Skip to main content

Table 2 Cross-validation MCC scores of 30 base-classifiers developed based on individual five balanced training datasets

From: M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy

Descriptor

Method

BTS1

BTS2

BTS3

BTS4

BTS5

Average

AP2DC

KNN

0.509

0.342

0.446

0.441

0.470

0.442

 

MLP

0.508

0.449

0.513

0.472

0.507

0.490

 

PLS

0.498

0.425

0.404

0.398

0.501

0.445

 

RF

0.482

0.487

0.513

0.455

0.513

0.490

 

SVM

0.549

0.524

0.548

0.459

0.526

0.521

 

XGB

0.540

0.494

0.533

0.497

0.457

0.504

CDKExt

KNN

0.469

0.421

0.431

0.400

0.487

0.442

 

MLP

0.426

0.477

0.484

0.443

0.496

0.465

 

PLS

0.365

0.474

0.464

0.478

0.472

0.451

 

RF

0.450

0.519

0.494

0.522

0.521

0.501

 

SVM

0.517

0.555

0.489

0.476

0.516

0.510

 

XGB

0.483

0.479

0.444

0.472

0.516

0.479

FP4C

KNN

0.417

0.382

0.451

0.395

0.447

0.418

 

MLP

0.007

0.031

0.050

-0.018

0.111

0.036

 

PLS

0.436

0.434

0.400

0.341

0.452

0.413

 

RF

0.478

0.509

0.519

0.480

0.545

0.506

 

SVM

0.468

0.500

0.548

0.454

0.545

0.503

 

XGB

0.520

0.539

0.503

0.495

0.560

0.524

MACCS

KNN

0.323

0.392

0.395

0.337

0.410

0.371

 

MLP

0.017

0.040

-0.050

-0.023

-0.058

-0.015

 

PLS

0.273

0.336

0.335

0.267

0.394

0.321

 

RF

0.406

0.524

0.539

0.440

0.527

0.487

 

SVM

0.339

0.510

0.493

0.405

0.443

0.438

 

XGB

0.426

0.494

0.514

0.478

0.472

0.477

Pubchem

KNN

0.442

0.379

0.374

0.452

0.441

0.417

 

MLP

0.468

0.469

0.404

0.546

0.511

0.480

 

PLS

0.554

0.505

0.444

0.526

0.516

0.509

 

RF

0.563

0.509

0.499

0.528

0.531

0.526

 

SVM

0.491

0.460

0.451

0.563

0.526

0.498

 

XGB

0.540

0.433

0.464

0.546

0.506

0.498