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Abstract
Background: The analysis of sequence-structure relations of RNA is based on a specific notion
and folding of RNA structure. The notion of coarse grained structure employed here is that of
canonical RNA pseudoknot contact-structures with at most two mutually crossing bonds (3-
noncrossing). These structures are folded by a novel, ab initio prediction algorithm, cross, capable
of searching all 3-noncrossing RNA structures. The algorithm outputs the minimum free energy
structure.

Results: After giving some background on RNA pseudoknot structures and providing an outline
of the folding algorithm being employed, we present in this paper various, statistical results on the
mapping from RNA sequences into 3-noncrossing RNA pseudoknot structures. We study
properties, like the fraction of pseudoknot structures, the dominant pseudoknot-shapes, neutral
walks, neutral neighbors and local connectivity. We then put our results into context of molecular
evolution of RNA.

Conclusion: Our results imply that, in analogy to RNA secondary structures, 3-noncrossing
pseudoknot RNA represents a molecular phenotype that is well suited for molecular and in
particular neutral evolution. We can conclude that extended, percolating neutral networks of
pseudoknot RNA exist.

Background
Three decades ago, Michael Waterman pioneered the
combinatorics and ab initio prediction of the at that time
rather exotic ribunucleic acid (RNA) secondary structures
[1-5]. The motivation for this work was coming from a
fundamental dichotomy represented by RNA. On one
hand RNA is described by its primary sequence, a linear
string composed of the nucleotides A, G, U and C. The pri-
mary sequence embodies the genotypic legislative. On the

other hand, RNA, being less structurally constrained than
its chemical relative DNA, does fold into 3D-structures,
representing the phenotypic executive. Therefore one
molecule stands for both: geno- and phenotype.

Indeed, a vast variety of RNA activities was found: the dis-
covery of catalytic RNAs, or ribozymes, in 1981 proved
that RNA could catalyze reactions just as proteins. RNA
can act also as a messenger between DNA and protein in

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S39 doi:10.1186/1471-2105-10-S1-S39

<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S39

© 2009 Huang et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S39
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10(Suppl 1):S39 http://www.biomedcentral.com/1471-2105/10/S1/S39
the form of transfer RNA. The realization that RNA com-
bines features of proteins with DNA led to the "RNA
world" hypothesis for the origin of life. The idea was that
DNA and the much more versatile proteins took over
RNA's functions in the transition from the "RNA-world"
to the "DNA/protein-world".

Let us have a closer look at RNA phenotypes. RNA mole-
cules form "helical" structures by folding, i.e. pairing their
nucleotides and thereby lowering their minimum free
energy (mfe). Originally, these bonds were subject to strict
combinatorial constraints, for instance "noncrossing" in
RNA secondary structures. For the latter, dynamic pro-
gramming (DP) algorithms, predicting the minimum free
energy configuration were given 1980 [5,6]. It is well-
known, however, that RNA structures are far more com-
plex than secondary structures. One particularly
prominent feature is the existence of cross-serial depend-
encies [7], that is crossing arcs or pseudoknots, see Figure
1, where we display the natural UTR-pseudoknot structure
of the mouse hepatitis virus. Cross also folds into the nat-
ural structure given in Figure 1. In Figure 2 we present
another RNA pseudoknot structure, the HDV-pseudo-
knot. We present here the structure as folded by cross and
also its natural structure [8].

In fact, RNA pseudoknots are "everywhere". They occur in
functional RNA, like for instance RNAseP [9] as well as

ribosomal RNA [10]. They are conserved in the catalytic
core of group I introns, in plant viral RNAs pseudoknots
mimic tRNA structure and in in vitro RNA evolution [11],
where experiments produced families of RNA structures
with pseudoknot motifs, when binding HIV-1 reverse
transcripts. Important mechanisms like ribosomal frame
shifting [12] also involve pseudoknot interactions.

For prediction algorithms the implications of cross-serial
dependencies are severe-they imply a higher level of for-
mal language: context-sensitive. In general, on this level of
formal languages it is not clear whether or not polynomial
time ab initio folding algorithms exist. Indeed, Lyngsø et
al. [13] showed that "reasonable" classes of RNA pseudo-
knots require exponential time algorithms. There exist
however, polynomial time folding algorithms, capable of
the energy based prediction of certain pseudoknots: Rivas
et al. [14], Uemura et al. [15], Akutsu [16] and Lyngsø
[13]. The output of these algorithms, however, remains
somewhat "mysterious"-it is not clear which types of
pseudoknots can be generated.

In analogy to the case of RNA secondary structures, the
identification of key combinatorial properties of the out-
put class offers deeper understanding. The combinatorial
properties of RNA pseudoknot structures discussed in the
following have indeed profound implications: first
sequence-structure maps will generate exponentially
many structures with neutral networks of exponential
size. Second, the latter will come close to each other in
sequence space, thereby allowing for efficient evolution-
ary search. None of these findings depend on the particu-
lar choice of loop-energies or the partition function [17].
Furthermore, without combinatorial specification, as it is
the case for the above mentioned DP based pseudoknot
folding algorithms [14], one arrives at an impossibly large
configuration space.

For instance, the inductive generation of gap-matrices
produces arbitrarily high number of mutually crossing
arcs. The results in [18] prove, that the exponential growth
rate of pseudoknot structures is linear in the crossing
number. Accordingly, via gap-matrices, an uncontrollably
large output class is being generated. Nevertheless, the
DP-routine using pairs of gap-matrices cannot generate
any 3-noncrossing nonplanar pseudoknot structure.

