a summary of the compute cloud. (B) Running jobs listed the Job id of the current running task, root user, job name and
map task progress update. (C) Completed Jobs provided an up-to-date summary of completed tasks. This user interface also provided information
about failed steps as well as links to individual job logs and histories. Access to this user interface was through FoxyProxy, described in the Methods.

Map Reduces Total Submissions Nodes Map Task Capacity Reduce Task Capacity Avg. Tasks/Node

392 0 5 49 392 196 12

A. Cluster Summary

Jobid User Name Map %
Complete

Map Total Maps
Completed

Reduce %
Complete

Reduce Total Reduces Completed

Job_1 hadoop Roundup compute 10.00% 375540 37554 0.00% 0 0

B. Running Jobs

Jobid User Name Map %
Complete

Map Total Maps
Completed

Reduce %
Complete

Reduce
Total

Reduces Completed

Job_0002 hadoop Distcp blast runner 100% 1 1 0.00% 0 0

Job_0003 hadoop Blastp compute 100% 62590 62590 100% 0 0

Job_0005 hadoop Distcp roundup runner 100% 1 1 0.00% 0 0

C. Completed jobs

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 6 of 12
stream of operations needed by RSD including the need
to run a host of programs across whole genomic sequence
databases, this straightforward design proved too inflexi-
ble. Therefore, we elected to generate, prior to compute
cloud configuration, a single input file containing the
RSD command-line arguments needed for the set of
genomes to be compared. This input file became the
object of the mapper, enabling the mapper to read the
RSD commands line-by-line and to launch them to com-
pute nodes for processing. This solution provided the
flexibility necessary to accommodate a host of programs
written in alternative languages aside from Java while
retaining the capabilities of the EMR program, most
importantly including fault tolerance and job tracking.
Because the endpoint of every map task was a file con-
taining the orthologs and evolutionary distances for a
specific pair of genomes, a reducer step was not required.
However, going forward one could be used for meta-anal-
ysis of the results from individual map tasks, such as
selecting the most conserved orthologs among a set of

genomes, or for assembly and analysis of phylogenetic
profiles.

With this solution, we were able to take full advantage
of the compute cloud to run RSD in the same way as it
would be run on a local Linux compute farm, for a man-
ageable cost. We ran over 300,000 processes in total,
computing results for 454 fully sequenced genomes,
including 55 new genomes not previously incorporated
into the Roundup online genomics resource that employs
the RSD algorithm. This successful application demon-
strated that the cloud represents an ideal platform for
either augmentation of existing local computing hard-
ware, or for complete replacement. We anticipate that
other comparative genomics tools that have similar work-
flows and that are not written entirely in Java will be able
to take advantage of the solutions we present here. In par-
ticular, the instantiation of the compute cloud, the run
configuration steps via the Ruby CLC (Table 1), and our
use of the streaming function of EMR should be immedi-
ately scalable to other similar problems.

Figure 3 Example of the Job user interface for monitoring the status of individual jobs. (A) Job summary provided job information like the user,
job start time and the duration of the job. (B) Job status gave the task completion rate and failure reporting. (C) Job Counter indicated job progress
and additional counter. The progression of the mapper was also displayed graphically at the bottom of web UI page (not shown here). Access to this
user interface was through FoxyProxy, described in the Methods.

A. Job Summary
User: hadoop
Job Name: Roundup compute
Job File: hdfs://ip-10-245-107-159.ec2.internal:9000/mnt/var/lib/hadoop/tmp/mapred/system/Job_20009009281550_0005/job.xml
Status:Succeeded
Started: Tue Sep 29 23:11:21 UTC 2009
Running for:5 hrs,16 mins ,51 secs

