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Abstract
Background: New short-read sequencing technologies produce enormous volumes of 25–30
base paired-end reads. The resulting reads have vastly different characteristics than produced by
Sanger sequencing, and require different approaches than the previous generation of sequence
assemblers. In this paper, we present a short-read de novo assembler particularly targeted at the
new ABI SOLiD sequencing technology.

Results: This paper presents what we believe to be the first de novo sequence assembly results
on real data from the emerging SOLiD platform, introduced by Applied Biosystems. Our assembler
SHORTY augments short-paired reads using a trivially small number (5 – 10) of seeds of length 300
– 500 bp. These seeds enable us to produce significant assemblies using short-read coverage no
more than 100×, which can be obtained in a single run of these high-capacity sequencers. SHORTY
exploits two ideas which we believe to be of interest to the short-read assembly community: (1)
using single seed reads to crystallize assemblies, and (2) estimating intercontig distances accurately
from multiple spanning paired-end reads.

Conclusion: We demonstrate effective assemblies (N50 contig sizes ~40 kb) of three different
bacterial species using simulated SOLiD data. Sequencing artifacts limit our performance on real
data, however our results on this data are substantially better than those achieved by competing
assemblers.

Background
Several new short-read sequencing technologies are now
actively competing in the race towards the $1,000
genome. Each of these technologies produces raw
sequence data with particular characteristics and distinct
error models. However, it has become clear that three
major contenders (Solexa/Illumina, Agencourt/Applied

Biosystems, and Helicos BioSciences) aim to produce
high volume, 25–30 base paired-end reads.

Short read sequencing has lead to a new surge of interest
in the old problem of sequence assembly. These new tech-
nologies have only recently started producing data suita-
ble for de novo assembly. Several teams are now building
short-read assemblers (see Section "Related Work"), but
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the protocols optimizing assembly projects (e.g. optimal
mixes of short- and long-reads) are still being invented.

In this paper we present our assembler SHORTY, targeted
towards paired-end microread sequencing data. SHORTY
uses a very small volume of "seeds", perhaps 5–10 reads/
contigs per bacterial genome. These seeds can be either
virtually constructed using a conventional single-ended
read assembler, or purchased with a trivial amount of
Sanger sequencing. Still, these seeds enable us to produce
significant assemblies with a short-read coverage of 100×,
easily obtainable on one run of any of the new machines.
Further, our final assemblies prove very accurate even
though our reads contain base error rates associated with
the machines available today. Certain previous work on
microread assembly underestimates the complexity of the
problem by simulating assembly on error-free reads.

SHORTY exploits two ideas which we believe of interest to
the short-read assembly community:

• Seed reads for crystallizing assemblies – Several other
assemblers intermix low (say 2×) coverage from Sanger or
454 reads with a higher coverage of short reads to fill up
gaps. Instead, we use a single 300 – 500 base computed
seed read to grow a neighboring contig of greater or equal
to Sanger length. By repeating this process on the new
contig, we can walk across the full genome assembling
perhaps 90% of the genome into 15–20 kb contigs.
Assembling the results of such walks from a trivial
number of seeds produces contigs with an N50 size
(length such that at least 50% of the assembled genome
lies in blocks of the N50 size or greater) of 40 kb on bac-
terial genomes and 98% coverage in non-trivial contigs.

The seed coverage assumed by our protocol is so modest it
eliminates the need for a lab to own more than one type
of sequencing platform. These trivial number of reads can
be generated from short reads by following any simple
assembly algorithm or likely even extracted from highly-
conserved ribosomal RNA sequences scavenged from
databases. Already existing assemblers (e.g. [1,2]) for sin-
gle-ended short reads can generate these starter seeds.

• Inter-contig distance estimation from spanning paired-end
reads – Sequencing protocols specify the mean separation
distance and variance between the ends of the paired-end
reads. Typically, these insert lengths are normally distrib-
uted, say with a mean distance of 2700 bases and a stand-
ard deviation of 350 bases. Our walking assembly strategy
naturally produces two neighboring contigs separated by
some insert distance. The substantial number of paired-
end reads with one end anchored in each contig provides
the possibility of accurately estimating the distance
between the contigs. Such estimation enables us to order

contigs and fill gaps using shorter overlaps that would be
unconvincing in the absence of distance information.

Huson et. al [3] proposes an idea to order contigs from
mate-pair reads but it is not scalable for the volume of
data we have in a short read assembly project. In this
paper, we use such distance estimation efforts in a way
that scales for short read assemblers.

