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Abstract
Background: Mutations resulting in the disruption of protein function are the underlying causes
of many genetic diseases. Some mutations affect the number of expressed proteins while others
alter the activity on a per-molecule basis. Single amino acid substitutions as caused by non-
synonymous Single Nucleotide Polymorphisms (nsSNPs) often disrupt function by altering
protein structure and/or stability, but can also wreak havoc by directly impacting functional
binding sites. Given the experimental three-dimensional (3D) structure of a protein, we can try
to differentiate between the "effect on structure/stability" and the "effect on binding". However,
experimental 3D structures are available for only 1% of all known proteins; the magnitude of
stability change caused by a given mutation is more widely available.

Results: Here, we analyze to which extent the functional effect of a mutation can be predicted
from the effect on protein stability. We find that simple sequence-based methods succeed in
predicting functional effects of nsSNPs. In fact, such methods consistently outperform
approaches that predict functional change through the application of binary thresholds to
stability change. We also observed that if stability is affected, functional change is easier to
predict than when stability is not affected.

Conclusion: Our results confirmed that stability change is somehow related to function change.
However, we also show that the knowledge of stability changes in no way suffices to predict
functional changes and that many function changing mutations have no effect on stability.

Background
Genetic variation is evolution's way of making children

adapt better to the environment than their parents. Unfor-
tunately for us, the specific changes in our genetic make-
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up are more often deleterious than beneficial. When con-
trasting the concerns of individuals with that of the spe-
cies we find that most mutations are bad (for the
individual) but the diversity created by these mutations
helps the species survive. Here, we aim at predicting the
effect of each mutation on the particular gene-product.
Such predictions could help in addressing problems that
originate from the negative perspectives for individuals.

Most of the genetic variation is accounted for by SNPs
(single nucleotide polymorphisms). Eleven million SNPs
(~11 M) are estimated to be in the human genome [1]
(dbSNP release 129 contains already ~15 M entries in
human, but only ~6.5 are validated [2]). SNPs vary by
their location and effect but can be grouped based on their
position in the coding or the non-coding regions of DNA.
Furthermore, SNPs resulting in a single amino acid substi-
tution in the translated protein sequence (nsSNPs; non-
synonymous SNPs) are differentiated from those that, due
to the redundancy of the genetic code, are not. Only ~52
K frequent nsSNPs (> 5% in population) are known in
human [3]; a total of 67–200 K nsSNPs is expected [4].
nsSNPs are as much a small subset of all SNPs as all cod-
ing nucleotides are of all nucleotides. In analogy, how-
ever, we expect that the importance of nsSNPs is as
disproportional as that of protein-coding regions to all of
DNA. It is therefore not surprising that an increasingly
large number of diseases and defects reported in the
human mutation databases HGMD [5] and OMIM [6]
pertain to nsSNPs. A vast number of all single amino acid
substitutions originate from nsSNPs [3]. For simplicity we
use the term "nsSNPs" interchangeably with "single
amino acid substitutions" in the context of this study.

Not all single amino acid substitutions are deleterious to
molecular protein function. By some estimates only 20–
30% of the nsSNPs result in an observable functional
change [4]. The ability to differentiate disruptive muta-
tions from neutral ones is necessary for a better under-
standing of protein function. A given nsSNP may disrupt
function in two ways: (1) by directly changing the "active"
residue (e.g. by replacing the amino acid for a residue
involved in ligand binding, catalysis, allosteric regulation,
or post-translational modification), or (2) by affecting the
scaffolding of the protein (e.g. by deforming and/or desta-
bilizing the binding site or the entire protein structure).
Wang and Moult have suggested that disease-associated
mutations in the human most often belong to the second
class of functional disruptions (in their data set 83% of
disease associated mutations affect protein stability) [7].