Kind %Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 10.00% 375540 337986 392 37554 0 0/0

reduce 0.00% 0 0 0 0 0 0/0

B. Job status

C. Job Counter

Counter Map Reduce Total

Job Counter
HDFS bytes read 13,118,943 0 13,118,943

HDFS bytes written 1,236,883,777 0 1,236,883,777

FileSystemCounter

Rack-local map tasks 0 0 187,147

Launched map tasks 0 0 200,264

Data-local map tasks 0 0 12,847

Map-Reduce Framework

Map input records 375540 0 375540

Map input bytes 107,929,085 0 107,929,085

Map output records 2,089,427,874 0 2,089,427,874

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 7 of 12
In sum, based on our successful deployment of RSD on
Amazon's EC2, we believe that cloud architectures repre-
sent an exciting alternative to standard approaches to
high performance computing for comparative genomics.
It remains to be seen how much of an impact cloud archi-
tectures and the "pay-as-you-go" model of computing
provided by vendors like Amazon will have on the future
of comparative genomics and other fields requiring heavy
computation. Our prediction is that the impact will be
significant and that within 2 years, a majority of applica-
tions like the one studied here will be ported to cloud
architectures.

Conclusions
Cloud computing architectures are rapidly emerging as
robust and economical solutions to high performance
computing of all kinds. To date, these architectures have
had a limited impact on comparative genomics. Here we
describe the successful deployment of a commonly used
comparative genomics tool, the reciprocal smallest dis-
tance algorithm, to the Elastic Compute Cloud (EC2) of
Amazon Web Services using the Elastic MapReduce
(EMR).

One of the most important components of our deploy-
ment was the configuration and use of the streaming
function provided by both EMR and Hadoop. By using
this function, we were able to capitalize on the technical
advantages conferred by EMR/Hadoop, without having
to recode our own sequence analysis workflows into Java,
and without having to design our own solutions for job
queuing, tracking and maintenance. These steps are
applicable to virtually any sequences analysis workflow
with little or no changes to the configuration settings that
we describe. In addition, the procedures we have outlines
can be ported to any cloud environment that accommo-
dates standard Linux distributions running Hadoop.

Thus, we expect that more and more applications like
ours will be running on cloud environments in the near
future.

Methods
General setup
Amazon services requirements
We created an account with Amazon Web Services that
provided access to 3 specific products, the Elastic Com-
puting Cloud (EC2) [7], the Elastic MapReduce (EMR)
framework [16], and the elastic storage unit (S3) [17].
This account creation process yields "access" and "secret"
keys needed to instantiate instances within the EC2 and
run the setup and execution procedures detailed below.
We used three services provided by Amazon, the EC2,
EMR, and S3. The cost per hour for EMR was $0.12, and
the cost per hour for use of a single extra large high per-
formance compute instance on EC2 was $0.80. S3 storage
cost was $0.15 per GB storage, $0.10 per GB for data
transfer in and $0.17 per GB for data transfer out.
RSD requirements
Prior to running a comparative analysis between two
genomes, it was necessary to download and compile the
external programs that are executed within the RSD algo-
rithm, namely blastp, codeml, and clustalW. Once com-
piled, the executables were placed into a folder called
"executables" on a local machine and subsequently com-
pressed into a tarball called "executables.tar.gz". This
gzipped tarball was required for later loading to the S3
storage bucket of Amazon's Web Services.

We also downloaded and unpacked to our local
machine the complete RSD standalone package from the
Roundup website [15]. This cloud-ready version of the
reciprocal smallest distance algorithm contains several
python programs for both blast- and RSD-specific pro-
cesses. These programs are listed and described in Table

Table 3: Cost comparison of Amazon's cloud computing instance types.

Instance Type # Instances Time * (hours) Cost ($)

Standard Small (single core) 50 1088 6256 (0.115 per hour per instance)

Standard Large (dual core) 50 544 12512 (0.46 per hour per instance)

Standard Extra Large (4-cores) 50 272 12512 (0.92 per hour per instance)

High-CPU Medium (dual core) 50 544 6256 (0.23 per hour per instance)

High-CPU Extra Large (8 core) 50 136 6256 (0.92 per hour per instance)

Amazon's Elastic Compute Cloud (EC2) can be accessed via a number of differet instance types. For the purposes of our comparative
genomics problem, we elected to utilize the extra-large high-CPU instance. Note that the total cost for a small instance is equal to the total of
the extra large, despite the large difference in computing time.