We will show that the notion of k-noncrossing diagrams
[19] allows us to specify a suitable output-class for pseu-
doknot folding algorithms. Recall that a diagram is a
graph over the vertex set [n] = {1, ..., n} with vertex degree
less than or equal to one. It is represented by drawing the
vertices in a horizontal line and its arcs (i, j), where i <j, in
the upper half-plane. The vertices and arcs correspond to
nucleotides and Watson-Crick (A-U, G-C) and (U-G) base

RNA pseudoknot structuresFigure 1
RNA pseudoknot structures. Three representations of 
the UTR-pseudoknot structure of the mouse hepatitis virus. 
First, the planar graph representation, second the diagram 
representation and finally the output produced by cross.
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pairs, respectively. A diagram is k-noncrossing if it con-
tains at most k - 1 mutually crossing arcs. Diagrams have
the following three key parameters: the maximum
number of mutually crossing arcs, k - 1, the minimum arc-
length, λ, and minimum stack-length, τ, The length of an
arc (i, j) is j - i and a stack of length τ is a sequence of "par-
allel" arcs of the form

((i, j), (i + 1, j - 1), ..., (i + (τ - 1), j - (τ - 1))),

see Figure 3. We call an arc of length λ a λ-arc. Biophysical
constraints on the base pairings imply that in all RNA

structures λ is greater than or equal to four. We call dia-
grams with a minimum stack-length τ, τ-canonical and if
λ ≥ 4 we refer to diagrams as structures. To reiterate, in the
simplest case we have 2-noncrossing RNA structures, i.e.
the secondary structures in which no two arcs cross, see
Figure 4. The noncrossing of arcs has far-reaching conse-
quences. It implies that RNA secondary structures form a
context free language and allow for the DP algorithms
[20], predicting the loop-based mfe-secondary structure
in O(n3)-time and O(n2)-space.

k-noncrossing diagramsFigure 3
k-noncrossing diagrams. We display a 4-noncrossing diagram with arc-length λ ≥ 4 and stack-length τ ≥ 1 (a) and a 3-non-
crossing, λ ≥ 4 and τ ≥ 3 diagram (b).

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a ) ( b)

HDV structureFigure 2
HDV structure. (a) Diagram representation of Hepatitis Delta Virus structure folded by our algorithm. (b) Diagram repre-
sentation of natural Hepatitis Delta Virus.

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8141 82 83 84 85 86 87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8141 82 83 84 85 86 87

a

b

Page 3 of 19
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S39 http://www.biomedcentral.com/1471-2105/10/S1/S39
Let us now, having some background on RNA structures
return to the RNA-world. Around 1990 Peter Schuster and
his coworkers initiated a paradigm shift. They began to
study evolutionary optimization and neutral evolution of
RNA via the relation between RNA genotypes and pheno-
types. The particular mapping from RNA sequences into
RNA secondary structures was obtained by the algorithm
ViennaRNA [21], an implementation of the folding rou-
tine [6,22], mentioned above. Two particularly prominent
results of this line of work were the existence of neutral
networks, i.e. vast, extended networks, composed of
sequences folding into a given secondary structure [23]
and the Intersection Theorem [23]. The latter guarantees
for any two secondary structures the existence of at least
one sequence which simultaneously satisfies all con-
straints imposed by their Watson-Crick and G-U base
pairs. For the implication of the latter with respect to
molecular switches, see [24]. It became evident that the
"statistical" properties of this mapping played a central
role in the molecular evolution of RNA.

But, there is more. Two discoveries suggested that RNA
might not just be a stepping stone towards a DNA/protein
world. They show that RNA plays an active role in vital cell
processes. A large number of very small RNAs of about 22
nucleotides in length, called microRNAs (miRNAs), were

discovered. They were found in organisms as diverse as
the worm Caenorhabditis organs and humans, and their
particular relationship to certain intermediates in RNA
interference (RNAi). These findings have put RNA-in par-
ticular noncoding RNA-into the spotlight. In addition,
RNA's conformational versatility and catalytic abilities
have been identified in the context of protein synthesis
and RNA splicing. More and more parallels between RNA
and protein are currently being revealed [25].

Let us next briefly overview what we know about the com-
binatorics of our phenotypes, ultimatively allowing for
the computation of biophysically relevant pseudoknot
structures [26]. The key result comes from a seemingly
unrelated field, the combinatorics of partitions. Chen et
al. proved in a seminal paper [27] a bijection between
walks in Weyl chambers and k-noncrossing partitions.
This bijection has recently been generalized to tangled
diagrams [28]. Now, a k-noncrossing diagram is a special
type of k-noncrossing tangle and the relevance of Chen's
result lies in the fact that the walks in question can be enu-
merated via the reflection principle. In fact, the reflection
principle facilitated the computation of the generating
function of k-noncrossing canonical pseudoknot RNA
[19,26,29]. Subsequent singularity analysis [26,29],
showed, that the exponential growth rates of canonical
pseudoknot RNA structures are surprisingly small, see
Table 1, [26]. For instance, the number of 3-noncrossing,
3-canonical RNA structures with arc-length greater than or
equal to four is asymptotically given by

cn-5 2.0348n,

where c is some (explicitly known) constant. This expo-
nential growth rate is very close to Schuster et al.'s finding
[30] for 2-canonical RNA secondary structures with arc-
length greater than or equal to four

1.4848 n-3/2 1.8444n. (1)

For the analysis presented here, we use the algorithm cross
[28], which produces a transparent output. This algorithm

Table 1: Exponential growth rates of �k, τ�-structures. We have k-
noncrossing structures with minimum stack-length greater than 
or equal to three.

k 3 4 5 6 7 8 9

τ = 3 2.0348 2.2644 2.4432 2.5932 2.7243 2.8414 2.9480
τ = 4 1.7898 1.9370 2.0488 2.1407 2.2198 2.2896 2.3523
τ = 5 1.6465 1.7532 1.8330 1.8979 1.9532 2.0016 2.0449
τ = 6 1.5515 1.6345 1.6960 1.7457 1.7877 1.8243 1.8569
τ = 7 1.4834 1.5510 1.6008 1.6408 1.6745 1.7038 1.7297
τ = 8 1.4319 1.4888 1.5305 1.5639 1.5919 1.6162 1.6376
τ = 9 1.3915 1.4405 1.4763 1.5049 1.5288 1.5494 1.5677

RNA secondary structures:Figure 4
RNA secondary structures: Here we give three repre-
sentations of the phenylalanine secondary (2-noncrossing) 
structure. First the outer-planar graph representation (top), 
second the diagram representation (middle) and finally the '.', 
'(' and ')' representation.
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does not follow the DP paradigm and generates the mfe-
k-noncrossing τ-canonical structure via a combination of
branch and bound, as well as DP techniques. cross induc-
tively constructs k-noncrossing, τ-canonical RNA struc-
tures via motifs. Currently full loop-based energy models
are derived an implemented for k = 3 and τ ≥ 3.