We survey related work on short-read assembly below.
The primary research issue today is not the head-to-head
comparison of which assembler is "best", but to identify
the most cost-effective short-read sequencing protocol
which results in data that can be reconstructed when cou-
pled with the right assembly strategy.

Short read sequencing technologies
Although the Sanger sequencing method [4] has been the
dominant sequencing technology for decades, novel tech-
nologies for short read sequencing are being developed by
several groups. [5-9]. See [10] for a recent survey and anal-
ysis of these technologies. These new short-read sequenc-
ing technologies differ in details of localizing molecules,
amplification and sequencing approach. Our assembler
has been developed for microread technologies that gen-
erate mate paired short reads. Hence, it is suitable for data
generated by companies like:

• Applied Biosystems: They recently released their SOLiD™
sequencing machine, which uses technology that is
acquired from Agencourt Bioscience Corporation. Agen-
court commercialized their technology based on Polony
Sequencing developed by Church and Mitra [11,12].
Indeed, the parameters underlying our simulations were
selected with SOLiD™ in mind.

• Solexa: They were recently acquired by Illumina. Their
sequencing machine, Illumina Genome Analyzer, can load
to eight samples onto their flow cell surface for simultane-
ous analysis. The platform offers high accuracy, high
throughput and relatively low cost ($3000 per run, $400
per channel), and promises real support for double-ended
reads forthcoming very soon.

• Helicos BioSciences: They are pioneering a single-mole-
cule approach to sequencing based on technology from
[13]. This offers advantages in capacity and eliminating
amplification-specific bias. Their HeliScope™ sequencing
machine contains two flow cells where billions of single
molecules of sample DNA are captured on an application-
specific proprietary surface to serve as templates for the
sequencing-by-synthesis process. Recently, they published
[14] M13 genome re-sequencing data based on their new
technology.
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Table 1 compares the primary performance characteristics
of various short read sequencing technologies.

Related work
The success of shotgun sequencing [4] led to the develop-
ment of several successful assemblers for Sanger reads.
Most of them were based on the overlap-layout-consensus
[15] paradigm, while others took a graph-theoretic
approach. Some assemblers were suitable for hierarchical
sequencing, while others targeted whole genome shotgun
(WGS) sequencing.

As short read sequencing technologies mature, several
bioinformatics groups have started working on short read
assembly projects. Most algorithms are still tested on sim-
ulated data, as true assembly-quality data is not yet readily
available for most platforms. Solexa double-ended reads
and Applied Biosystems' SOLiD™ system have just entered
the market, so real data should be available in relatively
short order. We classify short read assemblers in three dif-
ferent groups, based on the type of reads they expect. The
first class of assemblers are similar to ours in targeting
mate-paired data generated from Solexa/ABI machines:

• ALLPATHS [16] is an assembler being developed at the
Broad Institute reporting excellent assembly on paired-end
Solexa-type data with 80× coverage using a protocol with
three different insert sizes (50 kb ± 10%, 6 kb ± 10%, and
0.5 kb ± 1%). SHORTY is different in (1) assuming a sub-
stantially simpler, single library experimental protocol
and (2) employing shorter reads (25 vs. 30 bp).

• Medvedev and Brudno's RECOMB 2008 paper [17]
reports assembly results for bacterial scale genomes which
are more directly comparable to ours. They assemble sim-
ulated 25-base paired (although error-free) reads into
contigs with N50 contig sizes around 25 kb. We produced
bigger N50 (30 – 45 kb) even with the presence of
sequencing errors.

• Velvet [18] augments 50× Solexa data to produce high
quality assemblies. They use reads of 35 bp length
whereas SHORTY can handle 25 bp long reads, which is
more realistic for SOLiD data. Our N50 size is comparable
with those of Velvet despite the shorter read length.

The second class are assemblers targeting 454 data, which
include:

• Newbler [19] is a proprietary de novo assembler from
454 Life Sciences Corporation which is designed to han-
dle their data which is in the form of flowgrams. It is based
on the overlap-layout-consensus paradigm and consists of
three modules: Overlapper, Unitigger and Multialigner.
As 454 doesn't typically produce paired-end data, Newbler
generates a set of unlinked contigs.

• EULER [20] analyzed the feasibility of short read assem-
bly of read length 70–200 using EULER. On simulated
data from several bacterial genomes, they produced a mix
of long and short contigs.