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 8 of 12
4. The folder was compressed into a gzipped tarball for
later loading to the S3 storage bucket as
"rsd_package.tar.gz" and is freely available with the pres-
ent manuscript as Additional File 1.
Genome requirements
Genomes were downloaded from NCBI in fastA format,
pre-formatted using a program designed to strip out
offending characters from the name field, and formatted
for blastp using xdformat. The blast indices and pre-for-
matted fastA files of each genome were placed into a
folder named after the organism, e.g. a folder named
"Homo_sapiens.aa" was created to hold the human
genome fastA file and associated blastp file. All genome
folders were then embedded within a parent folder called
"Genomes." As in the previous sections this folder was
compressed into a tarball for transfer to the S3 storage
facility of Amazon Web Services.
Moving RSD components to Amazon S3
To transfer files we used the s3 cmd [18]. The s3 cmd tool
is an open source command-line tool designed to trans-
fer, download, and manage files within Amazon S3. Once
we configured the tool for use on our local cluster, we
created a bucket for data uploads/downloads directly on
Amazon S3 using the "mb" argument. Then we loaded the
gzipped tarballs described in the sections immediately
above to this bucket with the "put" argument. Specifically,
we ran (1) s3 cmd mb s3://rsd and (2) s3cmdput
name_of_tarball s3://rsd/, where name_of_tarball repre-
sents one of the three gzipped tarballs described above.
Adding log and results folders to S3 bucket
For later processing steps, e.g. results storage and error
logging, we created several empty folders within our RSD
storage bucket using the s3 cmd: (1) A log folder called
"log", (2) a blast_result folder for storing pre-computed
blast results required by the RSD algorithm, and (3) an
ortholog_results folder for storing the final results of the
RSD algorithm.

The MapReduce algorithm
To handle the computational complexity of RSD, we
elected to use the MapReduce algorithm [19]. MapRe-
duce was originally developed at Google for processing
on large clusters and was created out of necessity to han-
dle large amounts of raw data to analyze derived data
such as summaries of pages crawled per host. The mapre-
duce algorithm is a two step process that first runs a map-
per process designed to distribute jobs to a cluster of a
predefined size, and then runs a reducer script to aggre-
gate, store, or otherwise operate on the results generated
through the mapper step. We elected to use the EMR web
service recently released by Amazon because it adopts
the commonly used Hadoop framework [20] and there-
fore conveys the same advantages, but also provides
enhancements to simplify use of the EC2 and interactions

with the Amazon S3 storage service. Nevertheless, most
of the steps described herein were applicable to both
Hadoop and EMR.

EMR employment of Hadoop deamons
The EMR service wrapped the Hadoop framework, the
basis of which was a master-slave mechanism. The EMR
framework employed five Hadoop deamons: JobTracker,
TaskTracker, NameNode, SecondaryNamenode and
DataNode. The Jobtracker and TaskTracker were Java
applications running on the master node and slave nodes
respectively. The JobTracker node coordinated running
processes on the TaskTracker. The NameNode main-
tained file system name space on the master node, and
the DataNode stored the data blocks specific to each slave

Table 4: Programs associated with the reciprocal smallest
distance algorithm.