Structural changes due to mutations can be evaluated in
two contexts: (1) as measurable alterations of protein
three-dimensional (3D) structure, predicted from crystal-
lography studies or (2) as the changes in protein stability

(for instance, measured by unfolding energy; G; Eqn.
1).

Understanding of functional changes due to structural
alterations could potentially be derived from either of
these contexts. Several methods infer functional effects of
nsSNPs based features that include changes in the 3D
structure [8-12] and, often, these are more reliable than
purely sequence-based approaches [13,14].

Unfortunately, experimental 3D structures are only avail-
able for one percent of all proteins. The estimate of reduc-
tion in protein stability in terms of unfolding energy
changes (Eqn. 1) is experimentally simpler and less
expensive to obtain then structure identification, trans-
lates directly to a reduced number of folded molecules
under normal physiological conditions, and in cases of
large changes can be regularly expected to diminish func-
tion [15-17]. However, no well-defined algorithm cur-
rently succeeds in translating energy changes into
functional effects. Such a goal is further complicated by
the fact that most single amino acid substitutions result in
significant changes to protein stability [18] (this includes
at least 30% of the mutations that are not associated with
disease [7]). Most often a large destabilization changes or
even eliminates function. However, the definition of the
word "large" is unclear. In fact, that precise threshold
likely differs from one protein to another.

At least one study [19] has attempted to systematically
infer functional effects from both known and predicted
structural changes. The authors utilized a number of
advanced tools and databases to map SNPs to their struc-
tural effects in an effort to infer functional alterations.
Their method was somewhat successful in identifying
functionally important substitutions (albeit less so than
the algorithms designed specifically for evaluating func-
tional effects). However, these important results did by no
means provide a succinct description of the relationship
between changes in protein stability to those in function.

Given that it remains unclear how structural disruptions
translate into functional change, we set out to formally
evaluate the predictive ability of mutation-associated
G's on a set of experimentally annotated (both structur-
ally and functionally) single amino acid substitutions.
Considering that we were only able to identify a small
number of such mutants, we also extracted computational
predictions of G values for a set of experimentally func-
tionally annotated nsSNPs. We then compared the func-
tion-prediction power of G to that of directly
evaluating changes using sequence-based methods devel-
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 G protein unfolding energy

= −mutant wild-type

where =
(1)
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oped specifically for this purpose (SNAP; Screening for
Non-Acceptable Polymorphisms [14]; SIFT [13]; Sorting
Intolerant from Tolerant; Methods). We find, that in a
general case SNAP and SIFT are capable of identifying
functional disruptions better than an algorithm using a
simple threshold-based binary classification of stability
changes.

Results and discussion
Stability changes are not easily translated into functional 
changes
There are at least three reasons why there is no single
threshold in G stability change at which we are certain
that function changes. (1) The threshold at which a muta-
tion is destabilizing enough to disrupt function by reduc-
ing the number of folded active proteins depends on the
unfolding energy of the wild-type molecule, which ranges
from 3–15 kcal/mol [15,20]; i.e. for the inherently more
stable proteins a larger change is necessary to significantly
alter the concentration of active molecules. (2) Without
exact knowing the particular mechanism of protein func-
tion, protein destabilization or stabilization events are
equally likely to alter function. (3) Destabilizations affect-
ing active sites of the protein may not be manifest in a
large G, but can still affect function. Keeping these
issues in mind we set up an experiment to gauge the reso-
lution limits of binary classification of experimental G
in predicting nsSNP-associated function changes; i.e. we
tried to answer the question of whether there is one thresh-
old at which most mutations can be considered deleteri-
ous. Alternatively, we would find that the distribution of
correct and incorrect functional annotations would be
similar throughout the spectrum of possible G thresh-
olds. Note, that to address the functional differences
between stabilizing and destabilizing mutations, we con-
sidered these two types of data points separately.

