Skip to main content

Table 1 Model performance comparison between the proposed methods for continuous outcomes with 6 moderate effects

From: Bayesian compositional generalized linear mixed models for disease prediction using microbiome data

m

Proportion\(\ddagger\)

Model

Deviance

\(R^2\)

MSE

MAE

100

0.2

BGLM

1907.1

0.670

2.930

1.363

  

BCGLM

1902.9

0.671

2.919

1.360

  

BCGLMM

1911.2

0.669

2.940

1.365

 

0.5

BGLM

1976.7

0.714

3.104

1.402

  

BCGLM

1971.7

0.715

3.091

1.399

  

BCGLMM

1972.7

0.715

3.094

1.401

 

0.7

BGLM

2016.5

0.740

3.203

1.424

  

BCGLM

2012.1

0.741

3.192

1.421

  

BCGLMM

2009.9

0.742

3.186

1.422

300

0.2

BGLM

2147.6

0.701

3.531

1.503

  

BCGLM

2130.7

0.704

3.488

1.494

  

BCGLMM

2089.8

0.712

3.386

1.478

 

0.5

BGLM

2450.3

0.751

4.287

1.660

  

BCGLM

2430.6

0.754

4.238

1.651

  

BCGLMM

2286.1

0.775

3.877

1.584

 

0.7

BGLM

2621.4

0.787

4.715

1.749

  

BCGLM

2596.8

0.790

4.654

1.737

  

BCGLMM

2388.5

0.814

4.133

1.637

500

0.2

BGLM

2282.8

0.720

3.869

1.583

  

BCGLM

2244.7

0.728

3.773

1.564

  

BCGLMM

2103.6

0.752

3.421

1.488

 

0.5

BGLM

2839.0

0.778

5.260

1.849

  

BCGLM

2765.4

0.786

5.075

1.816

  

BCGLMM

2300.6

0.832

3.913

1.576

 

0.7

BGLM

3213.1

0.788

6.195

2.009

  

BCGLM

3096.6

0.798

5.903

1.961

  

BCGLMM

2521.0

0.846

4.464

1.676

  1. \(\ddagger\) Proportion: the proportion of small effects corresponding to the total predictors. BCGLMM, which considers both the sample-related random effect and predictor correlations simultaneously; BCGLM, which focuses solely on the predictor correlations; and BGLM, which ignores both the random effect and predictor correlations