Program name Description

ReadFasta.py a module used by RSD.py

RSD.py the main program which executes the RSD
reciprocal smallest distance ortholog detection
algorithm

BioUtilities.py a suite of utilities, many of which wrap external
programs such as clustalW and PAML

Utility.py a package used by BioUtilities.py

Blast_compute.py the main program that builds all-against-all
BLAST databases for fast execution of RSD

clustal2phylip a small perl function that converts clustalw
alignment files into files that are recognized by
paml

codeml.ctl_cp the control file required by RSD to properly
calculate the maximum likelihood estimates of
distance between two protein sequences

execute.py an error reporter used by RSD

RSD_common.py the directive file used by RSD

examples a directory containing examples of inputs and
outputs to RSD.py and Blast_co mpute.py.

These programs are required for running the RSD package on a cloud
computing platform such as Amazon's Elastic MapReduce. These
programs are packaged and available for download at http://
roundup.hms.harvard.edu and are also provided as additional files
associated with the manuscript.

http://roundup.hms.harvard.edu
http://roundup.hms.harvard.edu

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 9 of 12
node. The SecondaryNameNode mirrored the NameN-
ode, acting as a backup in event of a master node failure.

Configuring the Mappers
Frameworks that implement the MapReduce algorithm,
including Hadoop and EMR, originally were designed to
run processes written in Java and compiled into jar files.
However, both frameworks provide a limited amount of
flexibility to run external programs written in other lan-
guages via the use of a "streaming" function. Given the
complexity of the RSD algorithm and the host of pro-
grams needed for its pipeline, none of which were written
in Java, we elected to utilize this less mainstream capabil-
ity of EMR.

When the streaming function is selected, the mapper
will operate on a file or files stored directly within the
Hadoop Distributed File System (HDFS) and specified by
an input option required by the function itself (see Table
1 for options required/accepted by the streaming func-
tions of EMR and Hadoop). Under typical circumstances,
these files would be the primary targets for the mapper
and reducer tasks. However, the complexity of the RSD
algorithm, specifically the number of external programs
that needed to be invoked during a comparative analysis
of a pair of genomes, did not fit this standard of use.
Therefore, we elected to write a program that would gen-
erate files containing the precise set of commands needed
to run RSD on a specified pair of genomes, exactly as they
would be typed on a single unix-based machine. These
"runner" files then became the operational targets for the
mapper.

Rather than run BLAST on-the-fly, which is a possibil-
ity with RSD, we elected to run BLAST as a separate pro-
cedure, compiling a set of precomputed blast results for
later use by the evolutionary distance calculations and
ortholog identification step of RSD. As such, RSD can be
subdivided into two distinct computational steps for the
cloud: (1) A BLAST process and, (2) an ortholog estima-
tion process (both steps are depicted in Figure 4). To
account for this two-step process, it was necessary to
build separate mappers and concomitant runner files.
Because of the post- processing steps already embedded
within the RSD software, and because the endpoint of
each map task was a text file containing the orthologs and
associated evolutionary distances generated by RSD, a
reducer was not required. An example of a mapper pro-
gram is provided in Figure 5.

Configuring the cloud cluster
Instantiation
For configuration of the cluster we installed the com-
mand-line interface tool called Amazon Elastic Map
Reduce Ruby client [21] (Ruby CLC) on a local machine
running Ruby vl.8.7. We used Ruby CLC to set several

parameters available through EMR for cluster instantia-
tion (Table 1). These same input parameters could also be
used for instantiation of a cluster within the Hadoop
framework.

To instantiate the cluster, we first ran the EMR program
with the following arguments:

--create --alive --name "name of cluster"--num-
instances "N" --instance-type "instance type" --log-uri
"path to log file" --info '{startupScripts: [{

name: "s3 location to deamon-memory allocation
script",

args: ["~heap-size-jobtracker = 3072 "]}]}'.
Where the "name of cluster" was any name defined by