We collected 66 mutations from the Guerois, et. al study
[21] (annotated with experimentally derived G) which
also had functional change annotations in PMD [22,23]
(PMD-exp; Table 1 and Methods). 54 (82%) mutants were
experimentally assigned to have functional effects (non-

neutral) and the rest (12 mutants; 18%) were deemed
functionally identical to wild type (neutral). The G
range for this set was from -4.3 to 4.96 kcal/mol. Two of
the mutants resulted in functionally delinquent proteins
stability-wise identical to wild type (G = 0). These were
the first examples in our study of absence of one-to-one
correspondence between function and structure. Of the
19 stabilizing mutants (G < 0 kcal/mol; average G =
-0.73), 16 (84%) were functionally disruptive. Similarly,
of the 45 destabilizing mutants (G > 0 kcal/mol; aver-
age G = 1.67) 36 (80%) affected function.

Given an equal distribution of functionally non-neutral
mutations in the stabilizing and destabilizing sets it was
clear that the direction of stability change could not alone
determine the functional effect. However, the magnitude
of the change (the absolute value of G) required to alter
function could still differ depending on the direction. We
utilized various thresholds for the value of G to gener-
ate a ROC curve mapping structural stability to functional
effects (TPR vs. FPR; Eqn. 2; Fig. 1) for both stabilizing and
destabilizing samples.

Our results demonstrate that in general magnitudes of
both destabilizing and stabilizing changes are not very
informative. For destabilizing mutations, using G is
worse than random (filled squares). At best cutoff of G
= +0.5 kcal/mol (peak point in filled squares in Fig. 1)
78% of the functionally disruptive destabilizingmutants
are identified at 89% accuracy, but only 22% of the func-
tionally neutral mutations are found (at 20% accuracy;
Eqn. 2, PA = 89%, PC = 78%, NA = 20%, NC = 22%, Q2
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+
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Table 1: Data set summary*.

Total FD FSt nFD nFSt Cut FS (%F) FnS nFS (%S) nFnS

PMD exp 64 36 16 9 3 -0.5/0.5 36 (69) 16 8 (19) 4
PMD all 3981 2841 1096 Man. 1932 (68) 909 744 (28) 396
PMD pbd 1657 849 326 322 160 -0.5/2.5 458 (39) 717 130 (22) 352
PMD foldx 810 401 205 126 78 -0.5/1.5 415 (69) 191 109 (21) 95
PMD 07 91 51 40 Man. 30 (59) 21 28 (48) 12

* The table summarizes counts of mutants in each data set broken up by effects on function and stability. In column names: (n)F – (not) functionally 
disruptive, (%F) indicates the percentage of all functionally disruptive mutations in the set, D – destabilizing, St – stabilizing, (n)S – (not) 
structurally disruptive, (%S) indicates the percentage of all structurally disruptive mutations. Cut is the cutoff in kcal/mol used to determine 
structural disruption (stabilizing/destabilizing cutoffs;Man. means the annotation for the set was manually performed and not described in numbers).
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= 67%). Assuming an uninformed guess at the distribu-
tion of neutral mutations of 50/50 and the "real data" 80/
20 distribution of non-neutrals to neutrals in our set,
assures a gain of 9% in accuracy and 28% in coverage of
non-neutrals and a 28% loss in coverage of neutrals over
random. (Note, if we use the suspected [4] natural distri-
bution of 20–30% non-neutrals for random classification,
the same G cutoff will generate results with same accu-
racy, but the gain in non-neutral coverage will come at the
cost of more loss in neutral coverage.) For stabilizing muta-
tions (open squares, Fig. 1) using a G is slightly better
than random at peak (cutoff = -0.5 kcal/mol; PA = 89%,
PC = 50%, NA = 20%, NC = 67%, Q2 = 53%), but also
below random over all. Thus, over the entire set of
mutants, using the G cutoff of +/- 0.5 kcal/mol results
in proper identification of functional change for only (Q2
=) 62% of the data set. These results demonstrate that a
binary functional classification of mutations using a G
cutoff is not very accurate.

