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Infection in the intensive care unit alters physiological networks
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Abstract

Background: Physicians use clinical and physiological data to treat patients every day, and it is
essential for treating a patient appropriately. However, medical sources of clinical physiological data
are only now starting to find use in bioinformatics research.

Results: We collected 29 types of physiological and clinical data on a minute-by-minute basis from
trauma patients in the intensive care unit along with whether they contracted an infection during
their stay. Dividing the patients into two groups based on this criterion, we determined that the
correlational network amongst pairs of physiological variables changes based on whether the
patient contracted an infection.

Conclusion: Examining the variable pairs with the largest change in correlation across groups
reveals potential changes in the way our treatments affect the patient’s physiology and in how our
bodies react to physiological insults. These findings highlight the usefulness of physiological
informatics and suggest new relationships to study while also validating previously reported
relationships.

Background
While physicians have been making use of physiologic
data for decades, these measurements have not always
been collected and stored electronically for research use.
Largely due to the advent of electronic medical records
and improved methods of extracting data from patient

monitoring equipment and paper charts, we can now
obtain significant amounts of clinical data both during
and after treatment [1-4]. This points to a relatively new
source of data that has been made available to both
clinicians and informatics researchers in ways that were
not possible previously.
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One of the main thrusts of informatics research using
clinical data has been to provide greater context for
defining disease using physiological and treatment data
[5,6]. Use of clinical data for basic biological research
has been successful in linking physiological measure-
ments to already known genetic markers of disease [7],
and has yielded biomarkers related to human aging [8].

One area where there seems to be less research is in the
physiological modelling of humans undergoing inten-
sive care in a hospital setting and the various conditions
these patients encounter. It is this gap that we seek to fill
by providing data showing that even basic physiological
models of patients in intensive care are changed under
conditions of infection. We also show how treatments
administered during intensive care can affect physiology
in different ways depending on the state of the patient.

Methods
Data collection
Our data were obtained from 19 patients who were
admitted to the trauma intensive care unit (ICU) at San
Francisco General Hospital from May 2004 to June 2005.
These patients were generally heavily injured, with
average stays in the ICU of 21 days and an average
hospital stay of 36 days total. Upon admission to the
ICU, patients were connected to standard ICU monitors
and ventilators as necessary, and were also monitored
with an experimental muscle microdialysis catheter
capable of measuring metabolic parameters such as
glucose, lactate, and pyruvate.

Data were collected from all the above sources, plus
blood gas analysis and laboratory measurements of
various standard ICU biomarkers. The types of biomar-
kers collected are listed in Table 1. Data from the ICU
monitors were collected at one-minute intervals and
stored on a dedicated server. The remaining data were
collected from the patient’s medical records and anno-
tated with the time of each measurement. The resulting
data set contained up to 92,000 measurements of each of
29 types of physiological measurement, yielding
approximately 2.7 million total data points. Patients’
records were annotated as to whether they developed
multiple organ dysfunction or an infection. Infectious
complications included pneumonia, bacteremia, sepsis,
abscess, urinary tract infection, wound infection, infected
decubitus ulcer, infected hardware, meningitis, and
osteomyelitis. Patients were tracked until they either
died or were discharged.

Data analysis
Prior to data analysis, the muscle microdialysis data
required correction to reflect its semi-continuous sample

collection method. As the microdialysis catheter would
continuously collect extracellular fluid from the muscle
for approximately 30 minutes between readings, each
reading was an average of the metabolites collected over
that span. To fill in the missing data from this data
source, we performed linear interpolation between
successive readings of the dialysate composition.

Data were analyzed by calculating Pearson correlation
coefficients for each pair of variables under different
physiological conditions (406 pairs in total). We
grouped each patient according to whether he or she
contracted an infection during his or her stay in the
hospital. In our cohort 11/19 patients (58%) contracted
an infection. The data used to calculate the correlation
for each variable pair were all those rows containing data
for both variables of that pair, i.e. “pairwise complete
observations ”. While this can yield a correlation matrix
that is not positive definite, we are concerned with the
coefficients themselves rather than manipulating the
resulting matrix.

Correlations were considered significant if the p-value
derived from Student’s t-test was less than 0.05 after
correcting for multiple comparisons using the Holm-
Bonferroni method. Taking those correlations that were
significant in both the infection and non-infection
groups and intersecting them resulted in the candidate
set of variable pairs to further investigate. We then take

Table 1: Types of data collected and their abbreviations

Symbol Definition

PaO2/PCO2 Arterial O2/CO2 partial pressure
MAP Mean arterial blood pressure
HR Heart rate
pmO2(temp) Muscle oxygen level (temperature)
spO2 Oxygen saturation percentage
FiO2 Fraction of inspired oxygen
GLUC.SER Serum glucose
Ph Blood PH
PF PaO2/FiO2 ratio
BD Base deficit
mLactate Muscle lactate concentration
mGlucose Muscle glucose concentration
mGlutamate Muscle glutamate concentration
mPyruvate Muscle pyruvate concentration
mLP Muscle lactate/pyruvate ratio
Lactate Serum lactate
glucose.value Bedside glucose reading
compliance Mechanical lung compliance
peep Positive end expiratory pressure
minvol Volume of air per minute
coretemp Core temperature
CVP Central venous pressure
Hb/HCT Hemoglobin/hematocrit
Chloride Serum chloride
BUN Blood urea nitrogen
Cr Serum creatinine
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the absolute value of the difference between the
candidate correlations in our set and only consider
correlations after applying a cut off value for the
difference of 0.4.