• EULER-SR [21], the new version of EULER is particularly
designed for reads generated by next generation sequenc-
ing technologies. The results are based on a hybrid
approach where they used 454 and Sanger type data
together to generate an assembly. They presented some
results for simulated paired 454 reads as well.

• SHRAP [22] is another assembler that assemble reads of
length around 200 base pairs using a proposed sequenc-
ing protocol for mammalian-scale genomes.

A final class of short-read assemblers focuses on single-
ended reads produced by the first generation of Solexa
machines:

• SSAKE [1] is a short read assembler that was tested with
simulated error-free 25 mers. It performs well with viral
genomes. In a recent release, SSAKE started supporting
paired end reads.

• SHARCGS [2] is a de novo short read assembler that
handles short reads as short as 25–40 bases. It generates a
set of large contigs but without any ordering information.
Their algorithm was tested against Illumina's 1 G sequenc-
ing instrument. It uses a method that it calls contig elonga-
tion: a read is extended by looking for other reads in a
prefix tree for potential extensions. It doesn't handle
paired-end reads.

Table 1: Comparison of different short read sequencing technologies. Comparison of existing short read sequencing technologies in 
terms of throughput and read length.

Company Machine Throughput (per run) Read length (base)

454 GS FLX 100 M bases/7 hours 100 or more
Helicos HeliScope 2 G bases/day around 25

Applied Biosystems SOLiD 4 G bases 25 – 30
Solexa Illumina Genome Analyzer 2 G bases/2 days 25 – 30
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• Phusion [23] was used by Sanger Institute to assemble
many genomes from shotgun sequences. Recently they
showed [24] possibilities of assembling short reads by
mixing a low coverage (0.5–2×) of capillary reads with
them. They used 454 and Solexa data for their prototype.

• Adena [25] is a recently published short read assembler
that works on 35 bp long Illumina data and performs bet-
ter and less resource hungry in comparison to SSAKE and
SHARCGS. N50 sizes presented in their paper was in the
range 6–14 k bp long.

Results and Discussion
Data preparation
We have rigorously tested our assembler on simulated
sequence data generated from three bacterial genomes –
M. genitallium, S. suis (strain P1/7) and E. coli (DH10B).
The reference sequences are 580, 075; 2, 007, 490 and 4,
686, 136 bases long. Our simulations were designed to
conform as closely as possible to an assembly project on
the Applied Biosystems' SOLiD platform. Indeed our cov-
erage, insert distribution, and base error distribution are
derived the actual data set discussed below.

SOLiD is an ultra high-throughput technology. Thus we
can exploit the resulting huge coverage to discard bad
reads based on the base quality scores [26,27]. After dis-
carding all the reads from the real data set that had average
quality scores below 15, we still had 200× of raw reads
with a 0.1% base sequencing error rate. The insert length
for the data set was found to be normally distributed with
mean length of 2,270 and standard deviation 350.

We maintained these properties in our simulated dataset,
except that we sampled our reads uniformly whereas the
real data set contains artifacts like thinly sampled regions.
All reads were 25 bases long and sampled in SOLiD's color
space. Starter seeds used in the experiments were around
500 bases long. All data were sampled from both strands
of the corresponding genome. All datasets were generated

in SOLiD's two base encoding format and hence the contigs
we generate are also two base encoded.

Experiments with simulated SOLiD data
Results for one dataset from each of the three species
under consideration are shown in Table 2. All the datasets
were assembled with 100× input coverage and a small
number of starter seeds. The results are shown in different
levels of minimum contig accuracy (Sc) along with the
overall assembly score (Sa) which basically shows the
quality of our contigs. For a definition of these terms,
please see the end of the Methods section.

Table 2 shows the reference coverage achieved along with
N50 size generated by SHORTY. In all cases, we achieved
over 90% coverage with contig accuracy at least 99%. Our
N50 size was also superior than most other comparable
assemblers. For E. coli, the largest bacteria we considered,
we obtained an N50 size of 41.8 kb with contig accuracy
at least 97%. The largest contig had a size of 165 kb with
an accuracy of 97.4%. Figure 1 shows the coverage
achieved by different size of contigs in the E. coli dataset.
It also shows N90 size with high accuracy (at least 90%) is
somewhere around 18 kb.