Larger data sets necessary to confirm structure/function 
correlations
Given the small number of mutations in the PMD-exp
data set, it is possible that the suboptimal performance
demonstrated by G in the functional classification is an
artifact of the number explosion. To check the validity of
our suspicion we needed to collect a larger data set of
mutations with known functional and structural effects
(ideally reported as G). For this purpose, we first
extracted 3981 mutants (in 705 proteins) from the PMD
that had both annotated stability and functional changes
(PMD-all; Methods). According to the binary annotation
of these mutants, ~71% affected function and ~67%
affected protein stability. This distribution of functionally
and structurally important mutations was slightly differ-
ent from that of the PMD-exp data set, where 82% affected
function, and, at 0.5 kcal/mol cutoff, 54% affected stabil-
ity. Thus, if the PMD-exp classification performance was a
statistical error we could expect to see improvement for
this data set.

Both the structural and the functional changes recorded in
PMD are in qualitative format (instead of G; Methods).
Using this form of annotation we could only generate one
measurement of usefulness of stability changes in predict-
ing functional ones (stability change = function change;
PA = 73%, PC = 68%, NA = 30%, NC = 36%, Q2 = 59%).
This performance was even worse than was expected from
PMD-exp results, but the comparison was not exact; i.e. we
could not search for an optimal cutoff in a binary classifi-
cation of stability change. To use PMD-all more directly
for comparison with the PMD-exp we used FoldX [21], a
structure based program for energy calculations in pro-
teins, to annotate the mutants in the PMD-all set with
G values. FoldX predictions of G changes due to sin-
gle amino acid substitutions were found in a previous
study to be very well correlated with the experimental
energy changes [21]. However, since FoldX requires the
presence of a known wild-type protein 3D-structure we
were limited to a subset of only those substitutions for
which this structure was available (PMD-pdb; Methods).
This set contained 1657 mutants in 232 PDB structures
(~75% functionally and ~71% structurally important; dis-
tribution very similar to PMD-all).

Some energy predictions agree with expert annotations of 
stability
PMD is a literature-based database that relies on human
assessment of data reported in literature for identifying
effects of mutations. Both the report and the interpreta-
tion of data are subjective opinions of the corresponding
people. To assure the cleanliness and quality of our data,
we correlated the binary annotations of stability changes
reported in PMD with the FoldX predictions for these pro-
teins (Fig. 2). Because of the nature of the binary annota-

Function prediction performance of ddG (G) and SNAP at various thresholds on PMD-exp data setFigure 1
Function prediction performance of ddG (G) and 
SNAP at various thresholds on PMD-exp data set. We 
varied the threshold for identifying the mutation as function-
ally non-neutral from 0.01 to 4 kcal/mol (Methods) sepa-
rately for both positive (G > 0; destabilizing; filled squares) 
and negative (G < 0; stabilizing; open squares) mutants. 
For SNAP the RI (reliability index) was similarly varied for 
destabilizing (filled circles) and stabilizing (open circles) muta-
tions from -6 to 6. Peaks (marked by X's) in the G curves 
indicate that reasonable thresholds are 0.5 and -0.5 kcal/mol. 
Also indicated on the graph are the default SNAP prediction 
values (RI = 0; marked by X's). Note, that for higher RI (e.g. 
RI = 3), destabilizing mutations are predicted more accu-
rately.
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tions in PMD we did not expect a perfect correlation
between the predictions and these classifications at any
threshold of G. As Fig. 2 illustrates, the correlation
between binary annotations and actual magnitudes of
G was relatively weak. Classification was most exact
(furthest from random) for destabilizing mutations at
G = 2.5 kcal/mol and for stabilizing mutations at G
= -0.5 kcal/mol. At this cutoff there were 810 (~49% of
1657) correct annotations. Note, given the curve shape,
other cutoff points could be reasonably chosen, but sub-
sequent measurements reported here were similar for
other tried values.