Therefore, cross finds the mfe-RNA pseudoknot structure
in which there are at most two mutually crossing arcs,
which has minimum arc-length four and in which each
stack has size at least three. While cross is an exponential
time algorithm it allows to fold sequences of length 100
with an average folding time of 4.5 minutes.

Methods
While it is beyond the scope of this paper to present the
algorithm cross in detail, the objective of this section is
first to sketch its key organization and second to discuss
some basic properties of RNA pseudoknot structures.
These combinatorial properties enable us to assign a
unique, loop-based energy. In the course of our analysis
we show that an RNA pseudoknot structure can be con-

structed via simpler substructures. These serve as the
building blocks via which cross derives the mfe-pseudo-
knot structure. At present time we do not have an algo-
rithm computing the partition function version of cross.
For RNA secondary structures, the partition function was
obtained 1990 [31], three decades after the first mfe-fold-
ing algorithms were derived [32-34]. The partition func-
tion is based on a fixed sequence and contains vital
statistical information on the probabilities of specific
structural configurations of the latter. For any inductively
constructed structure class, it allows to compute the base
pairing probabilities. In analogy to similar studies in the
case of RNA secondary structures [17,35-37,37-45], the
partition function is for the type of analysis presented here
not of key importance. We shall derive statistical informa-
tion on the sequence-structure relation by mfe-folding a
large number of sequences instead of considering the
ensemble of structural configurations of a single sequence.

An outline of crossFigure 5
An outline of cross. The figure visualizes the three main phases of cross: the generation of motifs (I), the construction of 
skeleta-trees, rooted in irreducible shadows (II) and the saturation (III), during which, via DP-routines, optimal fillings of skel-
eta-intervals are derived.

...... ......
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Cross
The algorithm cross has three distinct phases: the motif-,
skeleton- and saturation-phase, see Figure 5 for an over-
view. We will here briefly discuss these three parts.

Let < denote the following partial order over arcs

(i1, j1) < (i2, j2) ⇔ i2 <i1 ∧ j1 <j2, (2)

i.e. an arc α1 is smaller then α2 if it is nested in it.

I Motifs
Let us begin by defining core-structures. A k-noncrossing
core [29] is a k-noncrossing diagram in which all stacks
have size one. The core of a structure is obtained by iden-
tifying all its stacks by single arcs, keeping the unpaired
nucleotides and finally relabeling, see Figure 6.

A �k, τ�-motif is a �k, τ�-diagram over [n], having the follow-
ing properties

(M1) it has a nonnesting core

(M2) all its arcs are contained in stacks of length exactly τ
= 3 and length λ = 4.

A m-shadow is a k-noncrossing diagram obtained by suc-
cessively increasing the stacks of m from top to bottom,
see Figure 7.

The key observation about motifs is that they can, despite
the fact that they exhibit cross-serial dependencies, be
generated inductively [46].

II Skeleta
Skeleta represent the non-inductive "frames" of pseudo-
knot RNA, i.e. skeleta entail exactly the cross-serial
dependencies, that need to be considered exhaustively. A
skeleton, S, is a 3-noncrossing structure, whose core has a
connected L-graph. An L-graph is a diagram whose arcs are
the vertices and two being adjacent if their corresponding
arcs cross [46]. An irreducible shadow, ISi,j, over [i, j]. ISi,j
is a skeleton which has no nested arcs, see Figure 7. Phase
II consists in the generation of all skeleta-trees, which are
rooted in irreducible shadows.

III Saturation
Given a skeleton, cross saturates or "fills" via context-sen-
sitive DP routines the skeleton-intervals. Note that, while
the inserted substructures cannot cross any arc of the skel-
eton, they will in general contain crossing arcs within
themselves.

Motifs, shadows and irreducible shadowsFigure 7
Motifs, shadows and irreducible shadows. We display a �3, 3�-motif (a) and one of its induced shadows (b), Furthermore 
we show an irreducible shadow (c), which corresponds to the (b)-substructure contained in the dashed box.

(b)(a) (c)

Cores will in general have 2-arcsFigure 6
Cores will in general have 2-arcs. The structure δ (lhs) is mapped into its core c(δ) (rhs). Clearly d has arc-length ≥ 4 and 
as a consequence of the collapse of the stack ((1, j + 2), (2, j + 1), (i, j)) into the arc (i, j), c(δ) contains the arc (i, j), which is, 
after relabeling, a 2-arc.

1 2 j21 i ji
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To summarize, first cross inductively constructs all roots
of the skeleta-trees, second cross generates the skeleta-
trees themselves and third it saturates the skeleta.

Loops
We next discuss loops of 3-noncrossing RNA structures.
Loops are not only the basic building blocks for the mfe-
evaluation but also of importance for the coarse grained
notion of pseudoknot-shapes, discussed in Subsection.
Let α be an arc in the 3-noncrossing RNA structure, S and
denote by AS(β) the set of S-arcs that cross β. Clearly, we
have β ∈ AS(α) if and only if α ∈ AS(β). An arc α ∈ AS(β)
is called a minimal, β-crossing arc if there exists no α' ∈
AS(β) such that α' < α.

Let the interval [i, j] denote the sequence

(i, i + 1, ..., j - 1, j).

It is shown in [46] that any 3-noncrossing RNA structure
can be uniquely decomposed into the following four
loop-types:

(1) a hairpin-loop is a pair

((i, j), [i + 1, j - 1])

where (i, j) is an arc.

(2) an interior-loop is a sequence

((i1, j1), [i1 + 1, i2 - 1], (i2, j2), [j2 + 1, j1 - 1]),

where (i2, j2) is nested in (i1, j1).

(3) a multi-loop, see Figure 8, is a sequence

where  denotes a pseudoknot structure over [ωh, τh]

(i.e. nested in (i1, j1)) and subject to the following condi-

tion: if all  = (ωh, τh), i.e. all substructures are simply

arcs, for all h, then h = 2.