Experiments with real SOLiD data
We obtained access to an initial real dataset of 300× (read
size was 25) coverage of E. coli (DH10B) in June 2008.
Throwing out the "bad reads" (average base quality score
15 or less) still left us with 200× coverage. After running
SHORTY on it, we managed to maintain more than 90%
coverage of the reference sequence in pieces of length 100
or more. However the maximum contig length was only
1,641 where the simulated data with half the coverage
produced a contig as big as 165,013 bp (Table 2). We ran
three experiments (Table 3) with each of them processing
three randomly chosen seeds from the reference. All of
them show similar results in terms of coverage, contig
length and distribution of gaps. Gaps were of short length
and uniformly distributed over the sequence. This was

Table 2: Assembly results. Assembly results for different data sets. Coverage is the fraction of the reference sequence covered by the 
generated contigs. Results are shown within different levels of minimum contig accuracy (97%, 99%, 99.9%). Minimum length of a 
contig considered for this analysis was 100 bases. All contig lengths are expressed in kilo bases. Lc is the length of contig c whereas Sc is 
its accuracy score. Sa is the total assembly score. For further illustration of these terms, refer to the end of the Methods section.

Species # of reads (million) # of seeds Coverage (%) N50 length (kb) Max Sa

97 99 99.9 97 99 99.9 Lc (Sc)

M. genitallium 2.42 5 96.3 88.9 64.6 45.8 36.7 3.5 86.1 (99.1) 96.1

S. suis 8.36 7 97.8 93.6 86.3 31.5 25.6 9.5 170.7 (95) 95.7

E. coli 19.53 10 98.2 96.1 88.1 41.8 32.4 12 165 (97.4) 97.1
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due to the thinly sampled regions (see Figure 2) or miss-
ing points which we believe is an artifact that needs to be
overcome by SOLiD.

To put our performance on the real dataset into perspec-
tive, we tested the data against other available assemblers.
None of them currently works with ABI's color space data,

Min contig len vs. coverageFigure 1
Min contig len vs. coverage. Coverage of reference sequence by various sizes of contigs with different levels of minimum 
contig accuracies (90%, 95%, 97%, 99%, 99.9%; shown in different colors) for the E. coli dataset. First portion of the graph (the 
region containing N50) is zoomed inside the small rectangle.
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Table 3: Assembly with real data. Three SHORTY experiments with real ABI SOLiD data. Each experiment was run using three 
different and randomly sampled seeds. Coverage is the fraction of the reference sequence covered by the generated contigs. Results 
are shown within different levels of minimum contig accuracy (97%, 99%, 99.9%). Minimum length of a contig considered for this 
analysis was 100 bases. For gap analysis, minimum contigs accuracy considered was 90%. Lc is the length of contig c whereas Sa is the 
total assembly score. For further illustration of these terms, refer to the end of Section "Methods".

Test Coverage (%) Average Lc # of gaps Avg. gap len Sa

97 99 99.9

1 92.3 87.8 57.4 161.5 4691 62.3 94.4

2 93.3 88.4 58.7 164.5 4736 58.5 94.5

3 92.9 88.1 58.2 165.0 4690 63.4 94.5
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making it difficult to find suitable assembler that could
run SOLiD data with minor format change. We tried
SHARCGS [2], but even the 32 G memory available in our
machines did not suffice for assembly. We tried the latest
version of SSAKE [1] with the default setting for paired
end reads. SSAKE produced only 846 contigs (only 2.1%
coverage of the reference sequence) that were longer than
100 bases, with the maximum contig size of 337 bp.

Resource consumption
All experiments mentioned here were running in
machines with two 1.8 GHz AMD Opteron processors. In
the end, SHORTY was proved to be extremely efficient in
memory consumption. A 100× single seeded experiment
with M. genitallium took 220 M of memory. Experiments
with S. suis and E. coli consumed 1.2 G and 2.7 G memory
respectively. Their corresponding running time was 3, 6
and 10 hours. When using multiple seeds, we run each
seed in parallel in different machines. That means,

SHORTY is capable of running in most of today's personal
computers. We have seen that resource consumption was
one of the major concerns with short read assembly due
the the huge volume of data.

Conclusion
We have presented what we believe to be the first results
on the de novo assembly of ABI SOLiD data. The results
we have presented here provide evidence that high-quality
short read assembly is indeed possible using simple and
economical protocols on real short-read data. Unlike pre-
vious works, our protocol uses a single sample prepara-
tion as opposed to a mix of insert sizes or or runs on a mix
of different platforms (e.g. 454 and Solexa). Our assem-
blies thrive on significant variance in insert length, further
simplifying preparation over others in the literature.