the user, the num-instances represented the number of
instances needed for the run, the instance-type repre-
sented the type of instance from the options provide by
Amazon Web Services (e.g., small, medium, large, and
extra large), and the log-uri argument specified the path
to the log folder located in the RSD S3 bucket where error
and status messages would be written throughout the
run. Finally, the "info" argument allocated memory to the
EMR JobTracker Deamon needed to avoid memory
related errors with the operation of the compute cloud.
We elected to utilize a High-CPU Extra Large Instance 7
GB of memory, 20 EC2 Compute Units (8 virtual cores
with 2.5 EC2 Compute Units each), 1690 GB of local
instance storage, 64-bit platform.
File system setup
EMR in "stream" mode required a folder name be speci-
fied for the input option. This could have existed on S3
but in our tests we experienced timeout issues when
communicating input from S3, and thus elected to copy
the input data directly to the distributed file system used
by EMR, the Hadoop Distributed File System (HDFS),
using the distcp command. We also elected to use HDFS
for temporary storage of pre-computed blast results to
enable faster progression from the blast step to the
ortholog distance calculation steps of the RSD algorithm
(steps 1 & 2 in Figure 4).
Monitoring
To monitor the status of the cluster after instantiation, we
ran the EMR program with the "--list" and "--active"
options specified, which provided a jobflow ID, the status
of that job (e.g. "RUNNING"), the exact web address of
the master node, and the name of the cluster.

With the web address of the master node, we moni-
tored the status of the cluster through a user interface
called FoxyProxy. To access this UI, it was necessary to
establish a SOCKS server on the local machine and an
SSH tunnel between the local machine and master node.
This UI shows the general health of the cluster, including
how many jobs were launched, how many are currently
running, the number in queue, and more [16]. Examples

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 10 of 12
of user interfaces for the cluster summary and job sum-
mary are provided in Figures 2 and 3, respectively.
Running
As mentioned above, we elected to split the RSD algo-
rithm into two distinct process flows, one for computa-
tion of the BLAST, and the other for estimation of
evolutionary distance and determination of orthology.
These flows required two separate mapper steps to be
run in succession. The results of BLAST step were
needed to initiate the ortholog calculation step. However,
the ortholog calculation could be run at any later time, as
the BLAST results files required by the ortholog step
remained available in the S3 storage bucket, providing
additional tolerance to cluster failures and avoiding the
need to rerun BLAST for the genomes being compared.

The actual cloud computational steps are graphically
represented in Figure 4. The commands sent to the EMR
program for both step 1 (the BLAST step) and step 2 (the
ortholog calculation step) are provided in Table 1.

Distributed Cache mechanism for task node configuration
At the time of writing, the EMR framework had a mecha-
nism for copying files and archives to task nodes in time
for execution of the job flows. We used this feature to
ensure timely delivery of the necessary components of
RSD to each slave node in our cluster. To capitalize on the
distributed cache mechanism we created an archive of
the executables, code, and genomes, as specified in the
previous section of this manuscript. In order to distribute
the data and code to each task node, we used the follow-
ing option available via Ruby CLC:

"--cache-archive s3n://rsd_bucket/data. tar.gz#data."
A symlink data folder was then created in the working

directory, providing a local copy of genome data and
RSD-cloud code on every task node. These files specified
were required to be tar archives.

Portability
While we elected to use EMR for interfacing with the
Elastic Compute Cloud, we also confirmed that the all of
the above steps could be executed via Hadoop with a few

Figure 4 Workflow for establishment and execution of the reciprocal smallest distance algorithm using the Elastic MapReduce framework
on the Amazon Elastic Compute Cloud (EC2). (1) Preconfiguration involves the general setup and porting of the RSD program and genomes to the
Amazon S3, and configuration of the Mappers for executing the BLAST and RSD runs within the cluster. (2) Instantiation specifies the Amazon EC2
instance type (e.g. small, medium, or large), logging of cloud cluster performance, and preparation of the runner files as described in the Methods. (3)
Job Flow Execution launches the processes across the cluster using the command-line arguments indicated in Table 1. This is done for the Blast and
RSD steps separately. (4) The All-vs-All BLAST utilizes the BLAST runner and BLAST mapper to generate a complete set of results for all genomes under
consideration. (5) The Ortholog computation step utilizes the RSD runner file and RSD mapper to estimate orthologs and evolutionary distances for
all genomes under study. This step utilizes the stored BLAST results from step 4 and can be run asynchronously, at any time after the BLAST processes
complete. The Amazon S3 storage bucket was used for persistent storage of BLAST and RSD results. The Hadoop Distributed File System (HDFS) was
used for local storage of genomes, and genome-specific BLAST results for faster I/O when running the RSD step. Additional details are provided in the
Methods.