(4) a pseudoknot, see Figure 9, consisting of the following
data:

(P1) a set of arcs

(( , ),[ , ], ,[ , ], , ...)i j i S S1 1 1 1 1 21 1 1 1
1

1

2

2+ − + −ω τ ωω
τ

ω
τ

S
h

h
ω
τ

S
h

h
ω
τ

The standard loop-types hairpin-loop (top), interior-loop (middle), multi-loop (lower)Figure 8
The standard loop-types hairpin-loop (top), interior-loop (middle), multi-loop (lower). The lighter base pairs and lighter 
unpaired bases represent the particular loop.
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Shadow and loop-decompositionFigure 10
Shadow and loop-decomposition. A pseudoknot structure decomposed in its two shadows (top) and its loop-decomposi-
tion (bottom).

Pseudoknot-loopsFigure 9
Pseudoknot-loops. The lighter base pairs and lighter unpaired bases represent the particular loop. In the lower structure the 
arc (3, 24) is lighter, since it is minimal crossing with respect to the arc (9, 30), not contained in any pseudoknot-loop.
Page 8 of 19
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P = {(i1, j1), (i2, j2), ..., (it, jt)},

where i1 = min{is} and jt = max{js}, such that

(i) the diagram induced by the arc-set P is irreducible, i.e.
the line-graph of P is connected and

(ii) for each (is, js) ∈ P there exists some arc β (not neces-
sarily contained in P) such that (is, js) is minimal β-cross-
ing.

(P2) all vertices i1 <r <jt, not contained in hairpin, interior-
or multi-loops.

Decomposition
We now show that each 3-noncrossing RNA structure can
uniquely be constructed by simpler substructures [46].
Furthermore, each 3-noncrossing RNA structure has a
unique loop decomposition-the basis of our energy eval-
uation. We remark that assertion (b) of the following
result remains valid for arbitrary crossing number, k.

Theorem. Suppose k ≥ 2,τ ≥ 3.

(a) Any k-noncrossing, t-canonical RNA structure corresponds
to an unique sequence of shadows.

(b) Any �3. τ�-structure has an unique loop-decomposition.

In Figure 10 we illustrate how these decompositions work.

Results and discussion
Our results are organized in two sections. First we describe
our findings with respect to the statistics of pseudoknot
RNA structures and second we present our data with
respect to the particular organization of the sequences in
neutral networks.

Minimum free energy RNA pseudoknot structures
In this section we present some key statistics on pseudo-
knotted RNA structures. In order to put our findings into
context we consider two variants of cross: first, cross3,
which generates 3-noncrossing, 3-canonical mfe-struc-
tures and second, cross4, which produces 3-noncrossing,
4-canonical mfe-structures.

The fraction of pseudoknots
We next compute the fraction of RNA structures with
pseudoknots within all structures for cross3 and cross4.
Figure 11 displays the fraction of structures with pseudo-
knots as a function of sequence length. It is evident that
the fraction of pseudoknotted structures is monotone
with respect to the sequence length. Our data are based on
folding 2000 random sequences via cross and suggest an
linear relation. In particular, for n = 100, approximately
50% of the structures folded by both versions of cross con-
tain pseudoknots.

Pseudoknot-shapes
Next we study the dominant pseudoknot-shapes as a func-
tion of sequence length. Our notion of pseudoknot-shape
is based on k-noncrossing cores [29] discussed in Subsec-
tion. The shape of a structure S, is a subset of the core-arcs,
induced by all arcs either contained in pseudoknots or
arcs contained in multi-loops which contain nested pseu-
doknots. In other words, a pseudoknot-shape contains all
pseudoknot-arcs and all arcs affecting the energy of pseu-
doknots, see Figure 12. In Figure 12 we display for cross3
and cross4 the dominant types. The shape data are
obtained by folding 2000 random sequences. In Figure 13
we display the fraction of sequences on which cross3 and
cross4 coincide, based on folding 2000 random
sequences.

Stack-statistics in pseudoknot RNA
It is wellknown that large stacks contribute to a low mfe of
a structure. In this section we relate the distribution of
stacks in random structures to the distribution of stacks in
mfe-pseudoknot structures generated by cross. This pro-
vides insight in what particular spectrum of pseudoknot
structures cross produces.

Let us first discuss the distribution of stacks in random
pseudoknot structures. The naive approach would be to

The fraction of pseudoknot structures over sequence lengthFigure 11
The fraction of pseudoknot structures over sequence 
length. Pseudoknot fractions for cross3 (hollow diamonds) 
and pseudoknot fractions for cross4 (solid diamonds).
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The dominant pseudoknot shapes for τ = 4 and τ = 3Figure 12
The dominant pseudoknot shapes for τ = 4 and τ = 3. The four dominant shapes displayed from top to bottom according 
to their frequency. The shapes are obtained sampling 2000 random sequences and labelled by the frequency of their occur-
rence. For n = 40, 45, 50, 55 we only have one shape with frequencies (200, 292, 364, 506), (260, 377, 482, 563), where the 
coordinates represent cross4 and cross3, respectively. We have only one shape for n = 60, cross3 with frequency 697.
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generate a random structure and count the number of
stacks. However, it is at present time not known how to
construct a random pseudoknot structure with uniform
probability. Therefore we have to employ a different strat-
egy in order to obtain this distribution for random struc-
tures. The key idea [47] is to consider the bivariate
generating function

where Tk, τ(n, t) denotes the number of k-noncrossing, τ-
canonical pseudoknot structures having exactly t stacks.

Tk, τ(x, u) can be computed using the cores introduced in
Section. The stack-distribution is now given by

and via singularity analysis one can show that this distri-

bution becomes asymptotically normal with mean μk, τ

and variance  given by

where γk,t (u) is the unique dominant singularity parame-

terized by u = es. In Table 2 we display the values μk, τ and

 for k = 2, 3, 4 and τ = 3, ..., 7. Accordingly the number

of stacks scales linearly with sequence length and so does
the number of loops, since each loop corresponds to a
stack. In Figure 14 we present the stack distributions of
3000 structures of random sequences folded by cross4 and

the normal distribution obtained from Table 2 (lhs).
Analogously we present the stack distributions of 3000
structures of random sequences folded by cross5 and the
normal distribution obtained from Table 2 (rhs).