Our use of single seed reads is more of a nuisance than a
problem, as this data can be obtained cheaply through

Thickness in real dataFigure 2
Thickness in real data. Frequency of thickness in 200× real SOLiD reads sampled from E. coli. Thickness of a position is 
defined as the number of reads covering that position. The zoomed area shows the areas with low thickness (no more than 
50).
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outsourcing services. An interesting question is whether
they are really necessary. Database sequence from closely-
related species should suffice, but even more to the point
is noting how little information they add to the process.
Three 500 base seeds represent only 3,000 bits of informa-
tion in an assembled genome of 4,000,000 bits, making it
hard to believe they really are essential. Our proposed
alternative to this is to run an existing assembler on the
initial reads to get few contigs large enough to serve as
starter seeds. We hope add this to SHORTY as part of a
future release.

Our primary direction of further work is demonstrating
significant de novo assemblies on each of the major short-
read platforms, namely ABI SOLiD™, Solexa paired-read
data, and Helicos Biosciences data as they become availa-
ble to us. We are also working to raise our N50 sizes
through gap filling techniques based on accurate posi-
tional estimation.

Methods
SHORTY is designed to work on paired end short reads.
These reads (optionally accompanied by quality scores)
are generated by recent technologies developed by
Applied Biosystems, Solexa and others to come. Labora-
tory protocols aim to select targets whose insert separating
the two reads is normally distributed around a given target
length. Each paired read contains a distinct left-mer (lmer)
and a right-mer (rmer). These reads may contain insertion,
deletion, substitution or homo-polymer errors. Our pro-
tocol also uses a few 300 – 500 bp long reads (we call
them seeds) to start with. Here is the basic workflow of
SHORTY algorithm which is followed by a detailed
description of each step:

1. Reads are stored in an efficient data structure to be able
to be retrieved later. Also all bad reads are discarded.

2. A seed is chosen and processed. This can be any of the
starter-seeds or next generation seeds that SHORTY gener-
ates. This step basically gives us a set of neighboring reads

whose other ends (from the mate-pair) map onto the
seed.

3. From the group of reads we got from the previous step,
we generate contigs based on their overlap information.
We discard contigs that are below certain threshold length
(say 100 bases).

4. Some of the contigs generated are long enough to be
considered as seeds again. For each such contig, we repeat
from step 2. If we don't have any such contigs, we con-
tinue to the next step.

5. All contigs generated from all seeds (including multiple
starter seeds) are considered together for further process-
ing to generate larger contigs.

6. Scaffolds are generated and inter-contig gaps are calcu-
lated. Also, mis-assemblies (e.g. chimera) are detected at
this step.

Read storage
In a typical data set, we have millions of pairs of reads.
Our use of these reads requires them to be accessed many
times during the assembly process. To make the searching
process faster while spending less memory, we store the
reads in a compact trie. We insert all the pairs based on
their left-mers and right-mers. From each pair, we generate
another pair of reads. The left-mer of the new pair will be
the reverse complement of the left-mer of the original pair.
Similarly the right-mer of the new pair will be the reverse
complement of the right-mer of the original pair. We insert
the new pair in a similar way. So, after the trie building
process is finished, we know for a particular k-mer which
pairs of reads contain that k-mer in their left-mer or right-
mer.

Since reads contain a variety of sequencing errors, our trie
searching method is designed to search a k-mer within a
certain number of maximum mismatches allowed.

Seed processingFigure 3
Seed processing. Group of right-mers (red) whose corresponding left-mers (blue) can be mapped on the seed (black). It can 
also be in the other way, i.e. right-mers mapped on the seed to form a group of left-mers.
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Processing a seed
For each seed we detect the group of read pairs whose left-
mers (or right-mers) will map onto that seed (by searching
the trie we have already built). With high probability, this
group of right-mers (or left-mers) belong to some neighbor-
ing reads in the reference sequence (Figure 3). The previ-
ously built trie of reads is used to determine this group.
We take into consideration various types of sequencing
errors while trying to map a read on the seed. This group
forms the basis of forming larger contigs and next genera-
tion seeds. While processing a seed, we carefully try to han-
dle repeat regions (Figure 4) as these might generate
contigs with misleading positional information. Another
situation where this problem can arise is when there are
regions which are similar to their reverse complement. We
call such regions palindrome regions. We detect seeds with
repeats or palindrome regions by checking the number of
reads that a seed can map onto itself. If it attracts too many
reads (say twice as much as the input coverage), there is a
strong chance that it has one of those problems.