�����

���

Pre-configuration

 1

Instantiation

 2

Job flow Execution

 3

All-v-All Blast

 4

�������

������

	�
����

Ortholog
Computation

 5

������������

�
�

����������������

��

	�������������������

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 11 of 12
minor changes. Given a machine image containing (1) the
base package of Hadoop and (2) the RSD package and
genomes of interest, it was first necessary to run the
Hadoop start script, start-all.sh to launch the Hadoop
Distributed File System and the MapReduce daemons.
The command line arguments listed and described in
Table 1 were specified in exactly the same way as in EMR,
although in Hadoop these parameters are passed to the
streaming.jar program, and thus, the --stream option is
not required or understood by Hadoop. We also deter-
mined that it was beneficial to set the -jobconf
mapred.map.tasks.speculative.execution to false. Other-
wise, Hadoop would "speculate" that a long running job
was malfunctioning and run the same job in parallel,
causing performance bottlenecks. Given that Hadoop is
open-source and ready for install on standard Linux dis-
tributions, the steps described above can be executed on
any cloud environment that accommodates Linux.

Additional material

Abbreviations
RSD: reciprocal smallest distance algorithm; EC2: elastic compute cloud; EMR:
Elastic MapReduce; Ruby CLC: Amazon Elastic MapReduce Ruby client for clus-
ter setup.

Authors' contributions
DPW conceived, designed and directed the project, conducted the experi-
ments, and wrote the manuscript. PK conducted the experiments and assisted
in the writing. VAF, PP, and RP assisted with the cloud experiments and edited
the manuscript. PJT helped in project direction and edited the manuscript. All
authors read and approved the final manuscript.

Acknowledgements
We would like to thank the Amazon Web Services product development team
for support and assistance throughout the duration of the project. The work
was funded by grants from the National Science Foundation (0543480 and
0640809) and National Institutes of Health (LM009261) awarded to DPW.

Author Details
1Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115
USA and 2Department of Pediatrics, Harvard Medical School, Boston, MA
02115, USA

References
1. Wall DP, Fraser HB, Hirsh AE: Detecting putative orthologs.

Bioinformatics 2003, 19(13):1710-1.
2. Altschul SF, et al.: Basic local alignment search tool. Mol Biol 1990,

215(3):403-10.
3. Chenna R, et al.: Multiple sequence alignment with the Clustal series of

programs. Nucleic Acids Res 2003, 31(13):3497-500.
4. Yang Z: PAML: a program package for phylogenetic analysis by

maximum likelihood. Comput Appl Biosci 1997, 13(5):555-6.
5. Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation

data matrices from protein sequences. Comput Appl Biosci 1992,
8(3):275-82.

6. Nei M, Xu P, Glazko G: Estimation of divergence times from multiprotein
sequences for a few mammalian species and several distantly related
organisms. Proc Nati Acad Sci USA 2001, 98(5):2497-502.

7. Amazon Elastic Compute Cloud [http://aws.amazon.com/ec2/]
8. Bateman A, Wood M: Cloud computing. Bioinformatics 2009,

25(12):1475.
9. Schatz MC: CloudBurst: highly sensitive read mapping with

MapReduce. Bioinformatics 2009, 25(11):1363-9.
10. Matsunaga A, Tsugawa M, Fortes J: CloudBLAST: Combining MapReduce

and Virtualization on Distributed Resources for Bioinformatics
Applications. Fourth IEEE Conference on eScience 2008 2008.