Given the weakness of the correlation between the exper-
imental data reported in PMD and the predictions from
FoldX, we needed to identify a subset of our data that
could be trusted in for attributing correct functional and
structural changes to specific mutations. For this purpose,
we retained for further testing only those mutations that
were correctly classified by PMD reports at our chosen
FoldX cutoffs (PMD-foldx; Methods). This selection
assured that subjective study opinions (or errors in man-
ual annotation) reflected in PMD entries corresponded to

signals that could potentially be picked up using a pre-
dicted (possibly erroneously) G threshold; i.e. if
reports of stability changes agreed between expert annota-
tion (PMD) and prediction (FoldX), both could be
expected to be "biologically" correct. Of the mutants in
the resulting data set ~75% altered function and ~57%
altered the stability of the protein.

Larger data set confirms difficulty in converting energy 
changes to function changes
Applying G thresholds to PDB-foldx we mapped the
results to a ROC curve (Fig. 3). Like in PMD-exp, using
G to annotate functional changes of stabilizing
mutants of the PMD-foldx data resulted in performance
that was only slightly better than random at peak point.
For destabilizing mutants, the chosen thresholds gave bet-
ter results throughout the curve. Yet in terms of overall
accuracy these still translated to low numbers. For
instance, at -0.5 kcal/mol cutoff (stabilizing peak, Fig. 3)
only 62% of the stabilizing mutants were correctly identi-

Function prediction performance of FoldX predicted ddG (G) and SNAP at various thresholds on PMD-foldx data setFigure 3
Function prediction performance of FoldX predicted 
ddG (G) and SNAP at various thresholds on PMD-
foldx data set. We varied the threshold for identifying the 
mutation as functionally non-neutral from 0.01 to 4 kcal/mol 
(Methods) separately for both positive (G > 0; destabiliz-
ing; filled squares) and negative (G = < 0; stabilizing; open 
squares) mutants. For SNAP the RI (reliability index) was 
similarly varied for destabilizing (filled circles) and stabilizing 
(open circles) mutations from -8 to 8. Peaks in the G 
curves indicate that reasonable thresholds are -0.5 and 1.5 
kcal/mol. Also indicated on the graph are the default SNAP 
prediction values (RI = 0; marked by X's). Note, that for 
higher RIs (left side of the graph), mutations are predicted 
more accurately.

Correlation of PMD annotation and FoldX predictionsFigure 2
Correlation of PMD annotation and FoldX predic-
tions. To gauge the best G cutoff for annotating a muta-
tion as neutral stability-wise we correlated PMD binary 
annotations with FoldX predictions. Overall correlation was 
relatively weak, pointing out the subjectivity of annotations, 
possible problems of curation, and FoldX prediction errors. 
The best correlation between binary annotation and FoldX 
predictions was at -0.5 kcal/mol for stabilizing mutations 
(open squares) and 2.5 kcal/mol for destabilizing ones (filled 
squares).
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fied as functionally disruptive (Q2; Eqn. 2; in PMD-exp
Q2 = 53%). At 1.5 kcal/mol cutoff (destabilizing peak,
Fig. 3) the number of correct predictions was 64% (Q2;
Eqn. 2; in PMD-exp Q2 = 67%). At these cutoffs, overall
accuracy for PMD-foldx (Q2 = 63%; Eqn. 2) was only
slightly higher than that of PMD-exp at its optimal cutoff
(+/- 0.5 kcal/mol, Q2 = 62%). This poor performance
once again confirmed the difficulty in translating stability
changes directly into functional ones.