Generating contigs
The group of reads formed in the previous stage is
expected to have overlapping reads when we are presented
with enough input coverage. We construct a directed
graph G = (V, E) where V is the set of reads in the group.
E contains all the edges in the graph. An edge eij ∈ E if
there is a qualified (say above some threshold) overlap
from read i to j. eij denotes the amount of overlap (For 25
base long SOLiD reads, we considered an overlap if it were
at least 15 base long. But it depends on the coverage and
quality of the data). We greedily choose the longest path
from G and merge the reads along that path to produce a

contig. We keep doing this for the next longest path pos-
sible. We only consider paths longer than a threshold.
This generates a set of contigs which are expected to be in
neighboring positions in the reference. While considering
an overlap, we also take into account the quality of the
bases. Considering the possibility that the reads may con-
tain different kinds of errors, it is not always possible to
have 'clean' overlaps. We use a dynamic programming based
approach where we penalize for such error conditions. We
also store voting information (for each position we count
the number of A, T, G and C that comes from the consti-
tuting reads) for each position of a contig which helps us
to choose the appropriate base for a position in case we
have multiple candidates which might be the result of
errors in the constituting reads. This can be used to deter-
mine the quality of that base.

Generating new seeds
Some of the contigs generated in the previous stage might
qualify to be used as seeds again. These next generation seeds
are chosen based on the length and quality of the contigs.
It is also possible to use a collection of neighboring contigs
as a single seed. However, in SHORTY we only consider
individual contigs as seeds.

New seeds are treated like starter seeds. This is where
SHORTY keeps iterating until we have no more seeds or
reads available for use or we have reached our desired out-
put thickness level.

Generating larger contigs
At this stage we are expected to have decent sized contigs.
In SHORTY, we allow a single read to be used multiple

Narrowing gapsFigure 5
Narrowing gaps. Because of the standard deviation of insert-length, gap between successive contigs reduces.
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Repeats and palindromesFigure 4
Repeats and palindromes. Repeats (R) and palindromes (P) can generate contigs with misleading positional information.
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times to generate redundancy of contigs. This compen-
sates for sequence repetitions, and works well when the
data is sampled uniformly with few gaps, as should hap-
pen when sequencing with high coverage. We define out-
put thickness defined as the ratio of the total length of
generated contigs and reference sequence length. If our
target output thickness is t, we usually allow a read to be
used maximum t times. A typical value of t for a single
starter seeded run is 5. With more starter seeds, we can
choose a lower value of t. With t > 1, it is expected that
contigs will overlap among themselves. This along with
the normal distribution of insert lengths form the basis of
forming larger contigs and removal of inter-contig gaps.

Figure 5 explains how the gap between contigs get reduced.
Contigs B and C are generated from seed A. If the standard
deviation of insert length was zero, D, which is generated
from C, must have overlapped completely with A. But we
can safely assume that we will have 10–15% standard
deviation in actual situation. However, we can still pro-
ceed in a situation where the standard deviation is zero
using multiple seeds. As we can see in Figure 5A, D and E
now overlap to produce a larger contig while also reducing
the gaps.

The number of contigs available for processing in this
stage is very large. For example, a SHORTY run of E. coli
with desired output thickness 5 and read reuse limit 5 pro-
duces more than 90, 000 contigs. Finding candidate
merges like Figure 5 from this large amount of possibili-

ties can be expensive. Also, with the presence of repeat
regions, considering a merge based on overlaps without
any other information might be misleading.

But SHORTY keeps track of reads that made the contigs.
Also, because of the way we generate a contig, with very
high probability constituting reads are not fooled by
repeats and are from the neighboring locations. We use
this information to merge these contigs. At first we con-
struct a directed graph G = (V, E) like before (see Section
"seed processing"). But in this graph V contains all the
contigs and E contains all the edges in the graph. Again,
an edge eij represents an overlap from contig i to contig j.
But unlike the overlap calculation used in "seed process-
ing", here overlaps don't represent a string overlap only.
An overlap here also indicates that a common set of reads
(Figure 6) made the overlapping portion in both contigs.
This way we are able to avoid many repeat related issues.
Once we have the graph, we keep extracting the longest
possible paths from G using the previously used greedy
algorithm. This also increased our contigs' size signifi-
cantly.