Neutrality and local connectivity
The mapping from sequence to structures plays an impor-
tant role for evolution [23,43,48]. One of its key roles is
to facilitate the search of a sequence-population for better
adapted shapes. In tis context, Table 1 contains some non-
trivial information about the mapping from RNA
sequences into their pseudoknot structures. To be precise,
Table 1, in combination with central limit theorems for
the number of arcs in k-noncrossing RNA structures
[49,50] allows us to conclude that there exist exponen-
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Table 2: Mean and variances. Mean and variances of the normal limit distributions of the numbers of stacks in pseudoknot RNA 
structures for different k and τ. We list mean (μ) and variance (σ2).

k = 2 k = 3 k = 4

μ σ2 μ σ2 μ σ2

τ = 3 0.090323 0.0189975 0.115473 0.0086760 0.123509 0.0076977
τ = 4 0.071677 0.0131316 0.086554 0.0055685 0.091737 0.0049917
τ = 5 0.059591 0.0098165 0.069467 0.0039688 0.073166 0.0035769
τ = 6 0.051092 0.0077233 0.058149 0.0026885 0.060964 0.0027313
τ = 7 0.044774 0.0062991 0.050083 0.0017584 0.052319 0.0021788

Fraction of same structures over sequence lengthFigure 13
Fraction of same structures over sequence length. 
The fraction of sequences for which cross4, generating pseu-
doknot structures with minimum stack-length four. The data 
are derived by folding 20, 000 random sequences.
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tially many k-noncrossing canonical structures with expo-
nentially large preimages. Indeed, according to Table 1 the
exponential growth rate of the number of k-noncrossing
canonical structures, 3 = k = 9 is strictly smaller than four-
the growth rate of the space of all sequences over the nat-
ural alphabet.

The central limit theorems for the number of arcs of k-
noncrossing, canonical pseudoknot structures [50]
exhibit a mean of 0.39 n and a variance of 0.041 n. We
conclude from this that sequence to structure maps in
pseudoknot RNA structures cannot be trivial, since the
preimages of particular structures have exponential
growth rates strictly smaller than four. As a result the
number of canonical pseudoknot structures grows expo-
nentially. Accordingly, a sequence to structure map in
pseudoknot RNA necessarily generates exponentially
many canonical structures.

In light of this, the interesting question then becomes
how the set of sequences folding into a given structure is
"organized" in sequence space. The analysis presented in
this section is analogous to the investigations for RNA sec-
ondary structures [23,51] and can be viewed as a basic
protocol for the local statistics of a genotype-phenotype
map. The only exception is Subsection, which elaborates
on the novel concept of local connectivity [48].

It is only possible to derive local statistics, since, for
instance, exhaustive computations of the set of all
sequences over the natural alphabet with fixed pseudo-
knot structure for n > 40 is at present time impossible.

Neutral walks
Let us consider a fixed RNA structure, S. Let furthermore
C[S] denote the set of S-compatible sequences, consisting
of all sequences that have at any two paired positions one
of the 6 nucleotide pairs

(A, U), (U, A), (G, U), (U, G), (G, C), (C, G).

The structure S motivates to consider a new adjacency
relation within C [S]. Indeed, we may reorganize a
sequence (x1, ..., xn) into the pair

where the uj denote the unpaired nucleotides and the pj =

(xi, xk) all base pairs, respectively, see Figure 15. We can

then view vu = (u1, ..., ) and vp = (p1, ..., ) as ele-

ments of the formal cubes  and , implying the

new adjacency relation for elements of C [S].

(( ,..., ),( ,..., )),u u p pn nu p1 1 (7)

unu
pnp

Qnu
4 Q

np
6

Stack (loop) numbers in pseudoknot RNAFigure 14
Stack (loop) numbers in pseudoknot RNA. We present the stack distributions based on 3000 random sequences of 
length 80 for cross4 (lhs) and cross5 (rhs). In addition we display the normal distributions (lighter) as implied by theory with the 

parameters μ4 = 0.086554,  = 0.0055685 and μ5 = 0.069467,  = 0.0039688.
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Accordingly, there are two types of compatible neighbors
in sequence space: u- and p-neighbors: a u-neighbor has
Hamming distance one and differs exactly by a point
mutation at an unpaired position. Analogously a p-neigh-
bor differs by a compatible base pair-mutation, see Figure
15. Note however, that a p-neighbor has either Hamming
distance one ((G, C) → (G, U))) or Hamming distance
two ((G, C) → (C, G))). We call a u- or a p-neighbor, y, a
compatible neighbor. If y is contained in the neutral net-
work we refer to y as a neutral neighbor. This gives rise to
consider the compatible- and neutral distance, denoted by
C(v, v') and N(v, v'). These are the minimum length of a
C[S]-path and path in the neutral network between v and
v', respectively.

Our basic experiment is as follows: We select a (random)
sequence, v and fold it into the structure S(v). We then
proceed inductively: assume vi is constructed. We ran-
domly select some neutral (compatible) neighbor of vi,
denoted by vi+1, subject to the condition dH(v, vi+1) > dH(v,

vi), where dH(x, y) denotes the Hamming distance. If no
such neighbor exists we choose some vi+1 ≠ vi with the
property dH(v, vi+1) = dH(v, vi). If all neutral vi-neighbors
satisfy dH(v, vi+1) <dH(v, vi) we stop and output the integer
dH(v, vi). In Figure 16 we study 200 neutral walks for the
following four structures: first an H-pseudoknot loop
structure (a), second a hairpin-loop structure (b), third an
interior-loop structure (c) and finally the phenylalanine
tRNA structure (d), see Figure 17. Our findings are in
accordance with those for RNA secondary structures. One
can easily neutrally traverse sequence space, suggesting
the picture of vast, connected networks composed by neu-
tral sequences.

Neutral neighbors
Complementing the analysis of neutral walks, we study
now the distribution of neutral neighbors. Recall that a
neutral neighbor of a sequence v with respect to the struc-
ture S = S(v) is a u- or a p-neighbor, y, contained in the
neutral network of S. It has Hamming distance one or

Compatible neighbors in sequence spaceFigure 15
Compatible neighbors in sequence space. Diagram representation of an RNA structure (upper right) and its induced 
compatible neighbors in sequence space (lower left). Note that each base pair gives rise to 5 compatible neighbors exactly one 
of which is in Hamming distance one.
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two, depending on whether it is induced by a point or
base pair mutation, see Figure 15. The distribution of neu-
tral neighbors provides relevant information about the
mutational robustness of the structure S. The data pre-
sented here, are obtained in the course of the neutral walk
experiments, displayed in Figure 16. They are given in Fig-
ure 18. In order to put things into context we also present
in Figure 19 the distribution of neutral neighbors for
10000 random sequences folded by cross4.