Results
The overall correlations among biomarker data are shown
in Figure 1, with all correlation coefficients shown
regardless of statistical significance. One can easily
discern variables that switched their correlation direction
by observing the colour change from red to green in the
matrix transpose position. For example, muscle oxygen
partial pressure and heart rate positively correlate
(weakly) in the infection case (position 4 down, 3 right
from top left) and anti-correlate (again, weakly) in the
non-infection case (position 3 down, 4 right from top
left). Some of the black locations indicate a lack of data
while others indicate absence of correlation. In both
cases, we do not consider them further here.

Given the large number of comparisons here (802
between the two cases, accounting for those comparisons
lacking data), it is reasonable to ask what are the most
extreme examples of changes in correlation between the
two conditions. Taking the absolute value of the
difference in correlation, the top five are shown in
Table 2. The raw data and regression lines for each of the

correlations are shown in Figure 2. In total, regardless of
statistical significance, 164 out of 401 correlations
changed direction between conditions.

We then consider the correlation pairs for which each
correlation was significant. Four of the top five changes
in correlation involved a switch in the direction of
correlation in the two conditions – i.e. they are positively
correlated in one condition and negatively correlated in
the other.

Discussion
Upon splitting the physiological data into patients who
did and did not contract infections during their hospital
stay, we have revealed that several physiological vari-
ables change the direction of their correlations. Here, we
will explain these changes via physiology and general
standards and methods of treatment in the ICU. It
should also be noted that we are trying to explain
relationships that do not indicate a direction of causality.
As a tool, however, we will hypothesize causality in some
of the following discussion.

Fraction of inspired O2 vs. muscle O2 content
In the non-infection case, as the fraction of oxygen
inspired increases so too does the resulting partial
pressure of oxygen throughout the remainder of the
body’s tissues, as expected. We would further expect the
partial pressure to saturate very quickly with increasing
oxygen inspiration, as in healthy individuals oxygen
saturation is above 95% [9].

In the case of infection, though, there are many potential
physiological changes, ranging from hypotension to
impaired oxygen transfer, and other problems that
could also lead to hypoperfusion. Sair et al. showed
that in a rat model of endotoxemia the effect of
increasing FiO2 on muscle oxygen saturation is signifi-
cantly reduced in the infection group [10]. Because there
were no observable differences in tissue perfusion
between the two groups in that experiment, it is possible
that our data showing a reversal in the correlation are
due to reduced tissue perfusion combined with the
reduced oxygen delivery capability despite normal
perfusion as shown by Sair.

Figure 1
Variable correlations. Correlations between physiological
variables for patients who did (lower triangle) and did not
(upper triangle) contract an infection. Colour indicates the
magnitude and direction of the correlation as shown in the
colour bar at the right. Variable names are given on the axes.

Table 2: Correlation coefficients of the variables with the largest
change in correlation between conditions

Variable Pair r with infection r without infection

FiO2/PmO2 �0.332 0.0987
mPyruvate/PmO2 �0.0978 �0.506
minvol/mGlucose �0.148 0.275
compliance/mPyruvate �0.177 0.224
peep/compliance 0.214 �0.299
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Ikossi et al. showed that lower PmO2 was strongly
associated with worse outcomes in the ICU, including
infection and multiple organ failure [11]. In patients
who appeared to be well resuscitated by normal
measures (MAP, heart rate, BD, and PaO2) reduced
muscle oxygen content predicted worse outcomes and
increased complications. Because this study used oxygen
sensors placed in the deltoid muscle, this indicates a
likely decrease in perfusion to distal organs using muscle
as a proxy. This is despite the clinicians attempting to
increase perfusion by increasing FiO2.

It is also relevant that inspired oxygen fraction is
controlled by the ICU staff. Fraction of inspired O2 is
primarily increased to compensate for decreases in tissue
oxygen saturation. So the prior expectation is that
patients in the ICU, especially those with impaired
lung function (as those with pneumonia often have),
will have their oxygen intake increased as their tissue
oxygen pressure decreases, leading to the negative
correlation seen in our data. The most likely explanation
for the change seen in the two conditions is that the
infection reduces the coupling of inspired oxygen
fraction to oxygen present in tissue, and then clinical
intervention results in increasing FiO2 in the face of
decreasing PmO2.

