Skip to main content

Table 4 Performance comparison of M3S-GRPred and top-five ML base-classifiers developed using different balanced training subsets

From: M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy

Evaluation strategy

Method

ACC

BACC

SN

SP

MCC

AUC

Cross-validation

PLS-Pubchem-BTS1

0.774

0.776

0.835

0.716

0.554

0.833

 

SVM-CDKExt-BTS2

0.778

0.777

0.791

0.763

0.555

0.837

 

XGB-FP4C-BTS5

0.780

0.780

0.796

0.764

0.560

0.855

 

SVM-Pubchem-BTS4

0.782

0.781

0.796

0.767

0.563

0.824

 

RF-Pubchem-BTS1

0.781

0.782

0.786

0.777

0.563

0.849

 

M3S-GRPred

0.898

0.900

0.903

0.897

0.708

0.964

Independent test

PLS-Pubchem-BTS1

0.696

0.770

0.884

0.657

0.413

0.836

 

SVM-CDKExt-BTS2

0.704

0.758

0.841

0.675

0.396

0.832

 

XGB-FP4C-BTS5

0.744

0.742

0.739

0.745

0.387

0.819

 

SVM-Pubchem-BTS4

0.774

0.835

0.928

0.742

0.523

0.880

 

RF-Pubchem-BTS1

0.774

0.823

0.899

0.748

0.508

0.883

 

M3S-GRPred

0.867

0.891

0.928

0.854

0.658

0.953