Computational methods are better at identifying 
functional effects of mutations
The problems with using energy thresholds for identifying
functional changes suggest taking a different route to this
type of classification. For instance, using SNAP [14] or
SIFT [13] (Methods), methods specifically designed for
evaluating functional consequences of single amino acid
substitutions from sequence, we were able to obtain as
good and better prediction performances. SNAP outper-
formed using an energy threshold throughout most of the
spectrum of accuracy/coverage values for both destabiliz-
ing and stabilizing examples of the PMD-exp (Fig. 1) and
the PMD-foldx (Fig. 3) data sets. As expected, accuracy was
better at higher RI values (i.e. more reliable predictions),
but even using default cutoffs produced better overall
results. Similarly, SIFT did better then G (but slightly
worse then SNAP; at cutoffs described: PMD-exp Q2 G
= 62%, SNAP = 73%, SIFT = 63%; PMD-foldx Q2 G =
63%, SNAP = 70%, SIFT = 68%; Eqn. 2). Interestingly, of
mutations with altered stability, SNAP correctly assigned
functional changes to 73%, while only 65% of the ones
with unchanged stability were classified properly. This
result suggests that mutations with significant structural
alterations are easier to differentiate in terms of their effect
on function then the ones that remain structurally intact.

Accounting for overlap with training data confirms 
accuracy of performance estimates
In evaluating the performance of SNAP on the PMD-based
data sets, it is important to note that the method is neural-
network based (Methods) and was originally trained on
the PMD data. In testing artificial learning devices, it is
proper procedure to separate training and testing data
points to avoid over-estimates of performance through
memorization of samples. Such a split was not possible in
our case since the data sets inherently overlapped. While,
SNAP has been shown in prior testing to demonstrate a
better performance than the one reported here (original
Q2 reported ~79% [14]) it was still proper to exercise cau-
tion with these results. To make sure that we did not over-
estimate SNAP's prediction accuracy we extracted from the
most recent version of PMD available (PMD07, Methods)
the mutants that were not present in the training PMD
data set (91 mutants in 38 proteins; 56% functionally
non-neutral). We then measured SNAP's performance on

this data to find that mutations in this set were annotated
just as accurately as the ones in PMD-foldx (Fig. 4). These
results confirm the validity of performance numbers
reported for all the PMD-based data sets in this study.

Protein stability and function are correlated but not 
equivalent
Overall, our results are in line with earlier findings from
Wang et al [7], Steward et al [24] and DePristo et al [18]
which suggest that while many functionally disruptive
mutations are due to structural changes, a fairly large seg-
ment of functionally neutral mutants is also structurally
disruptive. For instance, in the PMD-exp set 69% of muta-
tions affecting function damaged the structure while 19%
of the structurally disruptive mutants did not affect func-
tion. Trends of function/structure disruption correlation
were similar for all data sets except PMD-pdb where 61%
of the functionally deleterious mutations were not associ-
ated with a structural change (Table 1). This difference,
however, can be attributed to a high threshold of consid-
ering a destabilizing substitution to be structurally disrup-
tive.

From the data presented above it is clear that functional
changes due to mutations do not always correspond to
changes in stability. This concept is not novel, nor is it par-

SNAP performance for data not seen in training (PMD07)Figure 4
SNAP performance for data not seen in training 
(PMD07). SNAP predicted the effects of mutations that it 
has not encountered in training (PMD07, filled triangles) just 
as accurately (at default cutoff RI = 0; marked by X's) as the 
mutations in the larger PMD-foldx set (open triangles). This 
result suggests that effects of PMD-foldx mutants were not 
memorized in the course of SNAP training.
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ticularly surprising biologically. For instance, mutations
eliminating binding residues do not have to be very desta-
bilizing to be damaging while promiscuity of enzyme
binding sites that associates with destabilization may not
reflect on function. In our data sets we found quite a few
examples of both stability-neutral/function-non-neutral
mutants and vice versa. For example, mutagenesis studies
[25] of the carboxyl tail of the mouse PKA (protein kinase
A; SwissProt [26,27] id: KAPCA_MOUSE) have shown
that a tyrosine in position 330 of the protein is very
important for maintaining kinase activity but not its struc-
tural integrity. Thus, many substitutions at this position
yield structurally normal, yet functionally delinquent
molecules. On the other end of the spectrum, there is the
alanine to leucine mutation in position 172 of the 3-iso-
propylmalate dehydrogenase in T. thermophilus (SwissProt
id: LEU3_THETH). This mutation affects the interdomain
interface of the enzyme and produces a much more closed
conformation of the molecule (which, incidentally, is a
lot more stable). However, the substitution does not affect
the domains' ability to move as necessary to maintain
wild-type activity [28].

