Skip to main content

Table 3 Comparison of variant classification accuracy across different predictors in DMS and AlphaMissense datasets

From: DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants

 

DMS

AlphaMissense

Predictors

Total

Hits

Errors

Accuracy (%)

Precision (%)

Recal (%)

Total

Hits

Errors

Accuracy (%)

Precision (%)

Recall (%)

DTreePred

557

540

17

96.95

98.17

87.70

548

530

18

96.72

84.47

97.75

MetaSVM

557

522

35

93.72

82.35

91.80

548

508

40

92.70

93.24

77.53

Envision

557

520

37

93.36

97.83

73.77

548

516

32

94.16

85.39

85.39

LRT

557

518

39

93.00

88.29

80.33

548

518

30

94.53

76.64

92.13

M-CAP

557

517

40

92.82

78.47

92.62

548

496

52

90.51

80.22

82.02

REVEL

557

517

40

92.82

84.17

82.79

548

509

39

92.88

71.55

93.26

CADD

557

514

43

92.28

100.00

64.75

548

523

25

95.44

68.99

100.00

SuSPect

557

492

65

88.33

80.65

61.48

548

514

34

93.80

81.63

88.89

MutationTaster

557

490

67

87.97

65.71

94.26

548

469

79

85.58

68.14

86.52

SNPs&GO

557

482

75

86.54

70.43

66.39

548

500

48

91.24

63.50

97.75

DeepSequence

177

150

27

84.75

94.12

66.67

177

158

19

89.27

52.98

100.00

Ndamage

557

456

101

81.87

54.88

96.72

548

429

119

78.28

42.79

100.00

Polyphen

557

444

113

79.71

52.09

91.80

548

425

123

77.55

41.90

98.88

Machine Learning Score No Homologs

557

408

149

73.25

27.12

13.11

548

423

125

77.19

18.97

12.36

Machine Learning Score

557

403

154

72.35

25.00

13.11

548

418

130

76.28

17.46

12.36

SIFT

557

394

163

70.74

42.49

95.08

548

371

177

67.70

33.46

100.00

PROVEAN

557

368

189

66.07

37.73

84.43

548

362

186

66.06

31.84

95.51

FATHMM

557

361

196

64.81

37.58

91.80

548

332

216

60.58

28.18

92.13