Muscle pyruvate vs. muscle O2 content
In both the infection and non-infection groups,
muscle pyruvate and muscle oxygen pressure are anti-
correlated. In the non-infection group, the correlation
is stronger, indicating a tighter connection between
oxygen delivered to the tissue and the removal of
pyruvate form the tissue via aerobic respiration. This
could indicate consequences of infection similar to
those proposed in the previous section – i.e. patients
with infections have reduced ability to deliver oxygen
to the tissue and so the rate of metabolism is less
tightly coupled to the delivery of oxygen than in
trauma patients without infection. This may point to
mitochondrial dysfunction as a culprit in this rela-
tionship.

Minute volume vs. muscle glucose
It has been reported that glucose metabolism is altered
in patients with sepsis, and furthermore that in critically
ill patients reduced glucose can be seen largely as a
marker for disease severity [12]. We can therefore
postulate the following. Patients with infections are
clearly more ill than those without infections, suggesting
that they will have reduced levels of glucose in their
tissue. That these patients are sicker may also indicate a
need for increased ventilation, either to expedite removal
of CO2 from the blood or increase the ability of oxygen

Figure 2
Five largest changes in correlation. Raw data and
regression lines for each of the top five changed relationships
in our study. The top row shows data from the non-infection
group and the bottom row shows the infection group.
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to enter the bloodstream. So in patients with infections,
we would therefore expect to see the minute volume to
be negatively correlated with tissue glucose.

This result may also not be explainable by traditional
physiology. Glucose is tightly controlled by ICU physi-
cians, so these results are also clouded by that interven-
tion. We have shown here a relationship that does not
yet exist in the literature, so this defines a new
physiological relationship between these two variables.
The difference in the relationship between these vari-
ables, then, may be an indicator of severity of sickness or
a predictor of outcome rather than something to be
explained.

Lung compliance vs. muscle pyruvate and PEEP
Lung compliance is a variable measured by mechanical
ventilators. It is the ratio of the change in lung volume in
response to a change in air pressure. Several factors affect
lung compliance, which include the amount of surfac-
tant present in the alveoli and pathologies, such as
fibrosis.

In patients with infection, PEEP and compliance co-vary,
while the opposite is true for non-infection patients. It
has been shown that in rats given a dose of lipopoly-
saccharide (an antigen produced by the that bacteria
cause sepsis) who also received increased constant
airway pressure had increased lung damage [13].
Experience dictates that sicker patients (like those with
pneumonia) have stiffer and less functional lungs, which
would necessitate the use of a higher PEEP to recruit
otherwise collapsed alveoli. This increases the apparent
lung volume for a given pressure in the sicker patients
resulting in a measured increase in lung compliance. It is
unclear why this should be the reverse in less sick
patients, but in looking at the scatter plot it is clear that
the majority of the data have a PEEP of approximately 5,
with fewer samples at higher values.

Again, there is no simple reason why lung compliance
should be at all related to the concentration of pyruvate
in muscle tissue. It is not a problem that this relationship
is not readily explainable, since this is now a new
physiological relationship that we’ve defined. To be
complete, however, a hypothesis is as follows. Lung
compliance measures, in part, the ability of the alveoli to
open and accept new air in response to increasing
inspiratory pressure. In patients with infection, as
compliance increases, muscle pyruvate decreases. This
results in a greater volume of air being available to
supply oxygen, thereby increasing the potential delivery
rate of oxygen to the blood and peripheral tissues.
Increased oxygen allows aerobic respiration to proceed

faster, decreasing the amount of pyruvate present in the
system.

Application as a decision tool
It should be noted that these results could find potential
use as the basis for a decision tool to warn clinicians of
impending infection. While our data set did not allow us
to test this application, future work could include testing
our results on novel data. This highlights the overall
utility of pursuing physiological informatics and model-
ling using clinical data.

Conclusion
We have shown that physiological networks can be
constructed from clinical measurements from an inten-
sive care unit, and the topology of these networks can
change as a patient contracts an infection. Between these
two conditions many variables changed the strength or
direction of their correlation. The five pairs of variables
with the largest magnitude of change were:

• FiO2 vs. muscle oxygen content

• Muscle pyruvate vs. muscle oxygen content

• Minute volume vs. muscle glucose

• Lung compliance vs. PEEP

• Lung compliance vs. muscle pyruvate

We presented potential physiological interpretations for
these results as well. All but one of these variable pairs
directly involve parameters for treatment/ventilation
chosen by physicians in the ICU. Therefore, we can
also conclude that the effects of treatment on physiolo-
gical measurements changes when infections are con-
tracted in the intensive care unit. Some of these
differences have already been reported in the literature
while others are novel. This shows that our technique
can be used to discover previously unknown relation-
ships between physiologic variables. This work points to
opportunities to study the changes that have not yet
been reported, potentially opening new doors to dis-
cover how our best efforts to heal patients can both alter
and be informed by their physiology.
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