Skip to main content

Table 1 Implemented methods in the metacp package and their corresponding formulas for combining p-values

From: metacp: a versatile software package for combining dependent or independent p-values

Method

Combined p-value

Logitp

\(p_{c} = 1 - {\rm T}\left( {\left| { - \frac{{\mathop \sum \nolimits_{i = 1}^{k} \log \left( {\frac{{p_{i} }}{{1 - p_{i} }}} \right)}}{C}} \right|, 2k} \right)\)

Meanp

\(p_{c} = 1 - \Phi \left( {\left( {0.5 - \overline{p}} \right)\sqrt {12k} } \right)\)

Fisher

\(p_{c} = { }1 - F\left( { - 2\mathop \sum \limits_{i = 1}^{k} \ln p_{i} , 2k} \right)\)

Lancaster

\(p_{c} = 1 - F\left( {\mathop \sum \limits_{i = 1}^{N} F_{{X^{2} }}^{ - 1} \left( {1 - p_{i} , n_{i} } \right), \mathop \sum \limits_{i = 1}^{k} n_{i } } \right)\)

Stouffer

\(p_{c} { } = 1 - \Phi \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{k} z_{i} }}{\sqrt k }} \right)\)

Weighted Stouffer

\(p_{c} { } = 1 - \Phi \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{k} w_{i} z_{i} }}{{\sqrt {\mathop \sum \nolimits_{i = 1}^{k} w_{i}^{2} } }}} \right)\)

Inverse chi2

\(p_{c } = { }1 - F\left( {\mathop \sum \limits_{i = 1}^{k} { }F^{ - 1} \left( {1 - p_{i} ,{ }1} \right), k} \right)\)

Binomial

\(p_{c} = \mathop \sum \limits_{x = r}^{k} \left( {\begin{array}{*{20}c} k \\ x \\ \end{array} } \right)a^{x} \left( {1 - a} \right)^{k - x}\)

Bonferroni

\(p_{c} = min\left( {1, \min \left( {p_{1} , p_{2} , \ldots , p_{k} } \right) \times k} \right)\)

Bonferroni Adjustments (CN, Li-Ji, Galwey, Gao and so on)

\(p_{c} = {\text{ min}}\left( {1, \min \left( {p_{1} , p_{2} , \ldots , p_{k} } \right) \times m} \right)\)

MinP

\(p_{c} = 1 - \left( {1 - {\text{min}}\left( {p_{1} , p_{2} , \ldots , p_{k} } \right)} \right)^{k}\)

CCT

\(p_{CCT} = P\left[ {C\left( {0, 1} \right) \ge t} \right]\)

MCM

\(p_{MCM} = 2{\text{min}}\left( {p_{CCT} , p_{MinP} , 0.5} \right)\)

CMC

\(p_{CMC} = CCT\left( {p_{CCT} , p_{MinP} } \right)\)

HMP

\(p_{c} = k/\mathop \sum \limits_{i = 1}^{k} \left( {1/p_{i} } \right)\)

EBM

\(p_{c} { } = 1 - F\left( { - \frac{{2\mathop \sum \nolimits_{i = 1}^{k} {\text{log}}p_{i} }}{c},2f} \right)\)

Yang’s extension to EBM

\(p_{c} = 1 - \Gamma \left( { - 2\mathop \sum \limits_{i = 1}^{k} {\text{log}}p_{i} ,{ }v/2,{ }2\gamma } \right)\)

Weighted Stouffer for Correlated Tests

\(p_{c} { } = 1 - \Phi \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{k} w_{i} z_{i} }}{{\sqrt {\mathop \sum \nolimits_{i = 1}^{k} \mathop \sum \nolimits_{j = 1}^{k} w_{i} w_{j} r_{ij} } }}} \right)\)

Stouffer for Correlated Tests (without weights)

\(p_{c} { } = 1 - \Phi \left( {\mathop \sum \limits_{i = 1}^{k} z_{i} /\sqrt {\left( {k + \mathop \sum \limits_{i = 1}^{k} \mathop \sum \limits_{j = 1}^{k} r_{ij} } \right)} } \right)\)

  1. In all cases we wish to combine k dependent or independent p-values (p1, p2, …, pk). The details of the methods as well as the definitions of other parameters appearing in the equations (α, m, f, c, and so on) can be found in the Supplementary Material