Contig scaffolding
We use mate pair data in such a way that it is possible to
trace back which contig was generated from which seed
(Figure 7). We construct a directed graph G = (V, E) from
this information. Vertices of G are the contigs and each
seed is connected to all of its children. An edge eij is a
directed edge from i to j if i is the generating seed for j. A
chain of contigs in the same direction in the graph forms
a scaffold.

Contiguous contigs in the scaffold are merged if they
become large enough in the previous steps. We can also
re-map our initial reads to fill the gaps in a scaffold (Figure
8). If the gaps still persist, we provide an estimated gap
length (see "Estimating gap between contigs").

Detecting misassemblies
We detect mis-assemblies by mapping the reads back to
the contigs (Figure 9). If there is a point where a wrong
merge occurred, there are only a few paired reads where
both of them get mapped to the opposite sides of that

Scaffold constructionFigure 7
Scaffold construction. A chain of contigs in the same direction is used as a scaffold. Three different scaffold are shown in this 
figure in red, blue and black.

Contig overlapFigure 6
Contig overlap. Overlap between two contigs is only con-
sidered when reads with similar ids from both contigs make 
this. Here blue and red reads appear in both contigs and can 
form this overlap.
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point. We split the contigs in such points. Our scaffolds
can also be another source of identifying chimeras (Figure
10). Our scaffolds are ordered chains of contigs generated
from mate paired reads. When two contigs become large
enough to cover the gap between them, they should ove-
lap. Otherwise, there is a chance that at least one of them
is a chimera.

Estimating gap between contigs
The combination of relatively high-coverage as realized by
paired-end microreads provides new opportunities to
accurately estimate the distance between non-overlapping
contigs (e.g. Figure 8). The simulations discussed in this
paper assume 100× sequence coverage in 25-base paired
reads. This yields an expectation of two reads starting from
each position on the genome, half of which will represent
the 5' read. This implies that the number of read-pairs
spanning any interior position on the genome roughly
equals the insert length. Thus hundreds or even thousands
of read pairs connect each two non-overlapping contigs,
all of whose insert sizes were drawn from a normal distri-
bution of known mean and standard deviation. By analyz-
ing where these read-pairs map on each contig we can
accurately estimate the inter-contig distance. Huson et. al
[3] has the statistical analysis required to calculate such
distances and we use similar calculations for SHORTY.

Accurate distance estimation is vital in later-stage contig
merging in SHORTY. Many contigs generated from seeds

overlap, but too weakly to be statistically significant over
the scale of a genome assembly. Accurate information
about position enables us to merge them confidently. Sec-
ondary benefits include reduced running times (by avoid-
ing unpromising contig-overlap pairs) and dealing with
repeats.

Contig accuracy
To verify how well SHORTY is performing we determine
the accuracy of a contig by mapping it back to the refer-
ence genome. MUMmer [28], which uses an efficient
method based on suffix tree, is used to find these matches.
For a match, an accuracy score Sc is defined as x + y - 100,
where x% of contig c was matched to the reference
sequence with y% similarity. This way, we highly penalize
for mismatched parts of a contig and only very good con-
tigs get a good score. This is in contrast to some other
assemblers where accuracy is only based on similarity and
low penalty for mismatches.

Assembly score
SHORTY produces some misassembled contigs, just like
any other assembler. In order to determine the overall
assembly quality, these bad contigs should be taken into
account. Unlike most other methods (where % of good
contigs are reported) used in the literature, we take an
weighted scoring scheme where alonger contig has more
influence than a shorter contig. The total assembly score
Sa is defined as (∑∀c∈C ScLc)/∑∀c∈C Lc, where C is the set of

Chimera detection from read pairsFigure 9
Chimera detection from read pairs. Chimeras are detected by mapping back the reads onto the contig. The contig is par-
titioned at a point where only a few pair have their reads in both sides of that point.

Scaffold gap removalFigure 8
Scaffold gap removal. Unfilled gaps in scaffolds can be filled by re-mapping the reads onto the contigs.
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all contigs, Sc is the accuracy measure for contig c ∈ C and
Lc is the length of contig c ∈ C.

Availability
All documentation, source code and other information on
SHORTY are available at http://www.cs.sunysb.edu/
~skiena/shorty.
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