Local connectivity
Connectivity of a subgraph, Γn, of an n-cube alone does
not imply that a small Hamming distance implies a small
distance in Γn. For neutral sequences this means that two
neutral sequences with Hamming distance less than four,
are possibly connected via a neutral path of much greater
length. Evidently, for molecular evolution it is therefore
not connectivity but the existence of these short paths
what matters. Local connectivity is a property which guar-
antees the existence of these short paths. If Γn is locally
connected then a small Hamming distance does imply a
Γn-distance scaled by at most a factor of Δ > 0. We shall
begin by studying local connectivity for random induced
subgraphs of n-cubes, i.e. where we select sequences with
independent probability λn. Then we transfer the derived

concepts to neutral networks of RNA pseudoknot struc-
tures.

We call Γn is locally connected if and only if almost surely
(a.s.)

provided v, v' are in Γn. We immediately observe that, triv-
ially, for any finite n such Δ exists. However, the key point
is that (†) employs the notion "almost surely", i.e. it holds
for arbitrary n.

Random graph theory [48] shows that on the one hand,

for λn smaller than nδ/ , where δ > 0 is arbitrarily small,

there exists a.s. no finite Δ satisfying (†). On the other

hand, for λn larger than or equal to nδ/ , there exists a.s.

some finite Δ satisfying (†). In other words, there exists a
threshold value for local connectivity. Since random sub-

graphs of n-cubes have giant components for λn = (1 + ε)/

n, where ε > 0 [52] we can conclude that local connectivity
emerges distinctly later in the evolution of random sub-
graphs of n-cubes.

n

n

The fraction of neutral neighbors for the pseudoknot struc-turesFigure 18
The fraction of neutral neighbors for the pseudoknot 
structures. (a), (b), (c) and (d) are based on sequences in 
their random 200 paths for cross4.

a b

c d

Four particular pseudoknot structuresFigure 17
Four particular pseudoknot structures. (a).H-loop 
(b).Hairpin-loop (c).interior-loop (d).tRNA.
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Suppose we are given a structure S and sequence v, con-
tained in its neutral network. By construction, local con-

nectivity refers to the two n-cubes  and  induced

by S, see Figure 20. Let

C2 = |{v'| C(v, v') = 2}|

be the cardinality of the set of sequences in compatible
distance two. Then the degree of local connectivity of S at
v is given by

In other words, DS(v) is the fraction of locally connected
vertices of the compatible distance two neighbors of v,
that can be obtained via a neutral path of length at most
four.

We perform the following experiment: we consider neu-
tral walks for the UTR-pseudoknot structure of the mouse
hepatitis virus displayed in Figure 1, see Subsection. Along
these walks we compute the locality degree DS(vi) and the
total number of locally connected sequences. Our find-
ings are presented in Figure 21. We can report that the
degree of local connectivity is, as suggested by random
graph theory, almost 100%.

Conclusion
RNA pseudoknot structures-in particular their statistical
properties-are a fascinating and new territory. To our
knowledge the only statistical data beyond RNA second-
ary structures were derived for bi-secondary structures in
[53,54]. The structural concept of k-noncrossing canonical
RNA structures and the resulting sequence to structure
map employed for our experiments is new and represents
a natural generalization of RNA secondary and bi-second-
ary structures. To be precise, bi-secondary structures are
exactly planar 3-noncrossing RNA structures [19].

It is clear, that for sequence-length less than or equal to
100 we only encounter pseudoknots of limited complex-
ity. Our findings presented in Figure 12 provide a trans-
parent picture of which pseudoknot-shapes dominate for
given sequence length. These results, in combination with
the data on the fractions of pseudoknotted structures over
sequence length show, that for n = 80 we have approxi-
mately 35% structures with nontrivial pseudoknots. In
addition it is striking that basically all folded structures are
irreducible, i.e. only a very small fraction can be decom-
posed into several independent substructures. This is of
interest since decomposable structures can be folded
much faster. It is known, [55] that Dyck-paths, i.e. path
starting at the origin, having only up (1, 1), or down (1, -
1) steps which end on the x-axis, decompose on average
into three irreducible parts. This is of relevance, since a
slight generalization of Dyck-path, the Motzkin-paths,
having additional horizontal steps, correspond to second-
ary structures. Our findings suggest, that while secondary
structures, decompose nontrivially, higher and higher
crossing numbers change the picture. This complicates the
computation of mfe-pseudoknot RNA due to their immi-
nent irreducibility.

Both versions of cross produce analogous findings, con-
firming the generality of our results. The vast majority of
pseudoknot-shapes is of a single type. As expected, cross3
exhibits more structural variety due to the fact that its
minimum stack-length is only three. The ratio of pseudo-
knot structures shifts significantly from n = 80 to n = 100
to approximately 50%. We can conclude from this that
pseudoknots cannot be ignored, they evidently become
the dominant structure class for n greater than or equal to
100. Figure 13 shows that the fraction of sequences for
which cross3 and cross4 coincide, decreases linearly as a
function of sequence length. This indicates that larger and
larger sequences will exhibit more subtle structural ele-
ments whose emergence is facilitated by stabilizing large
stacks.

Furthermore, the mfe-pseudoknot structures generated by
cross are far from being random. The central limit theo-
rems for random k-noncrossing canonical RNA structures,

Qnu
4 Q

np
6

D v v C v v N v v CS( ) |{ | ( , ) , ( , ) }| .= ′ ′ = ′ = −2 4 2
1 (8)

Neutral fraction distributionFigure 19
Neutral fraction distribution. Neutral fraction distribu-
tion of 20, 000 random sequences for cross4.
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given in Table 2 imply, that stacks and consequently loops scale linearly with the sequence length. Figure 14 clearly
shows that the mfe-structures, generated by cross4 and
cross5, have for n = 76 two stacks less than random 3-non-
crossing structures with minimum stack-length greater
than four and five, respectively. This deviation is signifi-
cant and indicates that mfe-pseudoknot structures are far
from "typical" random structures. We remark that, while
it is straightforward to generate random RNA secondary
structures, it is nontrivial to obtain random pseudoknot
structures. In particular, at present time, no polynomial
time algorithm is known which generates a random 3-
noncrossing RNA structure with uniform probability.