These examples are just some of the many that fall into a
category of mutations that would always be misclassified
by a "stability only"-based algorithm. Interestingly, a
major novel finding of this study is that only about a third
of mutations fall into this category; i.e. about two thirds
of all mutants can in fact be correctly classified for their
functional effects by considering the associated stability
changes. On the other hand, we also find that functional
classification is more precise using a computational
method specifically developed for this purpose. The latter
is also more advantageous for proteins with minimal
information available (i.e. only sequence). Another sur-
prising finding is that functional annotation of mutations
that are disruptive stability-wise is simpler then when no
stability changes are involved. Overall, we believe that the
knowledge of protein stability/function correlation
gleaned from this work will contribute significantly to the
understanding of the field and to the development of
algorithms capable of identifying functional importance
of nsSNPs.

Conclusion
We collected experimental and computationally derived
information regarding the effects of single amino acid
substitutions on protein stability and function. For each
of the available data sets we predicted functional effects of
mutations using SNAP and SIFT, computational methods
developed specifically for this purpose, and using stability
alterations reported as changes in unfolding energy of the
protein (G). Comparing the predictive abilities of both
approaches we find that, for our data, SNAP and SIFT per-
form better than using a binary threshold of G. These

results suggest that there is no simple relation that associ-
ates protein stability change to protein function change.
In fact, for about a third of the mutants, these two features
appear uncorrelated. Mutations that affect stability are
better differentiated in terms of their effect on function
than those that do not affect stability. Future implementa-
tions of computational algorithms could therefore benefit
from using stability information, where available, in mak-
ing predictions of functional effects of mutations.

Methods
PMD data
PMD (Protein Mutant Database) [22,23] is a literature-
based database containing experimentally derived anno-
tations of changes in protein function and/or structure
due to mutation. For the purposes of this study we
extracted from PMD only those entries describing single
amino acid substitutions. Changes in function and struc-
ture are reported in PMD in a qualitative form ([---] means
significant decrease in function/stability, [=] means no
change, and [+] stands for increase in functionality/stabil-
ity, etc.). Of the set extracted above we chose only those
entries containing an annotated functional change
(FUNCTION field) and/or annotated stability change
(STABILITY field). Changes in function and stability were
recorded in a binary format (neutral = identical to wild
type; non-neutral = different from wild-type). If two stud-
ies of the same mutant differed in their annotations, the
effect of the substitution was recorded as non-neutral. The
version of PMD used to train SNAP and to extract the
PMD-exp,-all,-pdb,-foldx data sets was created in Dec.
2005.

PMD-exp mutants
We took from the Guerois et. al. study [21] all single
amino acid substitutions that have been experimentally
annotated with G (Eqn. 1). We used BLAST [29] for
each of the proteins in this set to obtain alignments (at
100% sequence identity) to the sequences annotated with
functional changes in the PMD database. We recorded
functional effects of mutations from PMD corresponding
to mutations in the Guerois et al data set for all aligned
sequences to make the PMD-exp data set.