11. Langmead B, et al.: Searching for SNPs with cloud computing. Genome
Biol 2009, 10(11):R134.

12. Microsoft Azure [http://www.microsoft.com/windowsazure/]
13. Google App Engine [http://code.google.com/appengine/]
14. SGI cyclone [http://www.sgi.com/products/hpc_cloud/cyclone/]

Additional file 1 Cloud-ready reciprocal smallest distance algorithm
(RSD). complete software stack for RSD-cloud software used to generate
the results discussed in the present manuscript.

Received: 24 December 2009 Accepted: 18 May 2010
Published: 18 May 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/259© 2010 Wall et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:259

Figure 5 Example of the mapper program used to run the BLAST and ortholog estimation steps required by the reciprocal smallest dis-
tance algorithm (RSD). This example assumes a runner file containing precise command line arguments for executing the separate steps of the RSD
algorithm. The programs were written in python.

#!/usr/bin/env python

import sys
import ospo t os
#path to RSD executables
newpath = os.getcwd() + '/executables/executables'
os.environ['PATH']= newpath + ':' + os.environ['PATH']
import os.path
#Run BLAST step of RSD algorithm
for cmd in sys.stdin:

if (cmd==""):
sys.stderr.write("reporter:counter:cmd,missing,1\n")

else:
sys.stderr.write("reporter:status:%s" %cmd)
#execute commands embedded within the BLAST runner file
os.system(cmd)

http://www.biomedcentral.com/content/supplementary/1471-2105-11-259-S1.ZIP
http://www.biomedcentral.com/1471-2105/11/259
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15593400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://aws.amazon.com/ec2/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19435745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19357099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19930550
http://www.microsoft.com/windowsazure/
http://code.google.com/appengine/
http://www.sgi.com/products/hpc_cloud/cyclone/

Wall et al. BMC Bioinformatics 2010, 11:259
http://www.biomedcentral.com/1471-2105/11/259

Page 12 of 12
15. Deluca TF, et al.: Roundup: a multi-genome repository of orthologs and
evolutionary distances. Bioinformatics 2006.

16. Amazon Elastic MapReduce [http://aws.amazon.com/documentation/
elasticmapreduce/]

17. Amazon S3 Storage [https://aws.amazon.com/s3/]
18. Command line S3 client [http://s3tools.org/s3cmd]
19. Dean J, Ghemawat S: MapReduce: Simplified Data Processing on Large

Clusters. OSDI'04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA 2004.

20. Hadoop [http://hadoop.apache.org/]
21. Amazon Elastic MapReduce Ruby Client [http://

developer.amazonwebservices.com/connect/
entry.jspa?externalID=2264&cateaorvID=266]

doi: 10.1186/1471-2105-11-259
Cite this article as: Wall et al., Cloud computing for comparative genomics
BMC Bioinformatics 2010, 11:259

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16777906
http://aws.amazon.com/documentation/elasticmapreduce/
http://aws.amazon.com/documentation/elasticmapreduce/
https://aws.amazon.com/s3/
http://s3tools.org/s3cmd
http://hadoop.apache.org/
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2264&cateaorvID=266
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2264&cateaorvID=266
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2264&cateaorvID=266

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Cloud Testing and configuration
	Compute cloud processing

	Discussion
	Conclusions
	Methods
	General setup
	Amazon services requirements
	RSD requirements
	Genome requirements
	Moving RSD components to Amazon S3
	Adding log and results folders to S3 bucket

	The MapReduce algorithm
	EMR employment of Hadoop deamons
	Configuring the Mappers
	Configuring the cloud cluster
	Instantiation
	File system setup
	Monitoring
	Running
	Distributed Cache mechanism for task node configuration

	Portability

	Additional material
	Abbreviations
	Authors' contributions
	Acknowledgements
	Author Details
	References