The organization of the sequences contained in neutral
networks of RNA pseudoknot structures seems to be very
analogous to the neutral networks of RNA secondary
structures [23]. Figure 16 shows that neutral walks can
effectively traverse sequence space and the fractions of
neutral neighbors, presented in Figure 18 and Figure 19
suggest a high degree of neutrality.

We discussed in Subsection local connectivity, a property
of neutral networks which implies the existence of short,
neutral paths. It is apparent that local connectivity is of
central importance for molecular evolution and any type
of evolutionary optimization. It has been shown in [48]
that local connectivity is a prerequisite for preserving any
type of sequence specific information. Having a random

Local connectivity of the UTR-pseudoknotFigure 21
Local connectivity of the UTR-pseudoknot. Presented 
are the numbers of locally connected sequences during vari-
ous neutral walks. The degree of local connectivity, DS(v), is 
one for all steps.

Deriving the two subcubes  and Figure 20

Deriving the two subcubes  and . A structure gives rise to rearrange its compatible sequences into unpaired and 

paired segment. The former is a sequence over the original alphabet A, U, G, C and for the latter we derive a sequence over 
the alphabet of base pairs, (A, U), (U, A), (G, U), (U, G), (G, C), (C, G)
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graph threshold value localized at 1/ , local connectiv-

ity appears much later than connectivity, being localized
at 1/n. However, the high neutrality degrees of RNA pseu-
doknot structures of Figure 18 and Figure 19 imply locally
connected neutral networks. Our findings for the UTR-
pseudoknot structure of the mouse hepatitis virus of
length 56, given in Figure 21, confirm the local connectiv-
ity of neutral networks of particular pseudoknot RNA
structures. At all steps of the neutral walks almost all
sequences are locally connected.
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side.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
All authors contributed equally to this paper.

Acknowledgements
We are grateful to J.Z.M. Gao, H.S.W. Han and W.W.J. Peng for helpful dis-
cussions. This work was supported by the 973 Project, the PCSIRT Project 
of the Ministry of Education, the Ministry of Science and Technology, and 
the National Science Foundation of China.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics 
Conference (APBC) 2009. The full contents of the supplement are available 
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Penner RC, Waterman MS: Spaces of RNA secondary struc-

tures.  Adv Math 1993, 101:31-49.
2. Waterman MS: Combinatorics of RNA hairpins and clover-

leaves.  Stud Appl Math 1979, 60:91-96.
3. Smith TF, Waterman MS: RNA secondary structure.  Math Biol

1978, 42:31-49.
4. Schmitt WR, Waterman MS: Linear trees and RNA secondary

structure.  Discr Appl Math 1994, 51:317-323.
5. Howell JA, Smith TF, Waterman MS: Computation of generating

functions for biological molecules.  J Appl Math 1980,
39:119-133.

6. Nussinov R, Jacobson AB: Fast Algorithm for Predicting the
Secondary Structure of Single-Stranded RNA.  Proc Natl Acad
Sci, USA 1980, 77:6309-6313.

7. Searls DB: The language of genes.  Nature 2002, 420:211-217.
8. Webpage of HDV-pseudoknot structure in natural   [http://

www.ekevanbatenburg.nl/PKBASE/PKB00075.HTML]
9. Loria A, Pan T: Domain Structure of the ribozyme from eubac-

terial ribonuclease.  RNA 1996, 2:551-563.
10. Konings DAM, Gutell RR: A comparison of thermodynamic

foldings with comparatively derived structures of 16s and
16s-like rRNAs.  RNA 1995, 1:559-574.

11. Schneider D, Tuerk C, Gold L: Selection of high affinity RNA lig-
ands to the bacteriophage R17 coat protein.  J Mol Biol 1992,
228:862-869.

12. Chamorro M, Parkin N, Varmus HE: An RNA pseudoknot and an
optimal heptameric shift site are required for highly efficient
ribosomal frameshifting on a retroviral messenger RNA.
Proc Natl Acad Sci, USA 1992, 89(2):713-7. 1309954

13. Lyngsø RB, Pedersen CNS: RNA Pseudoknot Prediction in
Energy-Based Models.  J Comp Biol 2000, 7:409-427.

14. Rivas E, Eddy S: A dynamic programming algorithm for RNA
structure prediction including pseudoknots.  J Mol Biol 1999,
285(5):2053-2068.

15. Uemura Y, Hasegawa A, Kobayashi S, Yokomori T: Tree adjoining
grammars for RNA structure prediction.  Theor Comp Sci 1999,
210:277-303.

16. Akutsu T: Dynamic programming algorithms for RNA sec-
ondary prediction with pseudoknots.  Discr Appl Math 2000,
104:45-62.

17. Tacker M, Stadler PF, Bornberg-Bauer EG, Schuster P, Hofacker IL,
Schuster P: Algorithm independent properties of RNA sec-
ondary structure predictions.  Europ Biophys 1996, 25:115-130.

18. Jin EY, Reidys CM: Asymptotic enumberation of RNA struc-
tures with pseudoknots.  Bull Math Biol  in press.

19. Jin EY, Qin J, Reidys CM: Combinatorics of RNA structures with
Pseudoknots.  Bull Math Biol 2008, 70(1):45-67.

20. Waterman MS, Smith TF: Rapid dynamic programming meth-
ods for RNA secondary structure.  Adv Appl Math 1986,
7:455-464.

21. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schus-
ter P: Fast Folding and Comparison of RNA Secondary Struc-
tures.  Monatsh Chem 1994, 125:167-188.

22. Zuker M, Stiegler P: Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information.
Nucl Acids Res 1981, 9:133-148.

23. Reidys CM, Stadler PF, Schuster P: Generic properties of combi-
natory maps: neutral networks of RNA secondary struc-
tures.  Bull Math Biol 1997, 59(2):339-397.