PMD-all mutants
We extracted from PMD a set of all entries containing
experimental annotations of their effects on structural sta-
bility of the affected protein (STABILITY field) and on its
function (FUNCTION field) to make the PMD-all data set

PMD-pdb mutants
FoldX [21] is a computational method that uses experi-
mental protein structure data to estimate the value of all
atomic interactions on the stability of said protein. Using
these values FoldX can calculate the effect of mutation on
Page 7 of 9
(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=KAPCA_MOUSE
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=LEU3_THETH


BMC Bioinformatics 2009, 10(Suppl 8):S8 http://www.biomedcentral.com/1471-2105/10/S8/S8
protein stability. To obtain FoldX predictions of mutant
G's we extracted from the PMD-all data set all mutants
in sequences mapping to a PDB id to generate the PMD-
pdb data set. The mapping was accomplished by intersect-
ing PMD PDB annotations of the selected entries with
BLAST alignments of PDB chains to the reported PMD
sequences (at  97% sequence identity). If the mutated
residue reported in the PMD entry differed from the PDB
chain residue at the same position, the entry was dis-
carded from the data set.

PMD-foldx mutants
We selected from the PMD-pdb data set only those muta-
tions that agreed (at G = -0.5/2.5 kcal/mol cutoffs) with
the binary annotations in PMD; i.e. we selected only those
mutants that were annotated as neutral in PMD and had a
FoldX prediction of > -0.5 and < 2.5 kcal/mol or those that
were non-neutral according to PMD and had a FoldX pre-
diction < = -0.5 or > = 2.5 kcal/mol.

PMD07 mutants
We extracted mutations from the new version of PMD
(created in Mar. 2007) in the same manner as was applied
to create PMD-foldx (we used the same cutoffs of -0.5 and
2.5 kcal/mol to identify mutations for which expert anno-
tations agreed with FoldX predictions). To test accuracy of
SNAP on novel samples we collected from this set only
those mutations that were not present in the original
PMD-foldx set.

Stabilizing and destabilizing mutations
In PMD-exp data set two mutations, for which G = 0,
were not considered as part of either stabilizing or desta-
bilizing data set. In all other sets, we classified as stabiliz-
ing those mutations where predicted G < = 0 and as
destabilizing those where G > 0.

Structure-function correlation
To evaluate the correlation of the structural and func-
tional effects we varied the threshold of G at which a
mutation is assigned to be functionally neutral. We had
considered cutoffs of 0.01, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, and 4.0 kcal/mol in both stabilizing and destabi-
lizing directions.

SNAP predictions
SNAP [14] is a neural network based method for identify-
ing from sequence functionally disruptive single amino
acid substitutions. The inputs to SNAP include secondary
structure and solvent accessibility predictions, evolution-
ary and family information, biophysical differences
between the wild type and mutant amino acids, statistical
likelihoods of observing residue triplets around the muta-
tion site, SIFT [13] predictions, and SwissProt [26] anno-
tations (if available). SNAP outputs both a binary

prediction (neutral/non-neutral) and a reliability index
(RI; 0–9) representative of the likely accuracy of predic-
tion. For all mutants in the PMD-exp, PMD-foldx, and
PMD07 data sets we ran SNAP and recorded both the
binary predictions and the RI. SNAP is generally more
accurate at higher RI. To obtain the ROC curves, we dialed
through the RI values (in both positive/non-neutral and
negative/neutral directions) as the threshold for assigning
a neutral prediction.

SIFT predictions
SIFT [13] is a sequence based method that uses sequence
homology and biophysical amino acid similarity to pre-
dict functional effects of single amino acid substitutions.
SIFT outputs both a binary prediction (tolerated/deleteri-
ous) and a score (0–1, where score < = 0.05 means that the
mutation is deleterious). SIFT scores are not meant to be
used as prediction accuracy estimators. For all mutants in
PMD-exp and PMD-foldx data sets we ran SIFT and
recorded the binary prediction (tolerated/deleterious).
For some of the mutants (4 in PMD-exp and 25 in PMD-
foldx) we were unable to obtain SIFT predictions. For
these instances a random prediction was generated (50/50
chance of being classified as tolerated or deleterious).
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