24. Schultes EA, Bartel DP: Implications for the Emergence of New
Ribozyme Folds.  Science 2000, 289(5478):448-452.

25. Jolly A, (Ed): Mapping RNA form and function.  Science 2005,
309:1441-1632.

26. Ma G, Reidys CM: Canonical RNA Pseudoknot Structures.  J
Comp Biol  in press.

27. Chen WYC, Deng EYP, Du RRX, Stanley RP, Yan CH: Crossings
and nestings of matchings and partitions.  Trans Am Math Soc
2007, 359:1555-1575.

28. Chen WYC, Qin J, Reidys CM: Crossing and Nesting in Tangled-
diagrams.  Elec J Comb 2008, 15:.

29. Jin EY, Reidys CM: RNA-LEGO: Combinatorial Design of Pseu-
doknot RNA.  Adv Appl Math  in press.

30. Hofacker IL, Schuster P, Stadler PF: Combinatorics of RNA Sec-
ondary Structures.  Discr Appl Math 1998, 88:207-237.

31. McCaskill JS: The equilibrium partition function and base pair
binding probabilities for RNA secondary structure.  Biopoly-
mers 1990, 29:1105-1119.

32. Fresco JR, Alberts BM, Doty P: Some Molecular Details of the
Secondary Structure of Ribonucleic Acid.  Nature 1960,
188:98-101.

33. Jun IT, Uhlenbeck OC, Levine MD: Estimation of Secondary
Structure in Ribonucleic Acids.  Nature 1971, 230:362-367.

34. DeLisi C, Crothers DM: Prediction of RNA secondary struc-
ture.  Proc Natl Acad Sci USA 1971, 68:2682-2685.

35. Huynen M, Stadler PF, Fontana W: Smoothness within rugged-
ness: the role of neutrality in adaptation.  Proc Natl Acad Sci USA
1996, 93:397-401.

36. Babajide A, Hofacker IL, J SM, Stadler PF: Neutral Networks in
Protein Space A Computational Study Based on Knowledge-
Based Potentials of Mean Force.  Folding Design 1997,
93:261-269.

37. Schuster P: Genotypes with phenotypes: Adventures in an
RNA Toy World.  Biophys Chem 1997, 6:75-110.

38. Fontana W, Schuster P: Shaping Space: The Possible and the
Attainable in RNA Genotype-Phenotype Mapping.  J Theor Biol
1998, 194:491-515.

39. Stadler PF: Fitness Landscapes Arising from the Sequence-
Structure Maps of Biopolymers.  J Mol Struct (THEOCHEM) 1999,
463:7-19.

40. Schuster P, Fontana W: Chance and Necessity in Evolution.  Les-
sons from RNA Physica 1999, 133:427-452.

41. Reidys CM, Stadler PF: Combinatorial Landscapes.  SIAM Review
2002, 44:3-54.

42. Hofacker IL, Fekete M, Flamm C, Huynen MA, Rauscher S, Stolorz PE,
Stadler PF: Automatic Detection of Conserved RNA Struc-

n

Page 18 of 19
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12432405
http://www.ekevanbatenburg.nl/PKBASE/PKB00075.HTML
http://www.ekevanbatenburg.nl/PKBASE/PKB00075.HTML
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8718684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8718684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7489516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1469719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1469719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9925784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9925784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17896159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17896159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9116604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9116604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9116604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13701785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13701785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4927725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4927725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5288243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5288243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8552647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8552647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9685502


BMC Bioinformatics 2009, 10(Suppl 1):S39 http://www.biomedcentral.com/1471-2105/10/S1/S39
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

ture Elements in Complete RNA Virus Genomes.  Nucl Acids
Res 1998, 26:3825-2836.

43. Schuster P, Fontana W, Stadler PF, Hofacker IL: From Sequences
to Shapes and Back: A Case Study in RNA Secondary Struc-
tures.  Proc Roy Soc Lond B 1994, 255:279-284.

44. Gruener W, Giegerich R, Strothmann D, Reidys CM, J W, Hofacker
IL, Stadler PF, Schuster P: Analysis of RNA sequence structure
maps by exhaustive enumeration I. Neutral networks.
Monatsh Chem 1996, 127:375-389.

45. Gruener W, Giegerich R, Strothmann D, Reidys CM, J W, Hofacker
IL, Stadler PF, Schuster P: Analysis of RNA sequence structure
maps by exhaustive enumeration. II.  Monatsh Chem 1996,
127:355-374.

46. Huang FWD, Peng WWP, Reidys CM: Folding RNA pseudoknot
structures.  . [In preparation].

47. Han HSW, Reidys CM: Stacks in canonical RNA pseudoknot
structures.  Comp Appl Math  in press.

48. Reidys CM: Local Connectivity of Neutral Networks.  Bull Math
Biol  in press.

49. Jin EY, Reidys CM: Central and Local Limit Theorems for RNA
Structures.  J Theor Biol 2008, 250(3):547-559.

50. Huang FWD, Reidys CM: Statistics of canonical RNA pseudo-
knot structures.  J Theor Biol  in press.

51. Fontana W, Schuster P: Shaping Space: the Possible and the
Attainable in RNA Genotype-Phenotype Mapping.  J Theor Biol
1998, 194(4):491-515.

52. Reidys CM: Large components in random induced subgraphs
of N-cubes.  Discr Math  in press.

53. Stadler PF, Haslinger C: RNA Structures with Pseudo-Knots.
Bull Math Biol 1999, 61:437-467.

54. Haslinger C: RNA Structures with Pseudoknots.  In PhD thesis
University of Vienna; 1997. 

55. Shapiro L: A survey of the Riordan Group.  Proc Amer Math Soc
1994.
Page 19 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9685502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17883226
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Cross
	I Motifs
	II Skeleta
	III Saturation

	Loops
	Decomposition

	Results and discussion
	Minimum free energy RNA pseudoknot structures
	The fraction of pseudoknots
	Pseudoknot-shapes
	Stack-statistics in pseudoknot RNA

	Neutrality and local connectivity
	Neutral walks
	Neutral neighbors
	Local connectivity


	Conclusion
	List of abbreviations used
	Competing interests
	Authors' contributions
	Acknowledgements
	References



